Looking for cores

Thomas Gerber

EPFL

12th Combinatorics Days
Aveiro

21 October 2022

I - Motivation by representation theory

II - Cores and Lie theory

III - Atomic length in Weyl groups

I - Motivations

- The Nakayama conjecture

Theorem (Brauer-Robinson 1947)
$\lambda, \mu \vdash n$ lie in the same p-block of $S_{n} \quad \Leftrightarrow \quad \lambda, \mu$ have the same p-core.
Example $\quad \lambda=\begin{array}{l|l|l}\square & \square & \square\end{array}$ and $\left.\mu=\begin{array}{ll}\square & \\ \square & \square\end{array}\right] \quad$ have same 3-core.

I - Motivations

- The Nakayama conjecture

Theorem (Brauer-Robinson 1947)
$\lambda, \mu \vdash n$ lie in the same p-block of $S_{n} \quad \Leftrightarrow \quad \lambda, \mu$ have the same p-core.

Example $\lambda=$| $\square{ }_{x \mid x}$ |
| :---: |
| \square | and $\mu=\square \square \square \square \square$ have same 3-core.

I - Motivations

- The Nakayama conjecture

Theorem (Brauer-Robinson 1947)
$\lambda, \mu \vdash n$ lie in the same p-block of $S_{n} \quad \Leftrightarrow \quad \lambda, \mu$ have the same p-core.

I - Motivations

- The Nakayama conjecture

Theorem (Brauer-Robinson 1947)
$\lambda, \mu \vdash n$ lie in the same p-block of $S_{n} \quad \Leftrightarrow \quad \lambda, \mu$ have the same p-core.

I - Motivations

- The Nakayama conjecture

Theorem (Brauer-Robinson 1947)
$\lambda, \mu \vdash n$ lie in the same p-block of $S_{n} \quad \Leftrightarrow \quad \lambda, \mu$ have the same p-core.

I - Motivations

- The Nakayama conjecture

Theorem (Brauer-Robinson 1947)
$\lambda, \mu \vdash n$ lie in the same p-block of $S_{n} \quad \Leftrightarrow \quad \lambda, \mu$ have the same p-core.

In particular, p-core partitions give the defect $0 p$-blocks of S_{n}.

I - Motivations

- The Nakayama conjecture

Theorem (Brauer-Robinson 1947)
$\lambda, \mu \vdash n$ lie in the same p-block of $S_{n} \quad \Leftrightarrow \quad \lambda, \mu$ have the same p-core.

In particular, p-core partitions give the defect $0 p$-blocks of S_{n}.

Remark

- can define e-cores for $e \in \mathbb{Z}_{\geq 2}$
- e-cores are e-regular (no part is repeated e times or more)
- Enumerating e-cores
- 2-cores are the triangular partitions $(r, r-1, \ldots, 2,1)$ for some r

- Enumerating e-cores
- 2-cores are the triangular partitions $(r, r-1, \ldots, 2,1)$ for some r

- 3-cores:

- Enumerating e-cores
- 2-cores are the triangular partitions $(r, r-1, \ldots, 2,1)$ for some r

- 3-cores:

Theorem (Granville-Ono 1996)
Let $e \geq 4$. For all $n \in \mathbb{N}$, there exists an e-core of size n.
Corollary Let $p \geq 5$. Every finite simple simple group has a defect 0 p-block.

- Lattice structure on e-regular partitions

For $i \in \mathbb{Z} / e \mathbb{Z}$, write $\lambda \xrightarrow{i} \mu$ if μ is obtained from λ by adding its good i-box (if it exists).

- Lattice structure on e-regular partitions

For $i \in \mathbb{Z} / e \mathbb{Z}$, write $\lambda \xrightarrow{i} \mu$ if μ is obtained from λ by adding its good i-box (if it exists).

- list all addable (A) and removable $(R) i$-boxes of λ in decreasing order,

Example $e=3$ and

$$
\begin{array}{ll}
i=0 & A R R \\
i=1 & A \\
i=2 & R A A
\end{array}
$$

- Lattice structure on e-regular partitions

For $i \in \mathbb{Z} / e \mathbb{Z}$, write $\lambda \xrightarrow{i} \mu$ if μ is obtained from λ by adding its good i-box (if it exists).

- list all addable (A) and removable $(R) i$-boxes of λ in decreasing order,
- delete recursively all $A R^{\prime}$ s,

Example $e=3$ and

$$
\begin{array}{ll}
i=0 & A R R \\
i=1 & A \\
i=2 & R A A
\end{array}
$$

- Lattice structure on e-regular partitions

For $i \in \mathbb{Z} / e \mathbb{Z}$, write $\lambda \xrightarrow{i} \mu$ if μ is obtained from λ by adding its good i-box (if it exists).

- list all addable (A) and removable $(R) i$-boxes of λ in decreasing order,
- delete recursively all $A R^{\prime}$ s,
- good box $=$ leftmost remaining A.

Example $e=3$ and

$$
\begin{array}{ll}
i=0 & A R R \\
i=1 & A \\
i=2 & R A A
\end{array}
$$

Starting from the empty partition yields the Kleshchev lattice:

Example of $e=3$.
The vertices are the e-regular partitions.

Remark

- $e=\infty \rightsquigarrow$ Young lattice
- gives the modular branching rule for S_{n} (Kleshchev 1995).
- Generalisations

Once we understand the story for S_{n}, it is natural to look at other situations such as:
(1) Block theory for (unipotent) representations of finite classical groups (Fong-Srinivasan 1989).
(2) Block theory for (cyclotomic) Hecke algebras (Lyle-Mathas 2007, Fayers, Jacon-Lecouvey, etc).

Today: focus on the second case.

II - Cores via crystals

\mathfrak{g} (symmetrisable) Kac-Moody algebra \rightsquigarrow classification in Dynkin types.
$\lambda \in P^{+}$dominant weight $\rightsquigarrow V(\lambda)$ irreducible highest weight \mathfrak{g}-module.

II - Cores via crystals

\mathfrak{g} (symmetrisable) Kac-Moody algebra \rightsquigarrow classification in Dynkin types.
$\lambda \in P^{+}$dominant weight $\rightsquigarrow V(\lambda)$ irreducible highest weight \mathfrak{g}-module.
Construction (Kashiwara 1990)
The structure of $V(\lambda)$ is controlled by its crystal graph $B(\lambda)$:

- vertices = crystal basis,
- arrows $=$ action of the crystal operators.

It is the "combinatorial skeleton" of $V(\lambda)$.

Compatible with direct sums, tensor products, etc.

- Examples
(1) $\mathfrak{g}=\mathfrak{s l}_{e}, V=\mathbb{C}^{e}=V\left(\omega_{1}\right)=V(\square)$

$$
B=1 \xrightarrow{1} 2 \xrightarrow{2} \cdots \xrightarrow{e-1} \text { e. }
$$

- Examples
(1) $\mathfrak{g}=\mathfrak{s l}_{e}, V=\mathbb{C}^{e}=V\left(\omega_{1}\right)=V(\square)$

$$
B=1 \xrightarrow{1} 2 \xrightarrow{2} \cdots \xrightarrow{e-1} \text { e. }
$$

(2) $\mathfrak{g}=\mathfrak{s l}_{3}, \lambda=\omega_{1}+\omega_{2}=\boxminus$.

(3) $\mathfrak{g}=\widehat{\mathfrak{s l}_{e}}$ and $\lambda=\Lambda_{0}$.

Theorem (Misra-Miwa 1990)
The crystal $B\left(\Lambda_{0}\right)$ is given by the Kleshchev lattice.

- Action of the Weyl group

Let $W=\left\langle s_{i} \mid i \in I\right\rangle$ be the Weyl group of \mathfrak{g}.
Fix $i \in \mathbb{Z} / e \mathbb{Z}$. Removing all j-arrows, $j \neq i$, in the crystal yields a disjoint union of i-strings.

- Action of the Weyl group

Let $W=\left\langle s_{i} \mid i \in I\right\rangle$ be the Weyl group of \mathfrak{g}.
Fix $i \in \mathbb{Z}$ /e \mathbb{Z}. Removing all j-arrows, $j \neq i$, in the crystal yields a disjoint union of i-strings.

$$
\bullet \xrightarrow{i} \bullet \xrightarrow{i} \bullet \xrightarrow{i} \cdots \xrightarrow{i} \bullet \xrightarrow{i} \bullet
$$

The generator s_{i} acts by reversing the i-strings:

$$
\bullet \xrightarrow{i} b \xrightarrow{i} \bullet \xrightarrow{i} \cdots \xrightarrow{i} s_{i}(b) \xrightarrow{i} \bullet
$$

Proposition

The orbit of the empty partition in $B\left(\Lambda_{0}\right)$ consists exactly of the e-cores.
Example Let $e=3$.

Proposition

The orbit of the empty partition in $B\left(\Lambda_{0}\right)$ consists exactly of the e-cores.
Example Let $e=3$.

Theorem (Lascoux-Schützenberger 1990)

In finite type A, the orbit of the highest weight vertex consists of those tableaux $T=C_{1} \cdots C_{k}$ such that $C_{i} \supseteq C_{i+1}$ for all $1 \leq i<k$.

Example Type A_{2} and take $\lambda=\rho=\omega_{1}+\omega_{2}=\square$.

Theorem (Lascoux-Schützenberger 1990)

In finite type A, the orbit of the highest weight vertex consists of those tableaux $T=C_{1} \cdots C_{k}$ such that $C_{i} \supseteq C_{i+1}$ for all $1 \leq i<k$.

Example Type A_{2} and take $\lambda=\rho=\omega_{1}+\omega_{2}=\square$.

Generalisation of classical results by replacing

- cores \leftarrow orbit of some highest weight vertex,
- size \leftarrow depth in the crystal.

For instance, can we generalise Granville and Ono's result?

III - Atomic length in Weyl groups

- Inversion sets and (atomic) length

For $w \in W$, let

$$
N(w)=\left\{\alpha \in \Phi_{+} \mid w^{-1}(\alpha) \in \Phi_{-}\right\}=\text {inversion set of } w .
$$

Recall that $|N(w)|=\ell(w)$.

III - Atomic length in Weyl groups

- Inversion sets and (atomic) length

For $w \in W$, let

$$
N(w)=\left\{\alpha \in \Phi_{+} \mid w^{-1}(\alpha) \in \Phi_{-}\right\}=\text {inversion set of } w .
$$

Recall that $|N(w)|=\ell(w)$.

Definition

The atomic length of w is

$$
L(w)=\sum_{\alpha \in N(w)} h t(\alpha)
$$

where $\operatorname{ht}(\alpha)$ is the number of simple roots needed to decompose α.

Example In type A_{2}, denote $\alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1}, i=1,2$ the simple roots and $s_{i}=s_{\alpha_{i}} \in W$ the simple reflections.

w	$N(w)$	$\ell(w)$	$L(w)$
1	\emptyset	0	0
s_{1}	$\left\{\alpha_{1}\right\}$	1	1
s_{2}	$\left\{\alpha_{2}\right\}$	1	1
$s_{1} s_{2}$	$\left\{\alpha_{2}, \alpha_{1}+\alpha_{2}\right\}$	2	3
$s_{2} s_{1}$	$\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\}$	2	3
$s_{1} s_{2} s_{1}$	$\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}\right\}$	3	4

- Reformulation and generalisation

We have

$$
L(w)=\left\langle\rho-w(\rho), \rho^{\vee}\right\rangle \quad \text { where } \rho=\frac{1}{2} \sum_{\alpha \in \Phi_{+}} \alpha
$$

So we define, for $\lambda \in P^{+}$

$$
L_{\lambda}(w)=\left\langle\lambda-w(\lambda), \rho^{\vee}\right\rangle
$$

- Reformulation and generalisation

We have

$$
L(w)=\left\langle\rho-w(\rho), \rho^{\vee}\right\rangle \quad \text { where } \rho=\frac{1}{2} \sum_{\alpha \in \Phi_{+}} \alpha
$$

So we define, for $\lambda \in P^{+}$

$$
L_{\lambda}(w)=\left\langle\lambda-w(\lambda), \rho^{\vee}\right\rangle
$$

Proposition

$L_{\lambda}(w)$ is the depth of $w\left(b_{\lambda}\right)$ in the crystal $B(\lambda)$, where b_{λ} denotes the highest weight vertex.

In particular:

- in type $A_{e-1}^{(1)}, L_{\Lambda_{0}}(w)$ is the size of the e-core partition $w(\emptyset)$.
- in type $A_{e-1}, L(w)=L_{\rho}(w)$ is the entropy of the permutation w.
- Finite Weyl groups

Let W be finite. Let e denote the rank of the corresponding root system. Clearly, L is maximal at w_{0} (longest element).

Dynkin type	$L\left(w_{0}\right)$
A_{e}	$\frac{(e+1) e(e-1)}{6}$
B_{e}	$\frac{(e+1) e(4 e-1)}{6}$
C_{e}	idem
D_{e}	$\frac{e(e-1)(2 e-1)}{3}$

- Finite Weyl groups

Let W be finite. Let e denote the rank of the corresponding root system. Clearly, L is maximal at w_{0} (longest element).

Dynkin type	$L\left(w_{0}\right)$
A_{e}	$\frac{(e+1) e(e-1)}{6}$
B_{e}	$\frac{(e+1) e(4 e-1)}{6}$
C_{e}	idem
D_{e}	$\frac{e(e-1)(2 e-1)}{3}$

Theorem (Chapelier-G. 2022)

Let $e \geq 3$. Then $L(W)=\llbracket 0, L\left(w_{0}\right) \rrbracket$.

- Affine type A

Let $W=A_{e-1}^{(1)}$ and $\lambda \in P^{+}$dominant weight of level ℓ.

- Crystal $B(\lambda)$ is realised by Uglov/Kleshchev/FLOTW ℓ-partitions.
- Highest weight vertex is $b_{\lambda}=(\emptyset, \ldots, \emptyset)$.
- $L_{\lambda}(w)=$ size of the ℓ-partition $w(\emptyset, \ldots, \emptyset)$.
- Simple characterisation of the orbit of $(\emptyset, \ldots, \emptyset)$ using abaci (Jacon-Lecouvey 2021) similar to Lascoux and Schützenberger's.
- Affine type A

Let $W=A_{e-1}^{(1)}$ and $\lambda \in P^{+}$dominant weight of level ℓ.

- Crystal $B(\lambda)$ is realised by Uglov/Kleshchev/FLOTW ℓ-partitions.
- Highest weight vertex is $b_{\lambda}=(\emptyset, \ldots, \emptyset)$.
- $L_{\lambda}(w)=$ size of the ℓ-partition $w(\emptyset, \ldots, \emptyset)$.
- Simple characterisation of the orbit of $(\emptyset, \ldots, \emptyset)$ using abaci (Jacon-Lecouvey 2021) similar to Lascoux and Schützenberger's.

Questions

(1) When is $L_{\lambda}: W \longrightarrow \mathbb{N}$ surjective?
(2) (weaker) When is $\mathbb{N} \backslash L(W)$ finite?

- Case $\lambda=\Lambda_{0}$. Then $L_{\Lambda_{0}}$ is surjective (Granville-Ono theorem).
- Case $\lambda=\Lambda_{0}$. Then $L_{\Lambda_{0}}$ is surjective (Granville-Ono theorem).
- General case:

$$
\lambda=\bar{\lambda}+\ell \Lambda_{0} \quad \text { and } \quad w=\bar{w} t_{\beta}
$$

where $\bar{\lambda} \in P_{f i n}^{+}, \bar{w} \in W_{f i n}$ and $\beta=\sum_{i=1}^{n} b_{i} \alpha_{i}$.

Theorem (Chapelier-G. 2022)

$$
L_{\lambda}(w)=L_{\bar{\lambda}}(\bar{w})+\ell L_{\Lambda_{0}}(w)+K(\beta \mid \bar{\lambda})
$$

where K is a constant depending on the type.
For some other particular λ 's, Question (2) has a positive answer (work in progress with E. Norton)...

