

Efficient Vectors for Simple Perturbed Consistent Matrices

H.F. da Cruz, R. Fernandes and S. Furtado

Introduction

Analytical Hierarchy Process (AHP) has become a useful tool for analysing decisions. This process, developed by Thomas L. Saaty in the 1970's.

It is used in a decision process with a finite set of alternatives, $X = \{x_1, \dots, x_n\}$ and where the decision maker is expected to select the best option.

(日)(月)(日)(日)

U})

Introduction

Formally, the different alternatives are two by two compared using a given criteria. This process gives rise to a matrix $A = [a_{i,j}]$, where $a_{i,j} > 0$ expresses the degree of preference of the alternative *i* concerning to *j*. So, *A* satisfies

Introduction

(日)(月)(日)(日)

An $n \times n$ positive matrix $A = [a_{i,j}]$ is called a pairwise comparison matrix (briefly, a PC matrix) if it satisfies (1).

Throughout, we denote by \mathcal{PC}_n the set of all $n\times n$ pairwise comparison matrices.

Introduction

A matrix $A = [a_{ij}] \in \mathcal{PC}_n$ is said to be transitive or consistent if

$$a_{i,j}a_{j,k} = a_{i,k},$$

for all i, j, k = 1, ..., n.

U})

Introduction

It is known that a matrix A is transitive if and only if there exists a positive vector $w=[w_1,\ldots,w_n]^T$ such that

$$A = ww^{-1},$$

where $w^{-1} = [w_1^{-1}, \dots, w_n^{-1}]$.

Introduction

$$A = \begin{bmatrix} 1 & \frac{x_1}{x_2} & \frac{x_1}{x_3} & \dots & \frac{x_1}{x_{n-1}} & \frac{x_1}{x_n} \\ \frac{x_2}{x_1} & 1 & \frac{x_2}{x_3} & \dots & \frac{x_2}{x_{n-1}} & \frac{x_2}{x_n} \\ \frac{x_3}{x_1} & \frac{x_2}{x_2} & 1 & \dots & \frac{x_3}{x_{n-1}} & \frac{x_3}{x_n} \\ \frac{x_4}{x_1} & \frac{x_4}{x_2} & \frac{x_4}{x_3} & \dots & \frac{x_4}{x_{n-1}} & \frac{x_4}{x_n} \\ \vdots & \vdots & \dots & \vdots & \vdots & \vdots \\ \frac{x_n}{x_1} & \frac{x_n}{x_2} & \frac{x_n}{x_3} & \dots & \frac{x_n}{x_{n-1}} & 1 \end{bmatrix},$$

where x_1, \ldots, x_n be arbitrary positive numbers. Any matrix in \mathcal{PC}_2 is consistent, but this is not generally true in \mathcal{PC}_n with n > 2.

(D) (AL-3)(3)

U})

Introduction

When applying the AHP method, the PC matrices $A = [a_{ij}] \in \mathcal{PC}_n$ obtained in practice should be approximated by a consistent one, that is, we should found a positive vector

$$w = [w_1 \dots w_n]^T,$$

such that the ratios $\frac{w_i}{w_j}$ are as close as possible to the a_{ij} 's for all i, j = 1, 2, ..., n.

(口)(月)(日)(日)

Efficient vector

Definition

A positive vector

$$w = [w_1 \dots w_n],$$

is said to be efficient for $A=[a_{i,j}]\in \mathcal{PC}_n$ if there is no other vector $w'=[w'_1\dots w'_n]$ such that

$$\left|a_{ij} - \frac{w'_i}{w'_j}\right| \le \left|a_{ij} - \frac{w_i}{w_j}\right|, \quad \text{for all } 1 \le i, j \le n, \quad (2)$$

with the inequality strict for at least one pair (i, j)

Efficient vectors

Definition

A simple perturbed consistent matrix is a PC-matrix that differs from a consistent matrix in just one entry above the main diagonal and its reciprocal.

Simple perturbed consistent matrix

Example

The matrix

$$A = \left[\begin{array}{rrr} 1 & 1 & 5 \\ 1 & 1 & 1 \\ \frac{1}{5} & 1 & 1 \end{array} \right] \in \mathcal{PC}_3,$$

is a simple perturbed consistent matrix.

Principal vector

From Perron-Frobenius Theorem for positive matrices, we know that if A is a positive matrix, then there is an eigenvalue r of A such that

 $|\lambda| < r,$

for any other eigenvalue λ of A different from r.

Principal vector

Any associated eigenvector has nonzero entries with a constant sign.

Principal vector

We call the eigenvalue *r* the *Perron eigenvalue* of *A*;

The associated right eigenvector with the last entry equal to 1 is the principal vector of *A*.

Efficiency of Principal vector

In 2016, Nagy and Bozoky proved that the principal vector of a simple perturbed consistent matrix is always efficient.

In 2018, Nagy, Bozoky and Rebak proved that the principal vector of a double perturbed consistent matrix is always efficient.

However, in 2022, Fernandes and Furtado proved that the principal vector of a triple perturbed consistent matrix is not always efficient.

The digraph $G_{A,w}$

Given $A \in \mathcal{PC}_n$ and a vector $w = \begin{bmatrix} w_1 & \cdots & w_n \end{bmatrix}^T$, we denote by $G_{A,w} = (V, E)$ the directed graph (digraph) whose vertex set is $V = \{1, \dots, n\}$ and arc set is

$$E = \{i \to j : \frac{w_i}{w_j} \ge a_{ij}, i \neq j\}.$$
(3)

The digraph $G_{A,w}$

Theorem(Blanquero, Carrizosa, Conde, 2006)

Let $A \in \mathcal{PC}_n$. A vector w is efficient for A if and only if $G_{A,w}$ is a strongly connected digraph; for all pairs of vertices i, j, with $i \neq j$, there is a directed path from i to j and from j to i in $G_{A,w}$.

Lemma

Let $A, B \in \mathcal{PC}_n$. Suppose that $B = QAQ^{-1}$, where Q is a product of a permutation matrix and a diagonal matrix with positive diagonal entries. Then, the $n \times 1$ positive vector w_A is efficient for A if and only if $w_B = Qw_A$ is efficient for B.

Simple perturbed consistent matrices

Lemma

Let
$$w = \begin{bmatrix} w_1 & w_2 & \cdots & w_n \end{bmatrix}^T$$
 a positive vector.

- **1.** If $w_p = w_q$, for some $p, q \in \{2, ..., n-1\}$ with $p \neq q$, then w is efficient for $Z_n(\delta)$ if and only if $w(\{p\})$ is efficient for $Z_{n-1}(\delta)$.
- **2.** Let σ be a permutation of $\{2, \dots, n-1\}$. Then, w is efficient for $Z_n(\delta)$ if and only if

$$w' = \begin{bmatrix} w_1 & w_{\sigma(2)} & \cdots & w_{\sigma(n-1)} & w_n \end{bmatrix}^T$$
(5)

is efficient for $Z_n(\delta)$.

Theorem

Let n > 3, $\delta > 1$ and $w = \begin{bmatrix} w_1 & \cdots & w_{n-1} & 1 \end{bmatrix}^T$ be a positive vector. Then w is efficient for $Z_n(\delta)$ if and only if

$$\delta \ge x_1 \ge x_i \ge 1, \text{ for } i = 2, \dots, n-1.$$

Proof: Let $A = [a_{ij}] = Z_n(\delta)$, and assume that $w = [w_1 \dots w_n], w_n = 1$, is efficient for A. Taking into account Lemma 5, we may assume that

$$w_{2} > \dots > w_{n-1}.$$
(6)
If $i, j \in \{2, \dots, n-1\}, i < j$, since $w_{i} > w_{j}$ we have

$$\frac{w_{i}}{w_{j}} > 1 = a_{i,j}.$$

n n-1 9

* da Cruz, H.F., Fernandes, R., Furtado, S., Efficient vectors for simple perturbed consistent matrices, *International Journal of Approximate Reasoning*, 139, (2021), 54-68

