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Crystals and the plactic monoid

Lascoux and Schützenberger (1981) introduced the classical plactic
monoid based on work by Schensted (1961) and Knuth (1970).
Kashiwara (1990) introduced crystal bases for the vector representation
of the quantized universal general linear Lie algebra, from where the
classical plactic monoid arises by identifying elements in isomorphic
connected components of the resulting crystal graph.
Kashiwara and Nakashima (1994) studied the crystal graphs for Cartan
types Bn, Cn and Dn.
Lecouvey (2002, 2003, 2007) made an in-depth study of the plactic
monoids for Cartan types Bn, Cn and Dn.
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Crystals and the plactic monoid

Example 1.
By computing the Young tableaux we have that

121 ≈ 112, as P(121) = P(112) = 1 1
2

.

The following components of the crystal graph of A∗̃
3 are isomorphic.

112

212 113

312 213

313 223

323

121

122 131

132 231

133 232

233

1 2

2 1

2 1

1 2

1 2

2 1

2 1

1 2
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Crystals and the plactic monoid

Root systems Quantum groups Crystal bases

Crystals

Littelmann
paths Seminormal crystals Crystal graphs

Plactic monoids

Classical
plactic plac(An) plac(Bn, Cn,Dn)

Young tableaux Kashiwara–Nakashima tableaux

generalization

≡

≡
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Quasi-crystals and the hypoplactic monoid

Krob and Thibon (1997) obtained the classical hypoplactic monoid
through representation-theoretical interpretations of quasi-symmetric
functions and noncommutative symmetric functions.
Novelli (2000) made a combinatorial study of the classical hypoplactic
monoid. Also, analogues of results for the classical plactic monoid are
proven for the hypoplactic monoid.
Cain and Malheiro (2017) obtained the classical hypoplactic monoid by
identifying elements in isomorphic components of a quasi-crystal graph
derived from the crystal graph of A∗̃

n.
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Quasi-crystals and the hypoplactic monoid

Example 2.
From the quartic relations we have that

1212 ∼̈ 2121, 2123 ∼̈ 1223, 2313 ∼̈ 3231.

By computing the quasi-ribbon tableaux, we get that

QR(1212) = QR(2121) = 1 1
2 2

,

QR(2132) = QR(1223) =
1
2 2

3
,

QR(2313) = QR(3231) = 1 2
3 3

.
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Quasi-crystals and the hypoplactic monoid

The quasi-crystal graph of rank 3 is obtained from the crystal graph of A∗̃
3

by removing edges labelled by i starting or ending on a word of the form
w1iw2(i + 1)w3.

Example 2 (cont.).
The following components of the quasi-crystal graph are isomorphic.

2121

3121

3131

3231

3232

1212

1312

1313

2313

2323

1122

1132

1133

2133

2233

2

2

1

1

2

2

1

1

2

2

1

1
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Quasi-crystals and the hypoplactic monoid

Remark 1 (Remark 6.17, p. 70).
1 Consider the following components of the crystal graph of C ∗̃

2 .

ϵ 1 2 2 1

11 111 112 112 111

1 2 1

1 2 1

2 By removing the edges labelled by i starting or ending on a word of the
form w1iw2(i + 1)w3, we get the following components.

ϵ 1 2 2 1

11 111 112 112 111

1 2 1

2 1

3 Identifying elements in isomorphic components does not result in a
monoid congruence, because ϵ ∼ 11 and 1 ∼ 1, but 111 ̸∼ 1.

4 The method by Cain and Malheiro (2017) does not work for type C2.
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Quasi-crystals and the hypoplactic monoid

Hecke algebra Crystal graph
of A∗̃

n

Quasi-crystal graph

Hypoplactic monoid

Quasi-ribbon tableaux
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For this presentation

Hecke algebra Root systems

Quasi-crystals

Littelmann
paths

Seminormal
quasi-crystals

Quasi-crystal
graphs

Hypoplactic monoids

Classical Hypoplactic hypo(An) hypo(Cn)

Quasi-ribbon tableaux No finite presentation

≡

≡
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Underlying algebraic structure

V a Euclidean space with inner product ⟨ · , · ⟩.
Φ a root system.
Λ a weight lattice.
I index set for the simple roots (αi)i∈I .

Example 3.
The root system for Cartan type An:

Φ = {ei − ej | i ̸= j},

Λ = Zn, and αi = ei − ei+1, i = 1, 2, . . . , n − 1.

The root system for Cartan type Cn:

Φ = {±ei ± ej | i < j} ∪ {±2ei | i = 1, 2, . . . , n},

Λ = Zn, and αi = ei − ei+1, i = 1, 2, . . . , n − 1, and αn = 2en.
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A general notion of quasi-crystals

Definition 2 (Definition 7.1, p. 72).
A quasi-crystal Q of type Φ consists of a set Q, and maps wt : Q → Λ,
ëi , f̈i : Q → Q ⊔ {⊥} and ε̈i , φ̈i : Q → Z ∪ {−∞,+∞}, i ∈ I, satisfying:

1 φ̈i(x) = ε̈i(x) + ⟨wt(x), α∨
i ⟩;

2 if ëi(x) ∈ Q, then wt(ëi(x)) = wt(x) + αi , ε̈i(ëi(x)) = ε̈i(x) − 1, and
φ̈i(ëi(x)) = φ̈i(x) + 1;

3 if f̈i(x) ∈ Q, then wt(f̈i(x)) = wt(x) − αi , ε̈i(f̈i(x)) = ε̈i(x) + 1, and
φ̈i(f̈i(x)) = φ̈i(x) − 1;

4 ëi(x) = y if and only if x = f̈i(y);
5 if ε̈i(x) = −∞ then ëi(x) = f̈i(x) = ⊥;
6 if ε̈i(x) = +∞ then ëi(x) = f̈i(x) = ⊥.
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Seminormal quasi-crystals and homomorphisms

A quasi-crystal Q is seminormal if
1 ε̈i(x) = max{k ∈ Z≥0 | ëk

i (x) ∈ Q}, and
2 φ̈i(x) = max{k ∈ Z≥0 | f̈ k

i (x) ∈ Q},
whenever ε̈i(x) ̸= +∞.

Definition 3 (Definition 7.12, p. 77).
A quasi-crystal homomorphism ψ : Q → Q′ is a map ψ : Q ⊔ {⊥} →
Q′ ⊔ {⊥} satisfying:

1 ψ(⊥) = ⊥;
2 if ψ(x) ∈ Q′, then wt(ψ(x)) = wt(x), ε̈i(ψ(x)) = ε̈i(x), and
φ̈i(ψ(x)) = φ̈i(x);

3 if ëi(x) ∈ Q and ψ(x), ψ(ëi(x)) ∈ Q′, then ψ(ëi(x)) = ëi(ψ(x));
4 if f̈i(x) ∈ Q and ψ(x), ψ(f̈i(x)) ∈ Q′, then ψ(f̈i(x)) = f̈i(ψ(x)).
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Quasi-crystal graphs

Definition 4 (Definition 7.19, p. 81).
The quasi-crystal graph ΓQ of a quasi-crystal Q is a Λ-weighted I-labelled
directed graph with:

vertex set Q;

an edge x yi , if f̈i(x) = y ;
a loop x i , if ε̈i(x) = +∞.

Theorem 5 (Proposition 7.27 and Remark 7.28, pp. 85–86).
A seminormal quasi-crystal is completely determined by its quasi-crystal
graph.

Remark 6 (Remark 7.20, p. 81).
The quasi-crystal graph of a crystal is a crystal graph.
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The class of seminormal quasi-crystal graphs
Consider a root system Φ with weight lattice Λ and index set I for the simple
roots (αi)i∈I .
A Λ-weighted I-labelled directed graph Γ is a seminormal quasi-crystal
graph if for any vertices x and y , and any i ∈ I, the following conditions
are satisfied:

1 x is the start of at most an edge labelled by i , and is the end of at
most an edge labelled by i ;

2 any i-labelled path of Γ is finite;
3 if x i−−→ y is an edge of Γ with x ̸= y , then wt(y) = wt(x) − αi ;
4 φ̈i(x) = ε̈i(x) + ⟨wt(x), α∨

i ⟩, where
φ̈i(x) is the supremum among nonnegative integers k ∈ Z≥0 such that
there exists an i-labelled walk on Γ starting on x with length k,
ε̈i(x) is the supremum among nonnegative integers l ∈ Z≥0 such that
there exists an i-labelled walk on Γ ending on x with length l .

The class of seminormal crystal graphs corresponds to the class of semi-
normal quasi-crystal graphs that are simple.
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Quasi-tensor product

Definition 7 (Theorem 7.32 and Definition 7.33, pp. 88–92).
Let Q and Q′ be seminormal quasi-crystals of a same type. The inverse-
free quasi-tensor product Q ⊗̈ Q′ is a seminormal quasi-crystal consisting
of the set of ordered pairs Q ⊗̈ Q′ and quasi-crystal structure given by:

1 wt(x ⊗̈ x ′) = wt(x) + wt(x ′);
2 if φ̈i(x) > 0 and ε̈i(x ′) > 0, set ëi(x ⊗̈ x ′) = f̈i(x ⊗̈ x ′) = ⊥ and
ε̈i(x ⊗̈ x ′) = φ̈i(x ⊗̈ x ′) = +∞;

3 otherwise, set
ëi(x ⊗̈ x ′) =

{
ëi(x) ⊗̈ x ′ if φ̈i(x) ≥ ε̈i(x ′)
x ⊗̈ ëi(x ′) if φ̈i(x) < ε̈i(x ′),

f̈i(x ⊗̈ x ′) =
{

f̈i(x) ⊗̈ x ′ if φ̈i(x) > ε̈i(x ′)
x ⊗̈ f̈i(x ′) if φ̈i(x) ≤ ε̈i(x ′),

ε̈i(x ⊗̈ x ′) = max{ε̈i(x), ε̈i(x ′) − ⟨wt(x), α∨
i ⟩},

φ̈i(x ⊗̈ x ′) = max{φ̈i(x) + ⟨wt(x ′), α∨
i ⟩, φ̈i(x ′)},
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Quasi-crystal graphs of quasi-tensor products
The quasi-crystal graph ΓQ⊗̈Q′ of a quasi-tensor product Q⊗̈Q′ is obtained
as follows:

1 the vertex set is Q ⊗̈ Q′ and the weight map is defined by
wt(x ⊗̈ y) = wt(x) + wt(y);

2 an i-labelled loop x ⊗̈ y i , whenever
x has an i-labelled loop, or
y has an i-labelled loop, or
x is the start of an i-labelled edge and y is the end of an i-labelled edge;

3 an i-labelled edge x ⊗̈ y i−−→ u ⊗̈ y , whenever

x i−−→ u and y is not the end of an i-labelled edge, that is, v /
i−−→ y

for any v ∈ Q′;
4 an i-labelled edge x ⊗̈ y i−−→ x ⊗̈ v , whenever

y i−−→ v and x is not the start of an i-labelled edge, that is, x /
i−−→ u

for any u ∈ Q.
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Quasi-tensor product

Example 4.
The quasi-crystal graphs of C2 and C2 ⊗̈ C2 are

1 2 2 1

1 ⊗̈ 1 2 ⊗̈ 1 2 ⊗̈ 1 1 ⊗̈ 1

1 ⊗̈ 2 2 ⊗̈ 2 2 ⊗̈ 2 1 ⊗̈ 2

1 ⊗̈ 2 2 ⊗̈ 2 2 ⊗̈ 2 1 ⊗̈ 2

1 ⊗̈ 1 2 ⊗̈ 1 2 ⊗̈ 1 1 ⊗̈ 1

1 2 1

1

1

2 1

1

2

2

2 2
1

1

1

1
2

1 1

2

1 1

with weights wt(1) = e1, wt(2) = e2, wt(2) = −e2, wt(1) = −e1, and
wt(x ⊗̈ y) = wt(x) + wt(y).
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Signature rule for quasi-tensor product

Theorem 8 (Theorem 7.37, p. 94).
The quasi-tensor product is associative, i.e.
(Q1 ⊗̈ Q2) ⊗̈ Q3 ∼= Q1 ⊗̈ (Q2 ⊗̈ Q3).

Consider the zero monoid Z0 = ⟨−,+ | +− = 0⟩.

Definition 9.
Let Q be a seminormal quasi-crystal. For each i ∈ I, the i-signature map
for the quasi-tensor product sgn⊗̈

i : Q → Z0 is given by

sgn⊗̈
i (x) =

{
0 if ε̈i(x) = +∞
−ε̈i (x)+φ̈i (x) otherwise,

Theorem 10 (Proposition 7.40, p. 99).
Let Q and Q′ be seminormal quasi-crystals of the same type. Then,

sgn⊗̈
i (x ⊗̈ x ′) = sgn⊗̈

i (x) sgn⊗̈
i (x ′),
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Quasi-crystal monoids

Definition 11 (Definition 8.1, p. 103).
A quasi-crystal monoid M of type Φ consists of

1 a set M;
2 a seminormal quasi-crystal with underlying set M;
3 a monoid with underlying set M;
4 the map x ⊗̈ y 7→ xy is a quasi-crystal homomorphism from M ⊗̈ M

to M.

Definition 12 (Definition 8.7, p. 109).
Let M and M′ be quasi-crystal monoids of the same type. A quasi-crystal
monoid homomorphism ψ : M → M′, is a map ψ : M → M ′ which is
both a quasi-crystal and a monoid homomorphism.
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Quasi-crystal graphs of quasi-crystal monoids

The quasi-crystal graph ΓM of a quasi-crystal monoid M satisfies:
1 the vertex set is a monoid M and the weight map is defined by

wt(xy) = wt(x) + wt(y);
2 an i-labelled loop xy i , whenever

x has an i-labelled loop, or
y has an i-labelled loop, or
x is the start of an i-labelled edge and y is the end of an i-labelled edge;

3 an i-labelled edge xy i−−→ uy , whenever

x i−−→ u and y is not the end of an i-labelled edge, that is, v /
i−−→ y

for any v ∈ Q′;
4 an i-labelled edge xy i−−→ xv , whenever

y i−−→ v and x is not the start of an i-labelled edge, that is, x /
i−−→ u

for any u ∈ Q.
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Signature rule for quasi-crystal monoids

Theorem 13 (Proposition 8.4, p. 107).
Let M be a quasi-crystal monoid. Then, for each i ∈ I, either

ε̈i(1) = φ̈i(1) = 0; or
ε̈i(x) = φ̈i(x) = +∞, for all x ∈ M.

Definition 14 (p. 107).
A quasi-crystal monoid is nondegenerate if ε̈i(1) = 0, for all i ∈ I.

Theorem 15 (Proposition 8.5, p. 108).
Let M be a nondegenerate quasi-crystal monoid. Then, for each i ∈ I, the
i-signature map sgn⊗̈

i is a monoid homomorphism.
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Free quasi-crystal monoid
A detailed description of the free quasi-crystal monoid over a seminormal
quasi-crystal is done in Definition 8.8 (p. 111). As the term free suggests it
can also be defined (up to isomorphism) by the following universal property.

Theorem 16 (Theorem 8.11 and Corollary 8.12, pp. 113–114).
Let Q be a seminormal quasi-crystal. The free quasi-crystal monoid Q∗̈

over Q is the unique quasi-crystal monoid such that for any nondegenerate
quasi-crystal monoid M and any quasi-crystal homomorphism ψ : Q → M
with ψ(Q) ⊆ M, there exists a unique quasi-crystal monoid homomorphism
ψ̂ : Q∗̈ → M for which the following diagram commutes

Q M

Q∗̈

ψ

ι
ψ̂

where ι denotes the inclusion map.
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Quasi-crystal graphs of free quasi-crystal monoids

The quasi-crystal graph ΓQ∗̈ of a free quasi-crystal monoid Q∗̈ over Q con-
sists of the vertex set Q∗ and is inductively constructed for x ∈ Q and
w ∈ Q∗ as follows:

1 wt(wx) = wt(w) + wt(x);
2 an i-labelled loop wx i , whenever

w has an i-labelled loop, or
x has an i-labelled loop, or
w is the start of an i-labelled edge and x is the end of an i-labelled edge;

3 an i-labelled edge wx i−−→ ux , whenever

w i−−→ u and x is not the end of an i-labelled edge;

4 an i-labelled edge wx i−−→ wy , whenever

x i−−→ y and w is not the start of an i-labelled edge.
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Congruences on quasi-crystal monoids

Definition 17 (Definition 8.13, p. 115).
Let M be a quasi-crystal monoid. A quasi-crystal monoid congruence
on M is a equivalence relation θ ⊆ M × M satisfying:

1 if (x , y) ∈ θ, then wt(x) = wt(y), ε̈i(x) = ε̈i(y) and φ̈i(x) = φ̈i(y);
2 if (x , y) ∈ θ and ëi(x) ∈ M, then (ëi(x), ëi(y)) ∈ θ;
3 if (x , y) ∈ θ and f̈i(x) ∈ M, then (f̈i(x), f̈i(y)) ∈ θ;
4 if (x1, y1), (x2, y2) ∈ θ, then (x1x2, y1y2) ∈ θ.

Theorem 18 (Theorems 8.15, 8.19 and 8.20, pp. 116–119).
1 The quasi-crystal monoid congruences on M form a lattice.
2 Given a surjective quasi-crystal monoid homomorphism ψ : M → M′,

then M′ ∼= M/kerψ.
3 If θ ⊆ σ, then (M/θ)/(σ/θ) ∼= M/σ.
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The general hypoplactic monoid

Definition 19 (Definition 8.21, p. 119).
Let Q be a seminormal quasi-crystal. The hypoplactic congruence on Q∗̈

is a relation ∼̈ on Q∗, where u ∼̈ v if and only if
1 there exists a quasi-crystal isomorphism ψ : Q∗̈(u) → Q∗̈(v),
2 ψ(u) = v .

Theorem 20 (Theorem 8.23, p. 120).
∼̈ is a quasi-crystal monoid congruence on Q∗̈.

Definition 21 (Definition 8.24, p. 121).
The hypoplactic quasi-crystal monoid, or simply the hypoplactic
monoid, associated to Q is hypo(Q) = Q∗̈/∼̈.
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The general hypoplactic monoid

Example 5.
These components of the free quasi-crystal monoid A∗̈

3 are isomorphic.

2121

3121

3131

3231

3232

1212

1312

1313

2313

2323

1122

1132

1133

2133

2233

2

2

1

1

1

1

2

2

2

2

1

1

1

1

2

2

2

2

1

1

1

1

2

2

Therefore, in hypo(An) we have that 2121 = 1212 = 1122.
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The general hypoplactic monoid

Theorem 22 (Theorems 8.25 and 8.26, pp. 121–122).
Let Q be a seminormal quasi-crystal.

1 If u, v ∈ Q∗ are such that uv is an isolated element of Q∗̈, then

uvw ∼̈ uwv ∼̈ wuv ,

for any w ∈ Q∗.
2 If w ∈ Q∗ is such that wu ∼̈ uw, for any u ∈ Q∗, then w is an isolated

element of Q∗̈.

Theorem 23 (Theorem 8.29, p. 124).
hypo(An) is anti-isomorphic to the classical hypoplactic monoid of rank n.
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Presentation for hypo(C2)

Theorem 24 (Theorem 9.19, p. 136).
hypo(C2) has no finite presentation.

Theorem 25 (Theorem 9.21, p. 138).
Any connected component of C ∗̈

2 is quasi-crystal isomorphic to one and only
one of the following

1 C ∗̈
2(1m), m ≥ 0;

2 C ∗̈
2(2m11m2+12m3+11m4), m1,m2,m3,m4 ≥ 0;

3 C ∗̈
2(1m1+12m21m3+1), m1,m2,m3 ≥ 0 with either m1 = 0 or m3 = 0;

4 C ∗̈
2(1m1+12m2+12m3+11m4+1), m1,m2,m3,m4 ≥ 0 with either m1 = 0

or m4 = 0, and either m2 = 0 or m3 = 0.
Therefore, the elements in these connected components form a minimal set
of representatives for the hypoplactic congruence ∼̈ on C ∗̈

2 .
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Isomorphic components of C ∗̈
2

Example 6.
These components of the free quasi-crystal monoid C ∗̈

2 are isomorphic.

1212

1212

1212

2212

2112

2122

2121

2121

2121

1122

1122

1122

2122

2222

2212

2211

2211

2211

2

2

1

1

1

1

2

2

1

1

2

2

2

1

1

2

2

1

1

1

1

2

2

1

1

2

2

2

1

1
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Identities on hypo(C2)

Theorem 26 (Theorem 9.23, p. 140).
Let X be a finite alphabet, and let u, v ∈ X ∗. If hypo(C2) satisfies the
identity u = v, then the following conditions are satisfied.

1 |u|x = |v |x , for all x ∈ X.
2 Until the first occurrence of a letter x ∈ X in u and v, each letter of

X occurs exactly the same number of times in u and v.
3 After the last occurrence of a letter x ∈ X in u and v, each letter of

X occurs exactly the same number of times in u and v.

Theorem 27 (Theorem 9.25, p. 141).
The hypoplactic monoid hypo(C2) satisfies the identity

xyxyxy = xyyxxy .
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hypo(Cn)

Theorem 28 (Theorem 9.43, p. 153).
For x , y , z ∈ Cn with x ̸= z, we have that

1 yzx ∼̈ yxz if and only if (y , x) = (1, 1) or (y , z) = (1, 1);
2 xzy ∼̈ zxy if and only if (x , y) = (1, 1) or (z , y) = (1, 1);

Corollary 29 (Corollary 9.42, p. 153).
1 For m, n ≥ 2, there exists no injective homomorphism ψ from

hypo(Am) to hypo(Cn) such that ψ(x), ψ(y) ∈ Cn for some x , y ∈ Am.
2 For m ≥ 3 and n ≥ 2, no injective map from Am to Cn can be extended

to a homomorphism from hypo(Am) to hypo(Cn).

Theorem 30.
For n ≥ 3, the set {1, 2} is free on hypo(Cn). Therefore, hypo(Cn) does not
satisfy non-trivial identities.
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hypo(Cn)

Theorem 31.
Consider ψ to be the monoid homomorphism from A∗

n−1 to C∗
n such that

ψ(x) = xnnnn,

for each x ∈ {1, . . . , n − 1}. Then, ψ induces an injective monoid homo-
morphism from hypo(An−1) to hypo(Cn).

Theorem 32.
Consider ψ to be the monoid homomorphism from C∗

n−1 to C∗
n such that

ψ(x) = (x + 1)11 and ψ(x) =
(
x + 1

)
11,

for each x ∈ {1, . . . , n − 1}. Then, ψ induces an injective monoid homo-
morphism from hypo(Cn−1) to hypo(Cn).
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