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Differential posets

e It starts from a poset (partially ordered set) P. More specifically
from a differential poset.

e But what are differential posets?

e Differential posets are a familly of structures introdused by Richard

Stanley in 1988 in a paper with the title “Differential posets”.
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Up and down operators

e Let [F be any field of characteristic 0.

e Given any poset P, we may define an abstract vector space
FP = ®4ecpFx of finite linear combinations of elements of P with
coefficients in F.

e If in addition P is locally finite and each element of P is a member
of only finitely many cover relations, we may define two linear
transformations d and v on FP as follows:

dx = Zy and ux = Zy (0.1)

y<x X<y
where < stands for the cover relationship and we extend both to all
of FP by linearity.
e The operators u and d in (0.1) will be called up and down operators
which keep track of all possible steps “up” and “down” in the Hasse
diagram from x and have been introduced as Schur operators by

Fomin.



Up and down operators

e Now let us study the behavior of combinations of d, u on an

arbitrary x € P.



Up and down operators

e Now let us study the behavior of combinations of d, u on an
arbitrary x € P.



Up and down operators

e Now let us study the behavior of combinations of d, u on an
arbitrary x € P.
e Applying the definitions of d and v directly will give the following:

dux = Z Z.

v,z
z<y and x<y

An element z € P appears in this sum exactly k times, where k is

the number of elements of P which cover both x and z.



Up and down operators

e Now let us study the behavior of combinations of d, u on an
arbitrary x € P.
e Applying the definitions of d and u directly will give the following:

dux = Z z.

N
z<y and x<y

An element z € P appears in this sum exactly k times, where k is
the number of elements of P which cover both x and z.



Up and down operators

e Now let us study the behavior of combinations of d, u on an
arbitrary x € P.
e Applying the definitions of d and u directly will give the following:

dux = Z z.

N
z<y and x<y

An element z € P appears in this sum exactly k times, where k is
the number of elements of P which cover both x and z.

udx = Z Z.

v,z
y<z and y<<x

e Similarly, we have

An element z € P appears in this sum exactly k times, where k is

the number of elements of P which are covered by both x and z.



Up and down operators

e Now let us study the behavior of combinations of d, u on an
arbitrary x € P.
e Applying the definitions of d and u directly will give the following:

dux = Z z.

N
z<y and x<y

An element z € P appears in this sum exactly k times, where k is
the number of elements of P which cover both x and z.

udx = Z z.

Y,z
y<z and y<x

An element z € P appears in this sum exactly k times, where k is

e Similarly, we have

the number of elements of P which are covered by both x and z.



Up and down operators

e Now let us study the behavior of combinations of d, u on an
arbitrary x € P.
e Applying the definitions of d and u directly will give the following:

dux = Z z.

N
z<y and x<y

An element z € P appears in this sum exactly k times, where k is
the number of elements of P which cover both x and z.

udx = Z z.

Y,z
y<z and y<x

An element z € P appears in this sum exactly k times, where k is

e Similarly, we have

the number of elements of P which are covered by both x and z.

e Thus, we see that (du — ud)x = x if and only if x is covered by
exactly one more element than it covers and for each z # x € P, the
number of elements covering both x and z is equal to the number of

elements covered by both x and z.
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e And this inspires the following definition:

Definition
We call a poset P differential if it satisfies the following three axioms:

e (D1) P is locally finite and graded with a unique minimal element
(often denoted 0).

e (D2) If x # y are two elements of P and there are k elements of P
covered by both x and y, there are exactly k elements of P which
cover both x and y.

e (D3) If x € P covers k elements of P then x is covered by exactly
k 4+ 1 elements of P.

e And we have the following Propsition which can easily be proved by
induction on n:

Proposition
For a differential poset P, we have du" = nu"Y 4+ u"d for all n > 1.
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Properties of up and down operators

e Thus, the action of d on u has a distinct resemblance to that of a
differential operator.

e The resemblance is even more clear if we apply the operator to our
minimal element 0. since d0 = 0 so du"0 = nu"~10.

e It is from a generalization of this result that the name “differential
poset” arises (Stanley- Differential Posets).

e Young's lattice of all partitions of all nonnegative integers provides
an important example of such a poset.

e Stanley found that many of the interesting enumerative and
structural properties of Young's lattice could be deduced from the
relation du — ud =/, for | the identity transformation on FP.

e Stanley also considered more general posets which satisfy the
relation du — ud = rl for some fixed positive integer r and he
referred to these kind of posets as “r-differential”.



Properties of up and down operators

e In 1994, Sergey Vladimirovich Fomin independently defined
essentially the same class of posets for r = 1 calling them
“Y-graphs”, the terminology inspired by Young's lattice.



Properties of up and down operators

e In 1994, Sergey Vladimirovich Fomin independently defined
essentially the same class of posets for r = 1 calling them
“Y-graphs”, the terminology inspired by Young's lattice.



Properties of up and down operators

e In 1994, Sergey Vladimirovich Fomin independently defined
essentially the same class of posets for r = 1 calling them
“Y-graphs”, the terminology inspired by Young's lattice.

e In his study of uniform posets, Paul Terwilliger considered finite
ranked posets P whose down and up operators satisfy the following

relation
didii1u; = a;diu;_1d; + Biui_>di_1d; + ~;d;, (04)

where d; and u; denote the restriction of d and u to the elements of

rank i.



Properties of up and down operators

e In 1994, Sergey Vladimirovich Fomin independently defined
essentially the same class of posets for r = 1 calling them
“Y-graphs”, the terminology inspired by Young's lattice.

e In his study of uniform posets, Paul Terwilliger considered finite
ranked posets P whose down and up operators satisfy the following

relation
didip1u; = ajdiuj_1d; + Biuj_>d;_1d; + ~;d;, (0.4)

where d; and u; denote the restriction of d and u to the elements of

rank i.



Properties of up and down operators

e In 1994, Sergey Vladimirovich Fomin independently defined
essentially the same class of posets for r = 1 calling them
“Y-graphs”, the terminology inspired by Young's lattice.

e In his study of uniform posets, Paul Terwilliger considered finite
ranked posets P whose down and up operators satisfy the following
relation

didip1u; = ajdiuj_1d; + Biuj_>d;_1d; + ~;d;, (0.4)

where d; and u; denote the restriction of d and u to the elements of
rank /.

e There is an analogous second relation,
diviujui—1 = ojui_1diuj—1 + Bijuji_quj—odi—1 + yiuji_1, (0.5)

which holds automatically because d;.1 and u; are adjoint operators

relative to a certain bilinear form.
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(q, r)-differential posets

e In many classical cases the constants in the above relations
(relations (0.4) and (0.5)) do not depend on the rank of the poset.
A particular instance of this provides a g-analogue of the notion of
differential poset.
Definition
A partially ordered set whose down and up operators satisfy
d*u = q(q + 1)dud — g*ud® + rd

0.7
du® = q(q + 1)udu — ¢*u?d + ru, (0.7)

where g and r are fixed complex numbers is said to be “(q, r)-differential

poset”.

e Examples of (g, r)-differential posets include the posets of
alternating forms, quadratic forms, or Hermitian forms over a finite

field.
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e In 1998, Georgia Benkart and Tom Roby have studied certain
infinite-dimensional associative algebras whose generators satisfy
relations more general than relations (0.7) and they called these
class of algebras, down-up algebras:

Definition
We say a unital associative algebra A = A(«, 3,) over the complex
numbers C with generators u, d and defining relations

d?*u = adud — Bud? + vd

0.9
duv? = audu — BuPd + yu, (0:9)

where «, 3,y are fixed but arbitrary elements of C, is a down-up algebra.
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Generalized down-up algebras

e Generalized down-up algebras (GDUA, for short) were introduced by
Thomas Cassidy and Brad Shelton in 2004 as a generalization of the
down-up algebras A(a, §,7) of Benkart and Roby and are defined as
follows:

Definition
Let f € F[h]. Define L := L(f,r,s,~y) to be the unital associative
[F-algebra generated by x, y and h with relations

yh—rhy =~y, hx—rxh=vyx, yx—sxy+f(h)=0;
Then L is called a generalized down-up algebra (GDUA).

e Over an algebraically closed field, generalized down-up algebras

include all down-up algebras.



Quantum generalized Heisenberg algebras

Working over an arbitrary field F (unless otherwise stated), we introduce
a generalization of the class of generalized Heisenberg algebras by
deforming and generalizing the relation yx — xy = f(h) — h, turning it
into a skew-commutation relation and allowing the skew-commutator to
equal a generic polynomial, independent of f.
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Working over an arbitrary field F (unless otherwise stated), we introduce
a generalization of the class of generalized Heisenberg algebras by
deforming and generalizing the relation yx — xy = f(h) — h, turning it
into a skew-commutation relation and allowing the skew-commutator to
equal a generic polynomial, independent of f.

Definition

For fixed and independent f, g € F[h] and q € I, we define H(f, g) as

the unital associative algebra over [F generated by x, y, and h subject to
the following relations

yh=f(h)y, hx=xf(h), yx=qxy+ g(h). (0.12)

10
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Quantum generalized Heisenberg algebras

e Our main motivation for introducing a generalization of the class of
GHAs, besides providing a broader framework for the investigation of
the underlying physical systems, comes from the observation that
the classes of generalized Heisenberg algebras and of (generalized)
down-up algebras intersect, although neither one contains the other.

Proposition
The GHA H(f) is isomorphic to a generalized down-up algebra (GDUA)

if and only if deg f < 1.

e But not all (generalized) down-up algebras are GHAs. And it
became an incentive to develop a generalization of the concept of
GHA to a new class which includes all GHAs and all GDUAs.

11
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Quantum generalized Heisenberg algebras

e The first natural example of quantum generalized Heisenberg
algebras is the class of GHAs, H(f) = Hi(f,f — h).

e The universal enveloping algebra of the 3-dimensional Heisenberg
Lie algebra b is the quotient of the free algebra F (X, Y, H) modulo
the two sided ideal / generated by elements XY — YX — H,

XH — HX and YH — HY'. It is easy to see that U(h1) is isomorphic
to the quantum generalized Heisenberg algebra?;(h, —h) if we
consider the correspondence X <+ x, Y <> y and H < h.

e Consider the 3-dimensional Lie algebra sl,, with basis elements
x,y,h and Lie bracket given by [x, h| = 2x, [h,y] = 2y and
[y, x] = h. We can view its enveloping algebra as gGHA
Hi(h — 2, h).

12



Quantum generalized Heisenberg algebras

e Fix g € C[x]. Define S = C[A, B, H] subject to the relations
[H, Al = A, [H,B] =-B, AB — BA = g(H).

Then S will be called the Smith algebra due to Paul Smith, and it is
easy to see that S is isomorphic to the quantum generalized

Heisenberg algebra H1(h — 1, g) if we consider the correspondence
BHX,AHyand H & h.
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Quantum generalized Heisenberg algebras

e Fix g € C[x]. Define S = C[A, B, H] subject to the relations
[H,Al=A, [H,B]=-B, AB—BA=g(H).

Then S will be called the Smith algebra due to Paul Smith, and it is
easy to see that S is isomorphic to the quantum generalized
Heisenberg algebra Hi(h — 1, g) if we consider the correspondence
B+ x, A<>yand H < h.

e Fix g € C[x] and ¢ € C,¢ # 0. Define R = C[A, B, H] subject to
the relations

[HAl=A, [H,B]=-B, AB-—c¢BA=g(H).

Then R will be called the Rueda algebra due to Sonia Rueda, and it
is easy to see that R is isomorphic to the quantum generalized
Heisenberg algebra H¢(h — 1, g) if we consider the correspondence
B+ x, A< yand H < h.

13



Graphical view of subclasses

Witten

‘Weak Ambiskew

Weak GWA
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Seeing 7,(f,g) as a weak ambiskew polynomial ring

Proposition
For g € F, f,g € F[h], we construct Hq(f,g) as the ambiskew

polynomial ring R(F[h], o, g(h),q), where o is the endomorphism of F[h]
defined by o(h) = f(h).
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Seeing 7,(f,g) as a weak ambiskew polynomial ring

Proposition
For g € F, f,g € F[h], we construct Hq(f,g) as the ambiskew

polynomial ring R(F[h], o, g(h),q), where o is the endomorphism of F[h]
defined by o(h) = f(h).

e And we have Poincare Birkhoff Witt type basis
IXTWyk |i,j, k € Zso} of He(f,g).
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Seeing 7,(f,g) as a weak ambiskew polynomial ring

o Viewing H,(f,g) as a 2-step Ore extension (or as an ambiskew
polynomial ring) also helps to determine when #H4(f, g) is a domain.

Lemma
Hq(f, g) is a domain if and only if g # 0 and deg f > 1.
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Seeing 7,(f,g) as a weak generalized Weyl algebras

e We also can construct Hq(f, g) as a weak generalized Weyl algebra
as follows:
Proposition
For g € F, and f,g € F[h], Hq(f, g) is isomorphic to the wGWA A(o,w)
for A = F[h,w] and o the endomorphism of A defined by o(h) = f(h)
and o(w) = qw + g(h).
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Relation between GDUAs and qGHAs

Corollary
Hq(f, g) is isomorphic to a GDUA if and only if deg f < 1.
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Relation between GDUAs and qGHAs

Corollary
Hq(f, g) is isomorphic to a GDUA if and only if deg f < 1.

Proposition
The algebra Hq(f,g) is right (resp. left) Noetherian if and only if
degf =1 and q # 0.
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Weight ,(f, g)-modules

Now set

Se={X:Z —F|f(\(i)) = A\(i+1), forall i € Z} (0.19)
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Weight ,(f, g)-modules

Now set
Sr={\:Z—TF|f(\())=A(i+1), foralli € Z} (0.19)
and for given A\ € S¢, we define

Toer={0:Z —F | p(i+1)=qui)+ g(A(i)), forall i € Z}.
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Weight ,(f, g)-modules

e Next we will construct universal weight modules:
Definition
Given A € S¢ and p € Tg g we define the Hq(f, g)-module Ag g (A, 1)
by setting Aq.r g(A, 1) = F[t¥1], as vector spaces, with action given by

ht' = A(i)t, xt' =t yt' = p(i)tt, foralli€Z.  (0.21)

e Order 2 anti-automorphism 7 and the dual module:

Definition
We can identify By r 4 (), ) with F[t*!], so that the action will be given

by:

ht' = X(Dt', xt' = p(i+ 1)t yt' =t forallicZ. (0.23)
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Weight ,(f, g)-modules

Now fix o € F and define v, : Z>o — F

i—1
va(i) =Y ¢g(fi*9)(a)), foralli>0. (0.24)
j=0
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Now fix o € F and define v, : Z>o — F

i—1
va(i) =Y ¢g(fi*9)(a)), foralli>0. (0.24)
j=0

Definition
Then we define the Hq(f, g)-module Cg ¢ o (a) = F[t] with action

ht' = FD(a)t!,  xt' =t yt' = p (i)', foralli>0, (0.26)

adopting the convention that yt® = 0.
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Weight ,(f, g)-modules

Now fix o € F and define v, : Z>o — F

i—1
va(i) =Y ¢g(fi*9)(a)), foralli>0. (0.24)
j=0

Definition
Then we define the Hq(f, g)-module Cg ¢ o (a) = F[t] with action

ht' = FD(a)t!,  xt' =t yt' = p (i)', foralli>0, (0.26)
adopting the convention that yt® = 0.

e |t is a routine and easy work to check that these structures indeed
define H4(f, g)-modules.
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Simple #,(f, g)-modules

Next we will construct finite-dimensional simple Hq4(f, g)-modules as
quotients of the modules Aq r z(A, 1t), Bg.r.g(A, 1) and Cq r o(c).
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Simple #,(f, g)-modules

Next we will construct finite-dimensional simple Hq4(f, g)-modules as
quotients of the modules Aq r z(A, 1t), Bg.r.g(A, 1) and Cq r o(c).

Lemma

Let A € 5¢, it € T4 g x such that |A| = m > 1 and assume there exists
k > 1 such that pu(km) = u(0). Let £ = min{k > 1: u(km) = p(0)}.
Then for any v € F*

Aq.r.e(\ 1) [FIEH (£ — ) and By (A, ) /F[E] (eI — )

are simple.
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Simple #,(f, g)-modules

Lemma

Let @ € F and v, be given as before. Suppose that v, (n) = 0, for some
n> 1. Then F[t]t" is a submodule of C4 ¢ () and the quotient module
Ca,r.g()/F[t]t" is simple if and only if v4(1)---vo(n —1) #0.
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Simple #,(f, g)-modules

e Next, we characterize the modules just obtained above.
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Simple #,(f, g)-modules

e Next, we characterize the modules just obtained above.

Proposition

Let V be a simple Hq(f, g)-module with dim V' = n such that x"V # 0.
Then there are m, ¢ > 1, vy € F*, A € S5 and p € T4 4\ such that

Vi Ag g (X, ) /F[EH] (£ — )

and n=tm, \(0) = a, |\| = m, f(M(a) = a and u(¢m) = u(0).
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Simple #,(f, g)-modules

e The analogous result for n-dimensional simple modules V' such that
y"V # 0 uses the dual modules By z(A, ).
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Simple #,(f, g)-modules

e The analogous result for n-dimensional simple modules V' such that
y"V # 0 uses the dual modules Bg ¢ g(A, ).

e Now we characterize the finite-dimensional simple Hq4(f, g)-modules
on which both x and y act nilpotently.

Proposition

Assume F =TF. Let V be a simple H,(f, g)-module with dimg V = n
and x"V =0 = y"V. Then there is o € F such that v,(n) = 0 and
V >~ Cqrg(a)/F[t]t".
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Simple #,(f, g)-modules

e We can finally state our main result which classifies, up to
isomorphism, all finite-dimensional simple H(f, g)-modules.
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Simple #,(f, g)-modules

e We can finally state our main result which classifies, up to
isomorphism, all finite-dimensional simple H,4(f, g)-modules.

Theorem

Assume F =T and q # 0. Then any simple n-dimensional

Hq(f, g)-module is isomorphic to exactly one of the following simple
modules:

(1) Agr (N p)/FIEE(EPIEL — ), for some X € S¢, € Tqg.n and
v € F* such that n = |\||p].
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Simple #,(f, g)-modules

e We can finally state our main result which classifies, up to
isomorphism, all finite-dimensional simple H,4(f, g)-modules.

Theorem

Assume F =T and q # 0. Then any simple n-dimensional
Hq(f, g)-module is isomorphic to exactly one of the following simple
modules:

(1) Agr (N p)/FIEE(EPIEL — ), for some X € S¢, € Tqg.n and
v € F* such that n = |\||p].

(2) qu,g()\,p)/IF[til](t')‘H”‘ — ), for some A € S¢, p € Ty g and
v € F* such that n = |\||u| and p(i) = 0 for some 0 < i < |A||p].

(3) Cqr.g(a)/F[t]t", for some a € F such that v, (n) =0 and v,(i) # 0
foralll<i<n-—1.
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e Computing the global dimension of gGHAs.

e Determining those gGHASs all of whose finite-dimensional
representations are completely reducible.

e Studying simple weight modules for H4(f, g).
e Determining the primitive ideals of H(f, g).

e Studying possible correspondences between the properties of the
Poisson GHAs algebras and the properties of gGHAs.

e Considering gGHAs defined over more general rings than F[A].
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Thank you!

I would be happy to answer your

questions.



