Representability of Cubes and

of qualitive probability orders

Ilda P. F. da Silva

FCUL - University of Lisbon

12th Combinatorial Day - Aveiro - 21/10/2022

Basic terminology of matroids

A matroid over a set E, M = M(E) can be defined by its:

list of Hyperplanes -maximal flats distinct from *E* **list of Cocircuit** - the sets complementary to a hyperplane. **list of circuits** - minimal dependent subsets.

An orientation $\mathcal{M}(\mathcal{E})$ of a matroid M = M(E) is:

list of **signed cocircuits** - partitions of the cocircuits of *M* mimmiquing separation \mathbb{R}^n by real hyperplanes list of **signed circuits** - partitions of the circuits of *M* mimiquing properties of \mathbb{R}^n of convex partitions of minimal dependent subsets.

Combinatorial Cubes

$$[n] = \{1, \dots, n\}$$

$$\alpha \subseteq [n] \equiv \alpha \in \{0, 1\}^n = C^n.$$

A Combinatorial Cube is a matroid, $M = M(C^n)$, satisfying two conditions:

(i) Every rectangle of C^n is a circuit of M.

(ii) Every facet and skew-facet of Cⁿ is a hyperplane and a cocircuit of M.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

rectangles ~ o(6^n)

Examples of cubes

Real affine 3-cube - $Aff_{\mathbb{R}}(C^3)$

affine 3-cube over Z_2 - $Aff_{Z_2}(C^3)$

3-cube NON- representable over any field

Orientability of Cubes I - IS 08,09, E.Gioan/IS 16

General procedure to generate cubes from giving ones -EXCEPT for $Aff_{\mathbb{R}}(C^n)$, all known ones are NON-ORIENTABLE.

New Minor minimal non orientable matroids inside cubes! - related to single-element extensions of the **cross-polytope**. (IS 2009)

Conjecture 1. IS 08 $Aff_{\mathbb{R}}(C^n)$ is the unique orientable cube

Yes \implies Linear/affine dependencies of 0, 1-vectors over \mathbb{R} are **purely combinatorial** : a huge net of rectangles packed in the "unique orientable way" along facets and skew-facets.

HOW DOES Orientability \Longrightarrow symmetry ? parallelism ? induction?

Orientability of Cubes I

Theorem 1 Every oriented cube has a canonical orientation

An oriented cube = a cube canonically oriented

Cocircuits complementary of the facets and skew-facets - are the usual ones. **Rectangles** - signed as a circuit of the real cube.

Conjecture 1'. The oriented matroid $Aff(\mathbb{R}^n)$ is the unique oriented cube.

Theorem 2 Conjecture 1' is TRUE for $n \le 8$. S. Muroga et al. 1970 - computationally verified for $n \le 8$. Gioan/Silva 2016 contructive short proof for $n \le 7$

Orientability of Cubes II -(J. Lawrence, IS 2020)

Theorem 3 If there are oriented cubes other then the real affine cube $Aff(C^n)$ they must be NON REPRESENTABLE (over \mathbb{R}).

This Theorem is a consequence of the relation between CUBES and AJOINTS of the CROSS-POLYTOPE O_n .

cross-polytope matroid - O_n - is the matroid of the affine dependencies of the the 2n-points of \mathbb{R}^n : $O \pm \mathbf{e_i}$, $\mathbf{e_i}$ - i-th vector of the canonical basis.

 $O_n = \mathcal{A}ff(\{1,\ldots,n,1',\ldots,n'\}).$

Theorem 4 Every oriented cube $\mathcal{M}(C^n)$ is the restriction of an adjoint of the cross-polytope matroid O_n .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Orientability of Cubes II

Every Cube has *n* classes of PARALLEL edges.

The CONSTRUCTIVE proof of the unicity of the real cube for SMALL dimensions /Probability orders

- Recursive procedure of obtaining the hyperplanes of a cube $Aff(C^n)$, from the list of hyperplanes of the cube $Aff(C^{n-1})$. - use the rectangles to define the flats of $Aff(C^n)$ obtained by combining "stratifications" of the vertices, in two opposite facets of the cube C^n , orthogonal to the same vector direction $\mathbf{h} \in \mathbb{R}^{n-1}$.

h (1,1,1) -> **h** (1,1,1,1)

Probability orders

Stratifications orhogonal to a vector \iff probability orders on the subsets of [n]: Given $\mathbf{h} \in \mathbb{R}^n$, $\mathbf{h} \ge \mathbf{0}$ and $\alpha, \beta \subset [n] \alpha$ is less probable then β iff $\mathbf{h}.\alpha < \mathbf{h}.\beta$.

Finetti 31 - axioms for qualitative probability orders q.p.o. C.Kraft, J.Pratt, A.Seidenberg, 1959 - axioms for representable probability orders = probability orders.

TheoremA KPS, 1959 A q. p. o. \leq on the substes of [n] is representable if and only instead of (A), the next condition (CC_K) is satisfied for every $K \in \mathbb{N}$:

(*CC_K*) theres is NO 2K-sequence $(\alpha_1, \ldots, \alpha_K | \beta_1, \ldots, \beta_K)$ of subsets of [n] with:

 $\alpha_k \leq \beta_k \text{ and } \alpha_k \prec \beta_k \text{ for some } k$ $\forall i \in [n] |\{k : i \in \alpha_k\}| = |\{k : i \in \beta_k\}|.$

Final Remarks:

 $(CC_{\mathcal{K}})$ imposes conditions on the signed circuits of $\mathcal{A}ff(C^n)$. Namely, $(CC_2) \iff cannonical signature of rectangles.$ Explore further!

TheoremA'P. Fishburn 96; D. MacLagan 99 A q. p. o. \leq on the substes of [n] is representable if and only it is a representable <u>one element extension</u> of $Lin(\mathcal{B}_n)$ where \mathcal{B}_n is the root system $\mathcal{B}_n = \{\pm e_i\} \cup \{\mathbf{e_i} \pm \mathbf{e_j}\}.$

Adjoints of the adjoint of the cross-polytope are naturally related with extensions of $Lin(\mathcal{B}_n)$. Explore further!

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

a recent "argument" in favour of the Conjecture:

K. Tikhomirov (2019) M_n a $n \times n$ matrix with independent ± 1 entries. $P(M_n \text{ is singular}) = (1/2 + o(1))^n$

a recent "argument" in favour of the Conjecture: K. Tikhomirov (2019) M_n a $n \times n$ matrix with independent ± 1

entries. $P(M_n \text{ is singular}) = (1/2 + o(1))^n$

THANK YOU

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00