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The Hermitian sum eigenvalue problem

(Horn’s problem)

α = (α1, . . . , αn) , β = (β1, . . . , βn) n-tuples of real numbers

α1 ≥ · · · ≥ αn , β1 ≥ · · · ≥ βn

γ = (γ1, . . . , γn) , γ1 ≥ · · · ≥ γn

When is γ the spectrum of A + B, where A and B are Hermitian

with spectra α and β, respectively?



Two surveys:

W. Fulton

Eigenvalues, invariant factors, highest weights,

and Schubert calculus

Bulletin AMS 37 (2000), 209-249.

R. Bhatia

Linear algebra to quantum cohomology:

the story of Alfred Horn’s inequalities

A.M.Monthly 108 (2001), 289-318.



Examples of valid relations

γ1 + · · ·+ γn = α1 + · · ·+ αn + β1 + · · ·+ βn

γ6 ≤ α2 + β5

γ2 + γ4 ≤ α1 + α4 + β1 + β3

γ3 + γ5 + γ9 ≤ α2 + α3 + α7 + β2 + β4 + β5



Notation: E(α, β) = {possible γ}

Trivial: E(α, β) is contained in the hyperplane defined by the trace

condition, which we abbreviate to Σγ = Σα+ Σβ.

Trivial: E(α, β) is compact, connected

(image of Un under the continuous mapping U 7→ λ(Dα +UDβU
∗) )

Less trivial: E(α, β) is a convex polytope (Dooley+Repka+Wildberger,

1993, using symplectic geometry)



Conjecture (A. Horn, 1962):

E(α, β) is completely described by a family of inequalities of the type

γk1
+ · · ·+ γkr ≤ αi1 + · · ·+ αir + βj1 + · · ·+ βjr

where r ∈ {1, ..., n} and i1<. . .<ir, j1<. . .<jr, k1<. . .<kr.

In short,

Σ γK ≤ ΣαI + ΣβJ

where I = (i1, . . . , ir), J = (j1, . . . , jr),K = (k1, . . . , kr).

A consequence of this would be that E(α, β) is a convex polytope.



The question is to identify the right triples (I, J,K). Horn makes an

elaborate conjecture on this, which, in sightly changed form, reads

as follows.

For I = (i1, . . . , ir), with 1≤ i1<. . .<ir≤n, write

ρ(I) = (ir − r, . . . , i2 − 2, i1 − 1)

Examples:

ρ(i) = i−1

ρ(2,3) = (1,1)

ρ(3,5,11) = (8,3,2)



Then Horn’s conjecture is:

γ ∈ E(α, β)

m



Σ γ = Σα + Σβ ,

Σ γK ≤ ΣαI + ΣβJ whenever

ρ(K) ∈ E[ρ(I), ρ(J)] (for all r, 1 ≤r< n)

So E is described recursively.

This is now a theorem. (See Fulton for the long story.)



Complete solutions for n = 1,2, 3

n=1

γ1 = α1 + β1

n=2

γ1 ≤ α1 + β1

γ2 ≤ α1 + β2

γ2 ≤ α2 + β1

γ1 + γ2 = α1 + α2 + β1 + β2



n=3

γ1 ≤ α1 + β1

γ2 ≤ α1 + β2

γ3 ≤ α1 + β3

γ2 ≤ α2 + β1

γ3 ≤ α2 + β2

γ3 ≤ α3 + β1

γ1 + γ2 ≤ α1 + α2 + β1 + β2

γ1 + γ3 ≤ α1 + α2 + β1 + β3

γ2 + γ3 ≤ α1 + α2 + β2 + β3

γ1 + γ3 ≤ α1 + α3 + β1 + β2

γ2 + γ3 ≤ α1 + α3 + β1 + β3

γ2 + γ3 ≤ α2 + α3 + β1 + β2

γ1 + γ2 + γ3 = α1 + α2 + α3 + β1 + β2 + β3



Example: α = (6,4,2) , β = (7,4,1)

E(α, β) = {(γ1, γ2, γ3) : γ1 ≥ γ2 ≥ γ3,

γ1 + γ2 + γ3 = 24,

γ1 ≤ 13, γ2 ≤ 10, γ3 ≤ 7,

γ1 + γ2 ≤ 21, γ1 + γ3 ≤ 18, γ2 + γ3 ≤ 15}





An open problem

Construction of solutions: Given α, β, and γ ∈ E(α, β), find Her-

mitian A with spectrum α and B with spectrum β such that A+B

has spectrum γ.

For each γ there may be many solutions.

Since the solution of Horn’s problem, several authors have studied

the probability distribution of γ, for given α and β.
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Only one paper – that I know of – addresses the actual construction

problem:

Cao+Woerdemann (2018)

The approach is numerical.

Reduces problem to semidefinite programming and finds an algo-

rithm that works for n = 3.

(The case n = 2 is trivial.)



An exact solution in a very particular case

W.l.g., we may assume the α’s, the β’s and the γ’s are ≥ 0.

Take β2 = · · · = βn = 0

So the second matrix to be constructed has rank 1.

(This covers the case where β has n− 1 coordinates equal.)

Solved by many authors (from the 19th to the 21st century).



In this case the Horn inequalities reduce to

γ1 + · · ·+ γn = α1 + · · ·+ αn + β1

γ1 ≥ α1 ≥ γ2 ≥ α2 ≥ · · · ≥ γn ≥ αn

Put Dα = diag(α1, . . . , αn). We are looking for a (real) column x

such that Dα + xxT has spectrum γ.



Denote by x2 the column [x2
1 x

2
2 · · · x

2
n]T .

Also, for each k ∈ {0,1, . . . , n}, σk(α) is the k-th elementary

symmetric function of α1, . . . , αn,

σk(α) =
∑

1≤i1<···<ik≤n
αi1 · · ·αik , σ0 ≡ 1

and we write σ(α) for the column [σ1(α) σ2(α) · · · σn(α)]T .

Denote also by J(α) the Jacobian matrix of the σk(α), that is,

J(α) =

[
∂σi
∂αj

]



Then we can prove (JFQ, 1994) that

J(α) · x2 = σ(γ)− σ(α) .

We have

det J(α) =
∏
i<j

(αi − αj) .

Assuming α1 > · · · > αn (w.l.g), J(α) is nonsingular and there is a

nice expression for its inverse.



Example

α = (6,4,2) , β = (3,0,0) , γ = (7,5,3)

We get x =

0.6124
0.8660
1.3693

 , so

A =

6 0 0
0 4 0
0 0 2

 and B =

0.3750 0.5303 0.8385
0.5303 0.7500 1.1859
0.8385 1.1859 1.8750



solve the problem.



A possible general approach

... related to the Littlewood-Richardson rule

(an object appearing in many settings, starting from representation theory)



The Littlewood-Richardson rule

α = (6,4,2) β = (7,4,1)
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LR(α, β)

In the example,

LR(α, β) = {(10,10,4), (11,10,3), (9,9,6), (10,9,5), (11,9,4),

(12,9,3), (9,8,7), (10,8,6), (11,8,5),

(12,8,4), (13,8,3), (10,7,7), (11,7,6),

(12,7,5), (13,7,4), (12,6,6), (13,6,5)}



Results in 1998-1999

Santana+JFQ+Sá (1998): For integral α and β,

E(α, β) ∩ Zn ⊇ LR(α, β)

Klyachko (1998), Knutson+Tao (1999):

E(α, β) ∩ Zn = LR(α, β)



Example: α = (6,4,2) , β = (7,4,1)

E(α, β) = {(γ1, γ2, γ3) : γ1 ≥ γ2 ≥ γ3,

γ1 + γ2 + γ3 = 24,

γ1 ≤ 13, γ2 ≤ 10, γ3 ≤ 7,

γ1 + γ2 ≤ 21, γ1 + γ3 ≤ 18, γ2 + γ3 ≤ 15}



E(α, β)



LR(α, β) = {(10,10,4), (11,10,3), (9,9,6), (10,9,5), (11,9,4),

(12,9,3), (9,8,7), (10,8,6), (11,8,5),

(12,8,4), (13,8,3), (10,7,7), (11,7,6),

(12,7,5), (13,7,4), (12,6,6), (13,6,5)}



LR(α, β)



E(α, β) & LR(α, β)



0 ≤ α, β ∈ Zn

E(α, β) ∩ Zn = LR(α, β)

First, this gives an idea of why Horn’s conjecture should be true,

because nonempty intersections of Schubert varieties (which

produce inequalities) are governed by the LR rule:

Σ γK ≤ ΣαI + ΣβJ whenever

ρ(K) ∈ LR[ρ(I), ρ(J)] (for all r, 1 ≤r< n)



Second, it suggests a connection to another problem: invariant

factors of a product of two integral matrices.

Let R be a PID (e.g. Z).

a=(an, . . . , a2, a1), b=(bn, . . . , b2, b1) n-tuples of nonzero elements of R

an | · · · | a2 | a1 , bn | · · · | b2 | b1

c = (cn, . . . , c2, c1) , cn | · · · | c2 | c1

When is c the n-tuple of invariant factors of AB, where A and B

have invariant factors a and b, respectively?



The Klein solution (1968)

Localization: Fix a prime p ∈ R and work over the local ring Rp

(i.e. work with powers of p)

ai → pαi, bi → pβi, ci → pγi

where α1 ≥ · · · ≥ αn, β1 ≥ · · · ≥ βn, γ1 ≥ · · · ≥ γn are

nonnegative integers.

Denote by IF (α, β) the set of possible γ in the invariant factor

product problem.

Theorem. (Klein) IF (α, β) = LR(α, β).



So

E(α, β) ∩ Zn = IF (α, β)

But... there is a constructive version of Klein’s theorem:

Azenhas+Sá (1990)

A speculative question: is there a way of “transporting” this

construction from the invariant factor setting to Hermitian

matrices?

Actually, the equality E(α, β) ∩ Zn = IF (α, β) reflects a deep

result, the Kirwan-Ness theorem, relating symplectic geometry to

geometric invariant theory. (See Fulton’s survey.)


