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I - Motivations

• The Nakayama conjecture

Theorem (Brauer-Robinson 1947)

λ, µ ` n lie in the same p-block of Sn ⇔ λ, µ have the same p-core.

Example λ =

x x x
x x x

and µ =

x x x
x x
x

have same 3-core.

In particular, p-core partitions give the defect 0 p-blocks of Sn.

Remark

can define e-cores for e ∈ Z≥2

e-cores are e-regular (no part is repeated e times or more)
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• Enumerating e-cores

2-cores are the triangular partitions (r , r − 1, . . . , 2, 1) for some r

∅ , , , , . . .

3-cores:
∅ , , , , , , . . .

Theorem (Granville-Ono 1996)

Let e ≥ 4. For all n ∈ N, there exists an e-core of size n.

Corollary Let p ≥ 5. Every finite simple simple group has a defect 0
p-block.
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• Lattice structure on e-regular partitions

For i ∈ Z/eZ, write λ
i−→ µ if µ is obtained from λ by adding its good

i-box (if it exists).

list all addable (A) and removable (R) i−boxes of λ in decreasing
order,

delete recursively all AR’s,

good box = leftmost remaining A.

Example e = 3 and

λ =

2 0
0 1
2

0
2

i = 0 ARR
i = 1 A
i = 2 RAA
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Starting from the empty partition yields the Kleshchev lattice:

Example of e = 3.

The vertices are the
e-regular partitions.

-
0

1 2

2 1

0 2 1 0

Remark

e =∞  Young lattice

gives the modular branching rule for Sn (Kleshchev 1995).
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• Generalisations

Once we understand the story for Sn, it is natural to look at other
situations such as:

1 Block theory for (unipotent) representations of finite classical groups
(Fong-Srinivasan 1989).

2 Block theory for (cyclotomic) Hecke algebras (Lyle-Mathas 2007,
Fayers, Jacon-Lecouvey, etc).

Today: focus on the second case.
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II - Cores via crystals

g (symmetrisable) Kac-Moody algebra  classification in Dynkin types.

λ ∈ P+ dominant weight  V (λ) irreducible highest weight g-module.

Construction (Kashiwara 1990)

The structure of V (λ) is controlled by its crystal graph B(λ):

vertices = crystal basis,

arrows = action of the crystal operators.

It is the “combinatorial skeleton” of V (λ).

Compatible with direct sums, tensor products, etc.
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• Examples

1 g = sle ,V = Ce = V (ω1) = V ( )

B = 1
1−→ 2

2−→ · · · e−1−→ e .

2 g = sl3, λ = ω1 + ω2 = .

B(λ) = ↪→ B⊗3

1 1
2

1 2
2

1 1
3

1 3
2

1 2
3

1 3
3

2 2
3

2 3
3

1 2

2 1

2 1

1 2
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3 g = ŝle and λ = Λ0.

Theorem (Misra-Miwa 1990)

The crystal B(Λ0) is given by the Kleshchev lattice.

-

...

0

1 2

2 1

0 2 1 0
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• Action of the Weyl group

Let W = 〈si | i ∈ I 〉 be the Weyl group of g.

Fix i ∈ Z/eZ. Removing all j-arrows, j 6= i , in the crystal yields a disjoint
union of i -strings.

• i−→ • i−→ • i−→ · · · i−→ • i−→ •

The generator si acts by reversing the i-strings:

• i−→ b
i−→ • i−→ · · · i−→ si (b)

i−→ •
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Proposition

The orbit of the empty partition in B(Λ0) consists exactly of the e-cores.

Example Let e = 3.
-

...

0

1 2

2 1

0 2 1 0

-

...

0

1 2

2 1

0 2 1 0
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Theorem (Lascoux-Schützenberger 1990)

In finite type A, the orbit of the highest weight vertex consists of those
tableaux T = C1 · · ·Ck such that Ci ⊇ Ci+1 for all 1 ≤ i < k .

Example Type A2 and take λ = ρ = ω1 + ω2 = .

1 1

2

1 2

2

1 1

3

1 3

2

1 2

3

1 3

3

2 2

3

2 3

3

1 2

2 1

2 1

1 2

1 1

2

1 2

2

1 1

3

1 3

2

1 2

3

1 3

3

2 2

3

2 3

3

1 2

2 1

2 1

1 2
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Generalisation of classical results by replacing

- cores ← orbit of some highest weight vertex,

- size ← depth in the crystal.

For instance, can we generalise Granville and Ono’s result?

Thomas Gerber Looking for cores 21/10/2022 14 / 21



III - Atomic length in Weyl groups

• Inversion sets and (atomic) length

For w ∈W , let

N(w) = {α ∈ Φ+ | w−1(α) ∈ Φ−} = inversion set of w .

Recall that |N(w)| = `(w).

Definition

The atomic length of w is

L(w) =
∑

α∈N(w)

ht(α)

where ht(α) is the number of simple roots needed to decompose α.
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Example In type A2, denote αi = εi − εi+1, i = 1, 2 the simple roots
and si = sαi ∈W the simple reflections.

w N(w) `(w) L(w)

1 ∅ 0 0
s1 {α1} 1 1
s2 {α2} 1 1
s1s2 {α2, α1 + α2} 2 3
s2s1 {α1, α1 + α2} 2 3
s1s2s1 {α1, α2, α1 + α2} 3 4
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• Reformulation and generalisation

We have

L(w) = 〈ρ− w(ρ), ρ∨〉 where ρ =
1

2

∑
α∈Φ+

α.

So we define, for λ ∈ P+

Lλ(w) = 〈λ− w(λ), ρ∨〉.

Proposition

Lλ(w) is the depth of w(bλ) in the crystal B(λ), where bλ denotes the
highest weight vertex.

In particular:

in type A
(1)
e−1, LΛ0(w) is the size of the e-core partition w(∅).

in type Ae−1, L(w) = Lρ(w) is the entropy of the permutation w .

Thomas Gerber Looking for cores 21/10/2022 17 / 21



• Reformulation and generalisation

We have

L(w) = 〈ρ− w(ρ), ρ∨〉 where ρ =
1

2

∑
α∈Φ+

α.

So we define, for λ ∈ P+

Lλ(w) = 〈λ− w(λ), ρ∨〉.

Proposition

Lλ(w) is the depth of w(bλ) in the crystal B(λ), where bλ denotes the
highest weight vertex.

In particular:

in type A
(1)
e−1, LΛ0(w) is the size of the e-core partition w(∅).

in type Ae−1, L(w) = Lρ(w) is the entropy of the permutation w .

Thomas Gerber Looking for cores 21/10/2022 17 / 21



Thomas Gerber Looking for cores 21/10/2022 18 / 21



• Finite Weyl groups

Let W be finite. Let e denote the rank of the corresponding root system.
Clearly, L is maximal at w0 (longest element).

Dynkin type L(w0)

Ae
(e+1)e(e−1)

6

Be
(e+1)e(4e−1)

6

Ce idem

De
e(e−1)(2e−1)

3

Theorem (Chapelier-G. 2022)

Let e ≥ 3. Then L(W ) = J0, L(w0)K.
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• Affine type A

Let W = A
(1)
e−1 and λ ∈ P+ dominant weight of level `.

Crystal B(λ) is realised by Uglov/Kleshchev/FLOTW `-partitions.

Highest weight vertex is bλ = (∅, . . . , ∅).

Lλ(w) = size of the `-partition w(∅, . . . , ∅).

Simple characterisation of the orbit of (∅, . . . , ∅) using abaci
(Jacon-Lecouvey 2021) similar to Lascoux and Schützenberger’s.

Questions
1 When is Lλ : W −→ N surjective?

2 (weaker) When is N \ L(W ) finite?
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Case λ = Λ0. Then LΛ0 is surjective (Granville-Ono theorem).

General case:
λ = λ+ `Λ0 and w = w tβ

where λ ∈ P+
fin, w ∈Wfin and β =

∑n
i=1 biαi .

Theorem (Chapelier-G. 2022)

Lλ(w) = Lλ(w) + `LΛ0(w) + K (β | λ)

where K is a constant depending on the type.

For some other particular λ’s, Question (2) has a positive answer
(work in progress with E. Norton)...
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