Searching for solutions to Horn's problem

João Filipe Queiró
Universidade de Coimbra

The 12th Combinatorics Day

Aveiro - 21 October, 2022

The Hermitian sum eigenvalue problem

 (Horn's problem)$$
\begin{gathered}
\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \quad \beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \quad n \text {-tuples of real numbers } \\
\alpha_{1} \geq \cdots \geq \alpha_{n}, \quad \beta_{1} \geq \cdots \geq \beta_{n} \\
\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right), \quad \gamma_{1} \geq \cdots \geq \gamma_{n}
\end{gathered}
$$

When is γ the spectrum of $A+B$, where A and B are Hermitian with spectra α and β, respectively?

Two surveys:
W. Fulton

Eigenvalues, invariant factors, highest weights,
and Schubert calculus
Bulletin AMS 37 (2000), 209-249.
R. Bhatia

Linear algebra to quantum cohomology:
the story of Alfred Horn's inequalities
A.M.Monthly 108 (2001), 289-318.

Examples of valid relations

$$
\begin{gathered}
\gamma_{1}+\cdots+\gamma_{n}=\alpha_{1}+\cdots+\alpha_{n}+\beta_{1}+\cdots+\beta_{n} \\
\gamma_{6} \leq \alpha_{2}+\beta_{5} \\
\gamma_{2}+\gamma_{4} \leq \alpha_{1}+\alpha_{4}+\beta_{1}+\beta_{3}
\end{gathered}
$$

$$
\gamma_{3}+\gamma_{5}+\gamma_{9} \leq \alpha_{2}+\alpha_{3}+\alpha_{7}+\beta_{2}+\beta_{4}+\beta_{5}
$$

Notation: $E(\alpha, \beta)=\{$ possible $\gamma\}$

Trivial: $E(\alpha, \beta)$ is contained in the hyperplane defined by the trace condition, which we abbreviate to $\Sigma \gamma=\Sigma \alpha+\Sigma \beta$.

Trivial: $E(\alpha, \beta)$ is compact, connected
(image of \mathcal{U}_{n} under the continuous mapping $U \mapsto \lambda\left(D_{\alpha}+U D_{\beta} U^{*}\right)$)

Less trivial: $E(\alpha, \beta)$ is a convex polytope (Dooley+Repka+Wildberger, 1993, using symplectic geometry)

Conjecture (A. Horn, 1962):
$E(\alpha, \beta)$ is completely described by a family of inequalities of the type

$$
\gamma_{k_{1}}+\cdots+\gamma_{k_{r}} \leq \alpha_{i_{1}}+\cdots+\alpha_{i_{r}}+\beta_{j_{1}}+\cdots+\beta_{j_{r}}
$$

where $r \in\{1, \ldots, n\}$ and $i_{1}<\ldots<i_{r}, j_{1}<\ldots<j_{r}, k_{1}<\ldots<k_{r}$.

In short,

$$
\Sigma \gamma_{K} \leq \Sigma \alpha_{I}+\Sigma \beta_{J}
$$

where $I=\left(i_{1}, \ldots, i_{r}\right), J=\left(j_{1}, \ldots, j_{r}\right), K=\left(k_{1}, \ldots, k_{r}\right)$.

A consequence of this would be that $E(\alpha, \beta)$ is a convex polytope.

The question is to identify the right triples (I, J, K). Horn makes an elaborate conjecture on this, which, in sightly changed form, reads as follows.

For $I=\left(i_{1}, \ldots, i_{r}\right)$, with $1 \leq i_{1}<\ldots<i_{r} \leq n$, write

$$
\rho(I)=\left(i_{r}-r, \ldots, i_{2}-2, i_{1}-1\right)
$$

Examples:

$$
\begin{gathered}
\rho(i)=i-1 \\
\rho(2,3)=(1,1) \\
\rho(3,5,11)=(8,3,2)
\end{gathered}
$$

Then Horn's conjecture is:

$$
\begin{gathered}
\gamma \in E(\alpha, \beta) \\
\left\{\begin{array}{l}
\Sigma \gamma=\Sigma \alpha+\Sigma \beta \\
\Sigma \gamma_{K} \leq \Sigma \alpha_{I}+\Sigma \beta_{J} \text { whenever } \\
\rho(K) \in E[\rho(I), \rho(J)] \quad(\text { for all } r, 1 \leq r<n)
\end{array}\right.
\end{gathered}
$$

So E is described recursively.
This is now a theorem. (See Fulton for the long story.)

Complete solutions for $n=1,2,3$

$$
\begin{aligned}
& \mathrm{n}=1 \\
& \gamma_{1}=\alpha_{1}+\beta_{1} \\
& \mathrm{n}=2 \\
& \gamma_{1} \leq \alpha_{1}+\beta_{1} \\
& \gamma_{2} \leq \alpha_{1}+\beta_{2} \\
& \gamma_{2} \leq \alpha_{2}+\beta_{1} \\
& \gamma_{1}+\gamma_{2}=\alpha_{1}+\alpha_{2}+\beta_{1}+\beta_{2}
\end{aligned}
$$

$$
\mathrm{n}=3
$$

$\gamma_{1} \leq \alpha_{1}+\beta_{1}$
$\gamma_{2} \leq \alpha_{1}+\beta_{2}$
$\gamma_{3} \leq \alpha_{1}+\beta_{3}$
$\gamma_{2} \leq \alpha_{2}+\beta_{1}$
$\gamma_{3} \leq \alpha_{2}+\beta_{2}$
$\gamma_{3} \leq \alpha_{3}+\beta_{1}$
$\gamma_{1}+\gamma_{2} \leq \alpha_{1}+\alpha_{2}+\beta_{1}+\beta_{2}$
$\gamma_{1}+\gamma_{3} \leq \alpha_{1}+\alpha_{2}+\beta_{1}+\beta_{3}$
$\gamma_{2}+\gamma_{3} \leq \alpha_{1}+\alpha_{2}+\beta_{2}+\beta_{3}$
$\gamma_{1}+\gamma_{3} \leq \alpha_{1}+\alpha_{3}+\beta_{1}+\beta_{2}$
$\gamma_{2}+\gamma_{3} \leq \alpha_{1}+\alpha_{3}+\beta_{1}+\beta_{3}$
$\gamma_{2}+\gamma_{3} \leq \alpha_{2}+\alpha_{3}+\beta_{1}+\beta_{2}$
$\gamma_{1}+\gamma_{2}+\gamma_{3}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\beta_{1}+\beta_{2}+\beta_{3}$

Example: $\quad \alpha=(6,4,2), \beta=(7,4,1)$

$$
\begin{aligned}
E(\alpha, \beta)= & \left\{\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right): \gamma_{1} \geq \gamma_{2} \geq \gamma_{3}\right. \\
& \gamma_{1}+\gamma_{2}+\gamma_{3}=24 \\
& \gamma_{1} \leq 13, \gamma_{2} \leq 10, \gamma_{3} \leq 7 \\
& \left.\gamma_{1}+\gamma_{2} \leq 21, \gamma_{1}+\gamma_{3} \leq 18, \gamma_{2}+\gamma_{3} \leq 15\right\}
\end{aligned}
$$

An open problem

Construction of solutions: Given α, β, and $\gamma \in E(\alpha, \beta)$, find Hermitian A with spectrum α and B with spectrum β such that $A+B$ has spectrum γ.

For each γ there may be many solutions.

Since the solution of Horn's problem, several authors have studied the probability distribution of γ, for given α and β.

References

Dooley+Repka+Wildberger (1993)
Frumkin+Goldberger (2006)
Zuber (2018)
Faraut (2019)
Coquereaux + McSwiggen + Zuber (2019)
Zhang+Kieburg+Forrester (2021)

Some beautiful pictures.

Only one paper - that I know of - addresses the actual construction problem:

Cao+Woerdemann (2018)

The approach is numerical.

Reduces problem to semidefinite programming and finds an algorithm that works for $n=3$.
(The case $n=2$ is trivial.)

An exact solution in a very particular case

W.I.g., we may assume the α 's, the β 's and the γ 's are ≥ 0.

Take $\beta_{2}=\cdots=\beta_{n}=0$

So the second matrix to be constructed has rank 1.
(This covers the case where β has $n-1$ coordinates equal.)

Solved by many authors (from the 19th to the 21st century).

In this case the Horn inequalities reduce to

$$
\begin{aligned}
& \gamma_{1}+\cdots+\gamma_{n}=\alpha_{1}+\cdots+\alpha_{n}+\beta_{1} \\
& \gamma_{1} \geq \alpha_{1} \geq \gamma_{2} \geq \alpha_{2} \geq \cdots \geq \gamma_{n} \geq \alpha_{n}
\end{aligned}
$$

Put $D_{\alpha}=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. We are looking for a (real) column x such that $D_{\alpha}+x x^{T}$ has spectrum γ.

Denote by x^{2} the column $\left[x_{1}^{2} x_{2}^{2} \cdots x_{n}^{2}\right]^{T}$.
Also, for each $k \in\{0,1, \ldots, n\}, \sigma_{k}(\alpha)$ is the k-th elementary symmetric function of $\alpha_{1}, \ldots, \alpha_{n}$,

$$
\sigma_{k}(\alpha)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \alpha_{i_{1}} \cdots \alpha_{i_{k}}, \quad \sigma_{0} \equiv 1
$$

and we write $\sigma(\alpha)$ for the column $\left[\sigma_{1}(\alpha) \sigma_{2}(\alpha) \cdots \sigma_{n}(\alpha)\right]^{T}$.

Denote also by $J(\alpha)$ the Jacobian matrix of the $\sigma_{k}(\alpha)$, that is,

$$
J(\alpha)=\left[\frac{\partial \sigma_{i}}{\partial \alpha_{j}}\right]
$$

Then we can prove (JFQ, 1994) that

$$
J(\alpha) \cdot x^{2}=\sigma(\gamma)-\sigma(\alpha) .
$$

We have

$$
\operatorname{det} J(\alpha)=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right) .
$$

Assuming $\alpha_{1}>\cdots>\alpha_{n}$ (w.I.g), $J(\alpha)$ is nonsingular and there is a nice expression for its inverse.

Example

$$
\alpha=(6,4,2), \quad \beta=(3,0,0), \gamma=(7,5,3)
$$

We get $x=\left[\begin{array}{l}0.6124 \\ 0.8660 \\ 1.3693\end{array}\right]$, so

$$
A=\left[\begin{array}{lll}
6 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 2
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{llll}
0.3750 & 0.5303 & 0.8385 \\
0.5303 & 0.7500 & 1.1859 \\
0.8385 & 1.1859 & 1.8750
\end{array}\right]
$$

solve the problem.

A possible general approach

... related to the Littlewood-Richardson rule

(an object appearing in many settings, starting from representation theory)

The Littlewood-Richardson rule

$(9,8,7)$

$(11,7,6)$

$(12,9,3)$
(...)

$L R(\alpha, \beta)$

In the example,

$$
\begin{aligned}
L R(\alpha, \beta)= & \{(10,10,4),(11,10,3),(9,9,6),(10,9,5),(11,9,4) \\
& (12,9,3),(9,8,7),(10,8,6),(11,8,5) \\
& (12,8,4),(13,8,3),(10,7,7),(11,7,6) \\
& (12,7,5),(13,7,4),(12,6,6),(13,6,5)\}
\end{aligned}
$$

Results in 1998-1999

Santana+JFQ+Sá (1998): For integral α and β,

$$
E(\alpha, \beta) \cap \mathbb{Z}^{n} \supseteq L R(\alpha, \beta)
$$

Klyachko (1998), Knutson+Tao (1999):

$$
E(\alpha, \beta) \cap \mathbb{Z}^{n}=L R(\alpha, \beta)
$$

Example: $\alpha=(6,4,2), \beta=(7,4,1)$

$$
\begin{aligned}
E(\alpha, \beta)= & \left\{\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right): \gamma_{1} \geq \gamma_{2} \geq \gamma_{3},\right. \\
& \gamma_{1}+\gamma_{2}+\gamma_{3}=24, \\
& \gamma_{1} \leq 13, \gamma_{2} \leq 10, \gamma_{3} \leq 7, \\
& \left.\gamma_{1}+\gamma_{2} \leq 21, \gamma_{1}+\gamma_{3} \leq 18, \gamma_{2}+\gamma_{3} \leq 15\right\}
\end{aligned}
$$

$$
E(\alpha, \beta)
$$

$$
\begin{aligned}
L R(\alpha, \beta)= & \{(10,10,4),(11,10,3),(9,9,6),(10,9,5),(11,9,4) \\
& (12,9,3),(9,8,7),(10,8,6),(11,8,5) \\
& (12,8,4),(13,8,3),(10,7,7),(11,7,6) \\
& (12,7,5),(13,7,4),(12,6,6),(13,6,5)\}
\end{aligned}
$$

$$
L R(\alpha, \beta)
$$

$$
E(\alpha, \beta) \quad \& \quad L R(\alpha, \beta)
$$

$0 \leq \alpha, \beta \in \mathbb{Z}^{n}$

$$
E(\alpha, \beta) \cap \mathbb{Z}^{n}=L R(\alpha, \beta)
$$

First, this gives an idea of why Horn's conjecture should be true, because nonempty intersections of Schubert varieties (which produce inequalities) are governed by the LR rule:

$$
\begin{aligned}
& \quad \Sigma \gamma_{K} \leq \Sigma \alpha_{I}+\Sigma \beta_{J} \text { whenever } \\
& \rho(K) \in L R[\rho(I), \rho(J)] \quad(\text { for all } r, 1 \leq r<n)
\end{aligned}
$$

Second, it suggests a connection to another problem: invariant factors of a product of two integral matrices.

Let R be a PID (e.g. \mathbb{Z}).
$a=\left(a_{n}, \ldots, a_{2}, a_{1}\right), b=\left(b_{n}, \ldots, b_{2}, b_{1}\right) n$-tuples of nonzero elements of R

$$
a_{n}|\cdots| a_{2}\left|a_{1}, \quad b_{n}\right| \cdots\left|b_{2}\right| b_{1}
$$

$$
c=\left(c_{n}, \ldots, c_{2}, c_{1}\right), \quad c_{n}|\cdots| c_{2} \mid c_{1}
$$

When is c the n-tuple of invariant factors of $A B$, where A and B have invariant factors a and b, respectively?

The Klein solution (1968)

Localization: Fix a prime $p \in R$ and work over the local ring R_{p} (i.e. work with powers of p)

$$
a_{i} \rightarrow p^{\alpha_{i}}, \quad b_{i} \rightarrow p^{\beta_{i}}, c_{i} \rightarrow p^{\gamma_{i}}
$$

where $\alpha_{1} \geq \cdots \geq \alpha_{n}, \beta_{1} \geq \cdots \geq \beta_{n}, \quad \gamma_{1} \geq \cdots \geq \gamma_{n}$ are nonnegative integers.

Denote by $\operatorname{IF}(\alpha, \beta)$ the set of possible γ in the invariant factor product problem.

Theorem. (Klein) $\quad \operatorname{IF}(\alpha, \beta)=L R(\alpha, \beta)$.

So

$$
E(\alpha, \beta) \cap \mathbb{Z}^{n}=I F(\alpha, \beta)
$$

But... there is a constructive version of Klein's theorem: Azenhas+Sá (1990)

A speculative question: is there a way of "transporting" this construction from the invariant factor setting to Hermitian matrices?

Actually, the equality $E(\alpha, \beta) \cap \mathbb{Z}^{n}=\operatorname{IF}(\alpha, \beta)$ reflects a deep result, the Kirwan-Ness theorem, relating symplectic geometry to geometric invariant theory. (See Fulton's survey.)

