Looking for cores

Thomas Gerber

12th Combinatorics Days Aveiro 21 October 2022

- I Motivation by representation theory
- II Cores and Lie theory
- III Atomic length in Weyl groups

• The Nakayama conjecture

• The Nakayama conjecture

• The Nakayama conjecture

Theorem (Brauer-Robinson 1947) $\lambda, \mu \vdash n$ lie in the same *p*-block of $S_n \Leftrightarrow \lambda, \mu$ have the same *p*-core. **Example** $\lambda = \underbrace{x \times x}_{x \times x}$ and $\mu = \underbrace{x \times x}_{x \times x}$ have same 3-core.

• The Nakayama conjecture

Theorem (Brauer-Robinson 1947) $\lambda, \mu \vdash n$ lie in the same *p*-block of $S_n \Leftrightarrow \lambda, \mu$ have the same *p*-core. **Example** $\lambda = \underbrace{|x| | x| | x|}_{|x| | x|}$ and $\mu = \underbrace{|x| | x| | x|}_{|x| | x|}$ have same 3-core.

• The Nakayama conjecture

Theorem (Brauer-Robinson 1947) $\lambda, \mu \vdash n$ lie in the same *p*-block of $S_n \Leftrightarrow \lambda, \mu$ have the same *p*-core. **Example** $\lambda = \underbrace{|x| | x| | x|}_{|x| | x|}$ and $\mu = \underbrace{|x| | x| | x|}_{|x| | x|}$ have same 3-core.

• The Nakayama conjecture

Theorem (Brauer-Robinson 1947)

 $\lambda, \mu \vdash n$ lie in the same *p*-block of $S_n \iff \lambda, \mu$ have the same *p*-core.

Example
$$\lambda =$$
 $x \times x$ and $\mu =$ $x \times x$ have same 3-core. $x \times x$

In particular, *p*-core partitions give the defect 0 *p*-blocks of S_n .

• The Nakayama conjecture

Theorem (Brauer-Robinson 1947)

 $\lambda, \mu \vdash n$ lie in the same *p*-block of $S_n \iff \lambda, \mu$ have the same *p*-core.

Example
$$\lambda =$$
 $x \times x$ and $\mu =$ $x \times x$ have same 3-core. $x \times x$

In particular, *p*-core partitions give the defect 0 *p*-blocks of S_n .

Remark

- can define *e*-cores for $e \in \mathbb{Z}_{\geq 2}$
- e-cores are e-regular (no part is repeated e times or more)

• Enumerating *e*-cores

• 2-cores are the triangular partitions (r, r - 1, ..., 2, 1) for some r

$$\emptyset, \Box, \Box, \Box, \Box, \Box, \ldots$$

- Enumerating *e*-cores
 - 2-cores are the triangular partitions (r, r 1, ..., 2, 1) for some r

$$\emptyset, \Box, \Box, \Box, \Box, \Box, \ldots$$

• 3-cores:

- Enumerating *e*-cores
 - 2-cores are the triangular partitions (r, r 1, ..., 2, 1) for some r

$$\emptyset, \Box, \Box, \Box, \Box, \Box, \ldots$$

• 3-cores:

Theorem (Granville-Ono 1996)

Let $e \geq 4$. For all $n \in \mathbb{N}$, there exists an *e*-core of size *n*.

Corollary Let $p \ge 5$. Every finite simple simple group has a defect 0 *p*-block.

For $i \in \mathbb{Z}/e\mathbb{Z}$, write $\lambda \xrightarrow{i} \mu$ if μ is obtained from λ by adding its *good i-box* (if it exists).

For $i \in \mathbb{Z}/e\mathbb{Z}$, write $\lambda \xrightarrow{i} \mu$ if μ is obtained from λ by adding its *good i-box* (if it exists).

list all addable (A) and removable (R) *i*-boxes of λ in decreasing order,

Example e = 3 and

$$\lambda = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 2 \\ 0 \\ 2 \end{bmatrix} \begin{pmatrix} i = 0 & ARR \\ i = 1 & A \\ i = 2 & RAA \\ i = 2 & RAA \\ \end{bmatrix}$$

For $i \in \mathbb{Z}/e\mathbb{Z}$, write $\lambda \xrightarrow{i} \mu$ if μ is obtained from λ by adding its good *i-box* (if it exists).

- list all addable (A) and removable (R) *i*-boxes of λ in decreasing order,
- delete recursively all AR's,

Example e = 3 and

$$\lambda = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 2 \\ 0 \end{bmatrix} \begin{pmatrix} i = 0 & ARR \\ i = 1 & A \\ i = 2 & RAA \\ i = 2 & RAA \\ k = 2 & RAA$$

For $i \in \mathbb{Z}/e\mathbb{Z}$, write $\lambda \xrightarrow{i} \mu$ if μ is obtained from λ by adding its *good i-box* (if it exists).

- list all addable (A) and removable (R) i-boxes of λ in decreasing order,
- delete recursively all AR's,
- good box = leftmost remaining A.

Example e = 3 and

Starting from the empty partition yields the *Kleshchev lattice*:

Example of e = 3.

The vertices are the *e*-regular partitions.

Remark

- $e = \infty \rightsquigarrow$ Young lattice
- gives the modular branching rule for S_n (Kleshchev 1995).

Generalisations

Once we understand the story for S_n , it is natural to look at other situations such as:

- Block theory for (unipotent) representations of finite classical groups (Fong-Srinivasan 1989).
- Block theory for (cyclotomic) Hecke algebras (Lyle-Mathas 2007, Fayers, Jacon-Lecouvey, etc).

Today: focus on the second case.

II - Cores via crystals

 \mathfrak{g} (symmetrisable) Kac-Moody algebra \rightsquigarrow classification in *Dynkin types*.

 $\lambda \in P^+$ dominant weight $\rightsquigarrow V(\lambda)$ irreducible highest weight g-module.

II - Cores via crystals

 \mathfrak{g} (symmetrisable) Kac-Moody algebra \rightsquigarrow classification in *Dynkin types*.

 $\lambda \in P^+$ dominant weight $\rightsquigarrow V(\lambda)$ irreducible highest weight g-module.

Construction (Kashiwara 1990)

The structure of $V(\lambda)$ is controlled by its *crystal graph* $B(\lambda)$:

- vertices = *crystal* basis,
- arrows = action of the *crystal operators*.
- It is the "combinatorial skeleton" of $V(\lambda)$.

Compatible with direct sums, tensor products, etc.

• Examples

•
$$\mathfrak{g} = \mathfrak{sl}_e, V = \mathbb{C}^e = V(\omega_1) = V(\Box)$$

$$B = 1 \xrightarrow{1} 2 \xrightarrow{2} \cdots \xrightarrow{e-1} e.$$

• Examples

$$\mathfrak{g} = \mathfrak{sl}_{e}, V = \mathbb{C}^{e} = V(\omega_{1}) = V(\Box)$$

$$B = 1 \xrightarrow{1} 2 \xrightarrow{2} \cdots \xrightarrow{e-1} e.$$

$$\mathfrak{g} = \mathfrak{sl}_{3}, \lambda = \omega_{1} + \omega_{2} = \Box.$$

$$I \xrightarrow{1} 2 \xrightarrow{2} I \xrightarrow{1} I$$

$$B(\lambda) = I \xrightarrow{1} 3 \xrightarrow{2} I \xrightarrow{1} I \xrightarrow{1} I$$

$$B(\lambda) = I \xrightarrow{1} 3 \xrightarrow{2} I \xrightarrow{1} I \xrightarrow{1} I$$

$$B(\lambda) = I \xrightarrow{1} 3 \xrightarrow{2} I \xrightarrow{1} I$$

$$\mathfrak{g} = \widehat{\mathfrak{sl}_e} \text{ and } \lambda = \Lambda_0.$$

Theorem (Misra-Miwa 1990)

The crystal $B(\Lambda_0)$ is given by the Kleshchev lattice.

• Action of the Weyl group

Let $W = \langle s_i \mid i \in I \rangle$ be the Weyl group of \mathfrak{g} .

Fix $i \in \mathbb{Z}/e\mathbb{Z}$. Removing all *j*-arrows, $j \neq i$, in the crystal yields a disjoint union of *i*-strings.

$$\bullet \xrightarrow{i} \bullet \xrightarrow{i} \bullet \xrightarrow{i} \cdots \xrightarrow{i} \bullet \xrightarrow{i} \bullet$$

• Action of the Weyl group

Let $W = \langle s_i \mid i \in I \rangle$ be the Weyl group of \mathfrak{g} .

Fix $i \in \mathbb{Z}/e\mathbb{Z}$. Removing all *j*-arrows, $j \neq i$, in the crystal yields a disjoint union of *i*-strings.

$$\bullet \xrightarrow{i} \bullet \xrightarrow{i} \bullet \xrightarrow{i} \cdots \xrightarrow{i} \bullet \xrightarrow{i} \bullet$$

The generator s_i acts by reversing the *i*-strings:

$$\bullet \xrightarrow{i} b \xrightarrow{i} \bullet \xrightarrow{i} \cdots \xrightarrow{i} s_i(b) \xrightarrow{i} \bullet$$

Proposition

The orbit of the empty partition in $B(\Lambda_0)$ consists exactly of the *e*-cores.

Example Let e = 3.

Proposition

The orbit of the empty partition in $B(\Lambda_0)$ consists exactly of the *e*-cores.

Example Let e = 3.

Theorem (Lascoux-Schützenberger 1990)

In finite type A, the orbit of the highest weight vertex consists of those tableaux $T = C_1 \cdots C_k$ such that $C_i \supseteq C_{i+1}$ for all $1 \le i < k$.

Example Type A_2 and take $\lambda = \rho = \omega_1 + \omega_2 = \prod$.

Theorem (Lascoux-Schützenberger 1990)

In finite type A, the orbit of the highest weight vertex consists of those tableaux $T = C_1 \cdots C_k$ such that $C_i \supseteq C_{i+1}$ for all $1 \le i < k$.

Example Type A_2 and take $\lambda = \rho = \omega_1 + \omega_2 = \square$.

Generalisation of classical results by replacing

- cores \leftarrow orbit of some highest weight vertex,
- size \leftarrow depth in the crystal.

For instance, can we generalise Granville and Ono's result?

III - Atomic length in Weyl groups

• Inversion sets and (atomic) length

For $w \in W$, let

 $N(w) = \{ \alpha \in \Phi_+ \mid w^{-1}(\alpha) \in \Phi_- \} =$ inversion set of w.

Recall that $|N(w)| = \ell(w)$.

III - Atomic length in Weyl groups

• Inversion sets and (atomic) length

For $w \in W$, let

 $N(w) = \{ \alpha \in \Phi_+ \mid w^{-1}(\alpha) \in \Phi_- \} =$ inversion set of w.

Recall that $|N(w)| = \ell(w)$.

Definition

The *atomic length* of *w* is

$$L(w) = \sum_{\alpha \in N(w)} \operatorname{ht}(\alpha)$$

where $ht(\alpha)$ is the number of simple roots needed to decompose α .

Example In type A_2 , denote $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$, i = 1, 2 the simple roots and $s_i = s_{\alpha_i} \in W$ the simple reflections.

W	N(w)	$\ell(w)$	L(w)
1	Ø	0	0
<i>s</i> ₁	$\{\alpha_1\}$	1	1
<i>s</i> ₂	$\{\alpha_2\}$	1	1
<i>s</i> ₁ <i>s</i> ₂	$\{\alpha_2, \alpha_1 + \alpha_2\}$	2	3
<i>s</i> ₂ <i>s</i> ₁	$\{\alpha_1, \alpha_1 + \alpha_2\}$	2	3
<i>s</i> ₁ <i>s</i> ₂ <i>s</i> ₁	$\{\alpha_1, \alpha_2, \alpha_1 + \alpha_2\}$	3	4

• Reformulation and generalisation

We have

$$L(w) = \langle
ho - w(
ho),
ho^{ee}
angle \quad ext{where }
ho = rac{1}{2} \sum_{lpha \in \mathbf{\Phi}_+} lpha.$$

So we define, for $\lambda \in P^+$

$$L_{\lambda}(w) = \langle \lambda - w(\lambda), \rho^{\vee} \rangle.$$

• Reformulation and generalisation

We have

$$L(w) = \langle \rho - w(\rho), \rho^{\vee} \rangle$$
 where $\rho = \frac{1}{2} \sum_{\alpha \in \Phi_+} \alpha$.

So we define, for $\lambda \in P^+$

$$L_{\lambda}(w) = \langle \lambda - w(\lambda), \rho^{\vee} \rangle.$$

Proposition

 $L_{\lambda}(w)$ is the depth of $w(b_{\lambda})$ in the crystal $B(\lambda)$, where b_{λ} denotes the highest weight vertex.

In particular:

- in type $A_{e-1}^{(1)}$, $L_{\Lambda_0}(w)$ is the size of the *e*-core partition $w(\emptyset)$.
- in type A_{e-1} , $L(w) = L_{\rho}(w)$ is the *entropy* of the permutation w.

• Finite Weyl groups

Let W be finite. Let e denote the rank of the corresponding root system. Clearly, L is maximal at w_0 (longest element).

Dynkin type	$L(w_0)$
A _e	$rac{(e+1)e(e-1)}{6}$
B _e	$rac{(e+1)e(4e-1)}{6}$
Ce	idem
D _e	$\frac{e(e-1)(2e-1)}{3}$

• Finite Weyl groups

Let W be finite. Let e denote the rank of the corresponding root system. Clearly, L is maximal at w_0 (longest element).

Dynkin type	$L(w_0)$
A _e	$\frac{(e+1)e(e-1)}{6}$
B _e	$rac{(e+1)e(4e-1)}{6}$
C _e	idem
D _e	$\frac{e(e-1)(2e-1)}{3}$

Theorem (Chapelier-G. 2022) Let $e \ge 3$. Then $L(W) = [0, L(w_0)]$.

• Affine type A

Let $W = A_{e-1}^{(1)}$ and $\lambda \in P^+$ dominant weight of level ℓ .

- Crystal $B(\lambda)$ is realised by Uglov/Kleshchev/FLOTW ℓ -partitions.
- Highest weight vertex is $b_{\lambda} = (\emptyset, \dots, \emptyset)$.
- $L_{\lambda}(w) = \text{size of the } \ell \text{-partition } w(\emptyset, \dots, \emptyset).$
- Simple characterisation of the orbit of (∅,..., ∅) using abaci (Jacon-Lecouvey 2021) similar to Lascoux and Schützenberger's.

• Affine type A

Let $W = A_{e-1}^{(1)}$ and $\lambda \in P^+$ dominant weight of level ℓ .

- Crystal $B(\lambda)$ is realised by Uglov/Kleshchev/FLOTW ℓ -partitions.
- Highest weight vertex is $b_{\lambda} = (\emptyset, \dots, \emptyset)$.
- $L_{\lambda}(w) = \text{size of the } \ell \text{-partition } w(\emptyset, \dots, \emptyset).$
- Simple characterisation of the orbit of (∅,..., ∅) using abaci (Jacon-Lecouvey 2021) similar to Lascoux and Schützenberger's.

Questions

1 When is
$$L_{\lambda}: W \longrightarrow \mathbb{N}$$
 surjective?

) (weaker) When is
$$\mathbb{N}\setminus L(W)$$
 finite?

• Case $\lambda = \Lambda_0$. Then L_{Λ_0} is surjective (Granville-Ono theorem).

• Case $\lambda = \Lambda_0$. Then L_{Λ_0} is surjective (Granville-Ono theorem).

General case:

$$\lambda = \overline{\lambda} + \ell \Lambda_0$$
 and $w = \overline{w} t_\beta$

where $\overline{\lambda} \in P_{\text{fin}}^+$, $\overline{w} \in W_{\text{fin}}$ and $\beta = \sum_{i=1}^n b_i \alpha_i$.

Theorem (Chapelier-G. 2022)

$$L_{\lambda}(w) = L_{\overline{\lambda}}(\overline{w}) + \ell L_{\Lambda_0}(w) + K(\beta \mid \overline{\lambda})$$

where K is a constant depending on the type.

For some other particular λ 's, Question (2) has a positive answer (work in progress with E. Norton)...