||\}|

H.F. da Cruz, R. Fernandes and S. Furtado

x_{1}

Introduction

Analytical Hierarchy Process (AHP) has become a useful tool for analysing decisions. This process, developed by Thomas L. Saaty in the 1970's.

It is used in a decision process with a finite set of alternatives, $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and where the decision maker is expected to select the best option.

(1)

Introduction

Formally, the different alternatives are two by two compared using a given criteria. This process gives rise to a matrix $A=\left[a_{i, j}\right]$, where $a_{i, j}>0$ expresses the degree of preference of the alternative i concerning to j. So, A satisfies

$$
\begin{equation*}
a_{i, j}=\frac{1}{a_{j, i}} . \tag{1}
\end{equation*}
$$

Introduction

An $n \times n$ positive matrix $A=\left[a_{i, j}\right]$ is called a pairwise comparison matrix (briefly, a PC matrix) if it satisfies (1).

Throughout, we denote by $\mathcal{P} \mathcal{C}_{n}$ the set of all $n \times n$ pairwise comparison matrices.

Introduction

A matrix $A=\left[a_{i j}\right] \in \mathcal{P} \mathcal{C}_{n}$ is said to be transitive or consistent if

$$
a_{i, j} a_{j, k}=a_{i, k}
$$

for all $i, j, k=1, \ldots, n$.

(1)

Introduction

It is known that a matrix A is transitive if and only if there exists a positive vector $w=\left[w_{1}, \ldots, w_{n}\right]^{T}$ such that

$$
A=w w^{-1},
$$

where $w^{-1}=\left[w_{1}^{-1}, \ldots, w_{n}^{-1}\right]$.

In

Introduction

$$
A=\left[\begin{array}{cccccc}
1 & \frac{x_{1}}{x_{2}} & \frac{x_{1}}{x_{3}} & \cdots & \frac{x_{1}}{x_{n}} & \frac{x_{1}}{x_{n}} \\
\frac{x_{2}}{x_{1}} & 1 & \frac{x_{2}}{x_{3}} & \cdots & \frac{x_{2}}{x_{n-1}} & \frac{x_{2}}{x_{2}} \\
\frac{x_{3}}{x_{1}} & \frac{x_{3}}{x_{2}} & 1 & \cdots & \frac{x_{3}}{x_{n}} & \frac{x_{3}}{x_{n}} \\
\frac{x_{4}}{x_{1}} & \frac{x_{4}}{x_{2}} & \frac{x_{4}}{x_{3}} & \cdots & \frac{x_{4}}{x_{n-1}} & \frac{x_{4}}{x_{n}} \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\
\frac{x_{n}}{x_{1}} & \frac{x_{n}}{x_{2}} & \frac{x_{n}}{x_{3}} & \cdots & \frac{x_{n}}{x_{n-1}} & 1
\end{array}\right],
$$

where x_{1}, \ldots, x_{n} be arbitrary positive numbers. Any matrix in $\mathcal{P C}_{2}$ is consistent, but this is not generally true in $\mathcal{P} \mathcal{C}_{n}$ with $n>2$.

Introduction

When applying the AHP method, the PC matrices $A=\left[a_{i j}\right] \in \mathcal{P} \mathcal{C}_{n}$ obtained in practice should be approximated by a consistent one, that is, we should found a positive vector

$$
w=\left[w_{1} \ldots w_{n}\right]^{T},
$$

such that the ratios $\frac{w_{i}}{w_{j}}$ are as close as possible to the $a_{i j}$'s for all $i, j=1,2, \ldots, n$.

t_{1}

Efficient vector

Definition

A positive vector

$$
w=\left[w_{1} \ldots w_{n}\right]
$$

is said to be efficient for $A=\left[a_{i, j}\right] \in \mathcal{P} \mathcal{C}_{n}$ if there is no other vector $w^{\prime}=\left[w_{1}^{\prime} \ldots w_{n}^{\prime}\right]$ such that

$$
\begin{equation*}
\left|a_{i j}-\frac{w_{i}^{\prime}}{w_{j}^{\prime}}\right| \leq\left|a_{i j}-\frac{w_{i}}{w_{j}}\right|, \quad \text { for all } 1 \leq i, j \leq n \tag{2}
\end{equation*}
$$

with the inequality strict for at least one pair (i, j)

t_{1}

Efficient vectors

Definition

A simple perturbed consistent matrix is a PC-matrix that differs from a consistent matrix in just one entry above the main diagonal and its reciprocal.

(1)

 Simple perturbed consistent

 Simple perturbed consistent matrix

 matrix}

Example

The matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & 5 \\
1 & 1 & 1 \\
\frac{1}{5} & 1 & 1
\end{array}\right] \in \mathcal{P C}_{3}
$$

is a simple perturbed consistent matrix.

Principal vector

From Perron-Frobenius Theorem for positive matrices, we know that if A is a positive matrix, then there is an eigenvalue r of A such that

$$
|\lambda|<r,
$$

for any other eigenvalue λ of A different from r.

4

Principal vector

- r is a simple eigenvalue;
- Any associated eigenvector has nonzero entries with a constant sign.

Principal vector

- We call the eigenvalue r the Perron eigenvalue of A;
- The associated right eigenvector with the last entry equal to 1 is the principal vector of A.

Efficiency of Principal vector

In 2016, Nagy and Bozoky proved that the principal vector of a simple perturbed consistent matrix is always efficient.

In 2018, Nagy, Bozoky and Rebak proved that the principal vector of a double perturbed consistent matrix is always efficient.

|| Efficiency of Principal vector

However, in 2022, Fernandes and Furtado proved that the principal vector of a triple perturbed consistent matrix is not always efficient.

t_{1}

The digraph $G_{A, w}$

Given $A \in \mathcal{P} \mathcal{C}_{n}$ and a vector $w=\left[\begin{array}{lll}w_{1} & \cdots & w_{n}\end{array}\right]^{T}$, we denote by $G_{A, w}=(V, E)$ the directed graph (digraph) whose vertex set is $V=\{1, \ldots, n\}$ and arc set is

$$
\begin{equation*}
E=\left\{i \rightarrow j: \frac{w_{i}}{w_{j}} \geq a_{i j}, i \neq j\right\} . \tag{3}
\end{equation*}
$$

x_{1}

The digraph $G_{A, w}$

Theorem(Blanquero, Carrizosa, Conde, 2006)

Let $A \in \mathcal{P C}_{n}$. A vector w is efficient for A if and only if $G_{A, w}$ is a strongly connected digraph; for all pairs of vertices i, j, with $i \neq j$, there is a directed path from i to j and from j to i in $G_{A, w}$.

ון إ

Lemma

Let $A, B \in \mathcal{P C}_{n}$. Suppose that $B=Q A Q^{-1}$, where Q is a product of a permutation matrix and a diagonal matrix with positive diagonal entries. Then, the $n \times 1$ positive vector w_{A} is efficient for A if and only if $w_{B}=Q w_{A}$ is efficient for B.

|| Simple perturbed consistent matrices

$$
Z_{n}(\delta):=\left[\begin{array}{cccccccc}
1 & 1 & 1 & \cdots & \cdots & 1 & 1 & \delta \tag{4}\\
1 & 1 & 1 & \cdots & \cdots & 1 & 1 & 1 \\
1 & 1 & 1 & \cdots & \cdots & 1 & 1 & 1 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & \cdots & \cdots & 1 & 1 & 1 \\
1 & 1 & 1 & \cdots & \cdots & 1 & 1 & 1 \\
\frac{1}{\delta} & 1 & 1 & \cdots & \cdots & 1 & 1 & 1
\end{array}\right] \in \mathcal{P C}_{n},
$$

for some $\delta>0$.

Ilı Lemma

Let $w=\left[\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{n}\end{array}\right]^{T}$ a positive vector.

1. If $w_{p}=w_{q}$, for some $p, q \in\{2, \ldots, n-1\}$ with $p \neq q$, then w is efficient for $Z_{n}(\delta)$ if and only if $w(\{p\})$ is efficient for
$Z_{n-1}(\delta)$.
2. Let σ be a permutation of $\{2, \ldots, n-1\}$. Then, w is efficient for $Z_{n}(\delta)$ if and only if

$$
w^{\prime}=\left[\begin{array}{lllll}
w_{1} & w_{\sigma(2)} & \cdots & w_{\sigma(n-1)} & w_{n} \tag{5}
\end{array}\right]^{T}
$$

is efficient for $Z_{n}(\delta)$.

ון إ

Theorem

Let $n>3, \delta>1$ and $w=\left[\begin{array}{llll}w_{1} & \cdots & w_{n-1} & 1\end{array}\right]^{T}$ be a positive vector. Then w is efficient for $Z_{n}(\delta)$ if and only if

$$
\delta \geq x_{1} \geq x_{i} \geq 1, \text { for } i=2, \ldots, n-1 .
$$

ון
Proof: Let $A=\left[a_{i j}\right]=Z_{n}(\delta)$, and assume that $w=\left[\begin{array}{lll}w_{1} & \ldots & w_{n}\end{array}\right], w_{n}=1$, is efficient for A. Taking into account Lemma 5, we may assume that

$$
\begin{equation*}
w_{2}>\cdots>w_{n-1} \tag{6}
\end{equation*}
$$

If $i, j \in\{2, \ldots, n-1\}, i<j$, since $w_{i}>w_{j}$ we have

$$
\frac{w_{i}}{w_{j}}>1=a_{i, j} .
$$

ו|j|

(1)

ון

CASE 1: Assume that $w_{1} \geq w_{2}$.

ון

CASE 1: Assume that $w_{1} \geq w_{2}$.

ון

CASE 1: Assume that $w_{1} \geq w_{2}$.

ון

CASE 1: Assume that $w_{1} \geq w_{2}$.

ון

CASE 1: Assume that $w_{1} \geq w_{2}$.

x_{1}

\star da Cruz, H.F., Fernandes, R., Furtado, S., Efficient vectors for simple perturbed consistent matrices, International Journal of Approximate Reasoning, 139, (2021), 54-68

