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Differential posets

• It starts from a poset (partially ordered set) P. More specifically

from a differential poset.

• But what are differential posets?

• Differential posets are a familly of structures introdused by Richard

Stanley in 1988 in a paper with the title “Differential posets”.
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Up and down operators

• Let F be any field of characteristic 0.

• Given any poset P, we may define an abstract vector space

FP = ⊕x∈PFx of finite linear combinations of elements of P with

coefficients in F.
• If in addition P is locally finite and each element of P is a member

of only finitely many cover relations, we may define two linear

transformations d and u on FP as follows:

dx =
∑
y⋖x

y and ux =
∑
x⋖y

y (0.1)

where ⋖ stands for the cover relationship and we extend both to all

of FP by linearity.

• The operators u and d in (0.1) will be called up and down operators

which keep track of all possible steps “up” and “down” in the Hasse

diagram from x and have been introduced as Schur operators by

Fomin.
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Up and down operators

• Now let us study the behavior of combinations of d , u on an

arbitrary x ∈ P.

• Applying the definitions of d and u directly will give the following:

dux =
∑
y ,z

z⋖y and x⋖y

z .

An element z ∈ P appears in this sum exactly k times, where k is

the number of elements of P which cover both x and z .

• Similarly, we have

udx =
∑
y ,z

y⋖z and y⋖x

z .

An element z ∈ P appears in this sum exactly k times, where k is

the number of elements of P which are covered by both x and z .

• Thus, we see that (du − ud)x = x if and only if x is covered by

exactly one more element than it covers and for each z ̸= x ∈ P, the

number of elements covering both x and z is equal to the number of

elements covered by both x and z .
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From up and down operators to differential posets

• And this inspires the following definition:

Definition
We call a poset P differential if it satisfies the following three axioms:

• (D1) P is locally finite and graded with a unique minimal element

(often denoted 0̂).

• (D2) If x ̸= y are two elements of P and there are k elements of P

covered by both x and y , there are exactly k elements of P which

cover both x and y .

• (D3) If x ∈ P covers k elements of P then x is covered by exactly

k + 1 elements of P.

• And we have the following Propsition which can easily be proved by

induction on n:

Proposition
For a differential poset P, we have dun = nun−1 + und for all n ≥ 1.

4
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Properties of up and down operators

• Thus, the action of d on u has a distinct resemblance to that of a

differential operator.

• The resemblance is even more clear if we apply the operator to our

minimal element 0̂. since d 0̂ = 0 so dun0̂ = nun−10̂.

• It is from a generalization of this result that the name “differential

poset” arises (Stanley- Differential Posets).

• Young’s lattice of all partitions of all nonnegative integers provides

an important example of such a poset.

• Stanley found that many of the interesting enumerative and

structural properties of Young’s lattice could be deduced from the

relation du − ud = I , for I the identity transformation on FP.

• Stanley also considered more general posets which satisfy the

relation du − ud = rI for some fixed positive integer r and he

referred to these kind of posets as “r -differential”.
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Properties of up and down operators

• In 1994, Sergey Vladimirovich Fomin independently defined

essentially the same class of posets for r = 1 calling them

“Y-graphs”, the terminology inspired by Young’s lattice.

• In his study of uniform posets, Paul Terwilliger considered finite

ranked posets P whose down and up operators satisfy the following

relation

didi+1ui = αidiui−1di + βiui−2di−1di + γidi , (0.4)

where di and ui denote the restriction of d and u to the elements of

rank i .

• There is an analogous second relation,

di+1uiui−1 = αiui−1diui−1 + βiui−1ui−2di−1 + γiui−1, (0.5)

which holds automatically because di+1 and ui are adjoint operators

relative to a certain bilinear form.
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(q, r)-differential posets

• In many classical cases the constants in the above relations

(relations (0.4) and (0.5)) do not depend on the rank of the poset.

A particular instance of this provides a q-analogue of the notion of

differential poset.

Definition
A partially ordered set whose down and up operators satisfy

d2u = q(q + 1)dud − q3ud2 + rd

du2 = q(q + 1)udu − q3u2d + ru,
(0.7)

where q and r are fixed complex numbers is said to be “(q, r)-differential

poset”.

• Examples of (q, r)-differential posets include the posets of

alternating forms, quadratic forms, or Hermitian forms over a finite

field.
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Down-up algebras

• In 1998, Georgia Benkart and Tom Roby have studied certain

infinite-dimensional associative algebras whose generators satisfy

relations more general than relations (0.7) and they called these

class of algebras, down-up algebras:

Definition
We say a unital associative algebra A = A(α, β, γ) over the complex

numbers C with generators u, d and defining relations

d2u = αdud − βud2 + γd

du2 = αudu − βu2d + γu,
(0.9)

where α, β, γ are fixed but arbitrary elements of C, is a down-up algebra.
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Generalized down-up algebras

• Generalized down-up algebras (GDUA, for short) were introduced by

Thomas Cassidy and Brad Shelton in 2004 as a generalization of the

down-up algebras A(α, β, γ) of Benkart and Roby and are defined as

follows:

Definition
Let f ∈ F[h]. Define L := L(f , r , s, γ) to be the unital associative

F-algebra generated by x , y and h with relations

yh − rhy = γy , hx − rxh = γx , yx − sxy + f (h) = 0;

Then L is called a generalized down-up algebra (GDUA).

• Over an algebraically closed field, generalized down-up algebras

include all down-up algebras.
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Quantum generalized Heisenberg algebras

Working over an arbitrary field F (unless otherwise stated), we introduce

a generalization of the class of generalized Heisenberg algebras by

deforming and generalizing the relation yx − xy = f (h)− h, turning it

into a skew-commutation relation and allowing the skew-commutator to

equal a generic polynomial, independent of f .

Definition
For fixed and independent f , g ∈ F[h] and q ∈ F, we define Hq(f , g) as

the unital associative algebra over F generated by x , y , and h subject to

the following relations

yh = f (h)y , hx = xf (h), yx = qxy + g(h). (0.12)
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Quantum generalized Heisenberg algebras

• Our main motivation for introducing a generalization of the class of

GHAs, besides providing a broader framework for the investigation of

the underlying physical systems, comes from the observation that

the classes of generalized Heisenberg algebras and of (generalized)

down-up algebras intersect, although neither one contains the other.

Proposition
The GHA H(f ) is isomorphic to a generalized down-up algebra (GDUA)

if and only if deg f ≤ 1.

• But not all (generalized) down-up algebras are GHAs. And it

became an incentive to develop a generalization of the concept of

GHA to a new class which includes all GHAs and all GDUAs.
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Quantum generalized Heisenberg algebras

• The first natural example of quantum generalized Heisenberg

algebras is the class of GHAs, H(f ) = H1(f , f − h).

• The universal enveloping algebra of the 3-dimensional Heisenberg

Lie algebra h1 is the quotient of the free algebra F ⟨X ,Y ,H⟩ modulo

the two sided ideal I generated by elements XY − YX − H,

XH − HX and YH − HY . It is easy to see that U(h1) is isomorphic

to the quantum generalized Heisenberg algebraH1(h,−h) if we

consider the correspondence X ↔ x , Y ↔ y and H ↔ h.

• Consider the 3-dimensional Lie algebra sl2, with basis elements

x , y , h and Lie bracket given by [x , h] = 2x , [h, y ] = 2y and

[y , x ] = h. We can view its enveloping algebra as qGHA

H1(h − 2, h).
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Quantum generalized Heisenberg algebras

• Fix g ∈ C[x ]. Define S = C[A,B,H] subject to the relations

[H,A] = A, [H,B] = −B, AB − BA = g(H).

Then S will be called the Smith algebra due to Paul Smith, and it is

easy to see that S is isomorphic to the quantum generalized

Heisenberg algebra H1(h − 1, g) if we consider the correspondence

B ↔ x , A ↔ y and H ↔ h.

• Fix g ∈ C[x ] and ç ∈ C, ç ̸= 0. Define R = C[A,B,H] subject to

the relations

[H,A] = A, [H,B] = −B, AB − çBA = g(H).

Then R will be called the Rueda algebra due to Sonia Rueda, and it

is easy to see that R is isomorphic to the quantum generalized

Heisenberg algebra Hç(h − 1, g) if we consider the correspondence

B ↔ x , A ↔ y and H ↔ h.
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• Fix g ∈ C[x ] and ç ∈ C, ç ̸= 0. Define R = C[A,B,H] subject to

the relations

[H,A] = A, [H,B] = −B, AB − çBA = g(H).
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Graphical view of subclasses
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Seeing Hq(f , g) as a weak ambiskew polynomial ring

Proposition
For q ∈ F, f , g ∈ F[h], we construct Hq(f , g) as the ambiskew

polynomial ring R(F[h], σ, g(h), q), where σ is the endomorphism of F[h]
defined by σ(h) = f (h).

• And we have Poincare Birkhoff Witt type basis

{x ihjyk | i , j , k ∈ Z≥0} of Hq(f , g).
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Seeing Hq(f , g) as a weak ambiskew polynomial ring

• Viewing Hq(f , g) as a 2-step Ore extension (or as an ambiskew

polynomial ring) also helps to determine when Hq(f , g) is a domain.

Lemma
Hq(f , g) is a domain if and only if q ̸= 0 and deg f ≥ 1.
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Seeing Hq(f , g) as a weak generalized Weyl algebras

• We also can construct Hq(f , g) as a weak generalized Weyl algebra

as follows:

Proposition
For q ∈ F, and f , g ∈ F[h], Hq(f , g) is isomorphic to the wGWA A(σ, ω)

for A = F[h, ω] and σ the endomorphism of A defined by σ(h) = f (h)

and σ(ω) = qω + g(h).
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Relation between GDUAs and qGHAs

Corollary
Hq(f , g) is isomorphic to a GDUA if and only if deg f ≤ 1.

Proposition
The algebra Hq(f , g) is right (resp. left) Noetherian if and only if

deg f = 1 and q ̸= 0.
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Weight Hq(f , g)-modules

Now set

Sf = {λ : Z −→ F | f (λ(i)) = λ(i + 1), for all i ∈ Z} (0.19)

and for given λ ∈ Sf , we define

Tq,g ,λ = {µ : Z −→ F | µ(i + 1) = qµ(i) + g(λ(i)), for all i ∈ Z} .
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Weight Hq(f , g)-modules

• Next we will construct universal weight modules:

Definition
Given λ ∈ Sf and µ ∈ Tq,g ,λ we define the Hq(f , g)-module Aq,f ,g (λ, µ)

by setting Aq,f ,g (λ, µ) = F[t±1], as vector spaces, with action given by

ht i = λ(i)t i , xt i = t i+1, yt i = µ(i)t i−1, for all i ∈ Z. (0.21)

• Order 2 anti-automorphism η and the dual module:

Definition
We can identify Bq,f ,g (λ, µ) with F[t±1], so that the action will be given

by:

ht i = λ(i)t i , xt i = µ(i + 1)t i+1, yt i = t i−1, for all i ∈ Z. (0.23)
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Weight Hq(f , g)-modules

Now fix α ∈ F and define να : Z≥0 −→ F

να(i) =
i−1∑
j=0

qjg(f (i−1−j)(α)), for all i ≥ 0. (0.24)

Definition
Then we define the Hq(f , g)-module Cq,f ,g (α) = F[t] with action

ht i = f (i)(α)t i , xt i = t i+1, yt i = να(i)t
i−1, for all i ≥ 0, (0.26)

adopting the convention that yt0 = 0.

• It is a routine and easy work to check that these structures indeed

define Hq(f , g)-modules.
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Simple Hq(f , g)-modules

Next we will construct finite-dimensional simple Hq(f , g)-modules as

quotients of the modules Aq,f ,g (λ, µ), Bq,f ,g (λ, µ) and Cq,f ,g (α).

Lemma

Let λ ∈ Sf , µ ∈ Tq,g ,λ such that |λ| = m ≥ 1 and assume there exists

k ≥ 1 such that µ(km) = µ(0). Let ℓ = min{k ≥ 1 : µ(km) = µ(0)}.
Then for any γ ∈ F∗

Aq,f ,g (λ, µ)/F[t±1](tℓm − γ) and Bq,f ,g (λ, µ)/F[t±1](t |λ||µ| − γ)

are simple.
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Simple Hq(f , g)-modules

Lemma

Let α ∈ F and να be given as before. Suppose that να(n) = 0, for some

n ≥ 1. Then F[t]tn is a submodule of Cq,f ,g (α) and the quotient module

Cq,f ,g (α)/F[t]tn is simple if and only if να(1) · · · να(n − 1) ̸= 0.
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Simple Hq(f , g)-modules

• Next, we characterize the modules just obtained above.

Proposition

Let V be a simple Hq(f , g)-module with dimV = n such that xnV ̸= 0.

Then there are m, ℓ ≥ 1, γ ∈ F∗, λ ∈ Sf and µ ∈ Tq,g ,λ such that

V ≃ Aq,f ,g (λ, µ)/F[t±1](tℓm − γ)

and n = ℓm, λ(0) = α, |λ| = m, f (m)(α) = α and µ(ℓm) = µ(0).
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Simple Hq(f , g)-modules

• The analogous result for n-dimensional simple modules V such that

ynV ̸= 0 uses the dual modules Bq,f ,g (λ, µ).

• Now we characterize the finite-dimensional simple Hq(f , g)-modules

on which both x and y act nilpotently.

Proposition

Assume F = F. Let V be a simple Hq(f , g)-module with dimF V = n

and xnV = 0 = ynV . Then there is α ∈ F such that να(n) = 0 and

V ≃ Cq,f ,g (α)/F[t]tn.
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Simple Hq(f , g)-modules

• We can finally state our main result which classifies, up to

isomorphism, all finite-dimensional simple Hq(f , g)-modules.

Theorem

Assume F = F and q ̸= 0. Then any simple n-dimensional

Hq(f , g)-module is isomorphic to exactly one of the following simple

modules:

(1) Aq,f ,g (λ, µ)/F[t±1](t |λ||µ| − γ), for some λ ∈ Sf , µ ∈ Tq,g ,λ and

γ ∈ F∗ such that n = |λ||µ|.

(2) Bq,f ,g (λ, µ)/F[t±1](t |λ||µ| − γ), for some λ ∈ Sf , µ ∈ Tq,g ,λ and

γ ∈ F∗ such that n = |λ||µ| and µ(i) = 0 for some 0 ≤ i < |λ||µ|.

(3) Cq,f ,g (α)/F[t]tn, for some α ∈ F such that να(n) = 0 and να(i) ̸= 0

for all 1 ≤ i ≤ n − 1.
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Future works

• Computing the global dimension of qGHAs.

• Determining those qGHAs all of whose finite-dimensional

representations are completely reducible.

• Studying simple weight modules for Hq(f , g).

• Determining the primitive ideals of Hq(f , g).

• Studying possible correspondences between the properties of the

Poisson GHAs algebras and the properties of qGHAs.

• Considering qGHAs defined over more general rings than F[h].
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Thank you!

I would be happy to answer your

questions.
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