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The aim of multiple criteria decision analysis

The aim is to select the overall best one from a finite set
of alternatives, with respect to a finite set of attributes
(criteria),

or,

to rank the alternatives,

or,

to classify the alternatives.
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Properties of multiple criteria decision problems

® criteria contradict each other

# there is not a single best solution, that is optimal with
respect to each criterion

® subjective factors influence the decision
# contradictive individual opinions have to be aggregated

Examples of multi criteria decision problems
# tenders, public procurements, privatizations
# evaluation of applications

#® environmental studies

# ranking, classification
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Decomposition of the goal: tree of criteria

® main criterion 1
s criterion 1.1
criterion 1.2
criterion 1.3
4

0

e o ©

criterion 1
o criterion 1

® main criterion 2
o criterion 2.1
o criterion 2.2

® main criterion 3

o criterion 3.1
s Ssubcriterion 3.1.1
s Ssubcriterion 3.1.2

o criterion 3.2
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Estimating weights from pairwise comparisons

'How many times criterion 1 is more important than criterion

27
/ 1 a2 ais ... aln\
a1 1 az3 ... a9n
A= 1]a31 a3y 1 ... azp ,

\anl an2 Qan3 ... 1 )

IS given, where forany 7,5 = 1,...,n indices
1

Aij > 0, Ajj = @i

The aim is to find the w = (w1, we,...,w,)' € R? weight

vector such that ratios = are close enough to a;;s.
J
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Evaluation of the alternatives

Alternatives are evaluated directly, or by using a function, or
by pairwise comparisons as before.

'How many times alternative 1 is better than alternative 2

with respect to criterion 1.1?’

[ 1
bo1
b31

b12
1

b32

b13

b23
1

\bml bm2 b3

blm\
b2m
b?)m

Y
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Weighting methods

Eigenvector Method (Saaty): Aw = \,,..W.

Logarithmic Least Squares Method (LLSM):

n n 2
min Sj Sj (log a;; — log %)

i=1 j=1 J

n
Y wi=1,  w>0 i=12,...
1=1
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incomplete pairwise comparison matrix

[ 1
a
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a41

\as1
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incomplete pairwise comparison matrix and its graph

[ 1
a

1

a41

12
1

a32

a23
1

a43

ai4

434
1

a54

ais a16\

a45
1
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The Logarithmic Least Squares (LLS) problem

2
; Wy
min Z [log a;; — log (w_3>]
. 7 :
a;; iIs known

w; > 0, b= 1,25 s 57

n n

The most common normalizations are ) w; =1, [[ w; =1
1=1 1=1

and w; = 1.
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Theorem (Bozoki, Fll6p, Ronyai, 2010): Let A be an
Incomplete or complete pairwise comparison matrix such
that its associated graph G is connected. Then the optimal
solution w = exp y of the logarithmic least squares problem
IS the unique solution of the following system of linear
equations:

(Ly); = Z log a;y foralli=1,2,..., n,
k:e(i,k)eE(G)

y1 =0

where L denotes the Laplacian matrix of G (¢;; is the degree
of node ¢ and /;; = —1 if nodes ¢ and j are adjacent).
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example

@12
1

a32

a3

a43

al4 ais a16\

34
1 aygs
as4 1

iy
1 -1 —1\
0 0 O
1 0 0
3 -1 0
-1 2 0
0 0 1)

(1Og(a12 a14 415 a16)\
log(agl a23)
log(agg a34)

log(a41 a3 ass)
log(as1 ass)

\ log aegl )
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The spanning tree approach (Tsyganok, 2000, 2010)

/1 a12 ai4 ais a16\
ao1 1 ao3
azga2 1 as
a41 ass 1 ags
as1 as4 1

61 L)
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The spanning tree approach (Tsyganok, 2000, 2010)

/1 a12 ai4  G15 a16\ T 2
ao1 1 ao3

azga 1 as G
a41 ass 1 ags
as1 as4 1
\as1 L/

(5) 4

/1 a12 a4 @15 a16\ : <
ag;1 1 ags

azs 1
a4l 1
asl 1
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The spanning tree approach

Every spanning tree induces a weight vector.

Natural ways of aggregation: arithmetic mean, geometric
mean efc.
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Theorem (Lundy, Siraj, Greco, 2017): The geometric mean
of weight vectors calculated from all spanning trees is

logarithmic least squares optimal in case of complete
pairwise comparison matrices.
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Theorem (Lundy, Siraj, Greco, 2017): The geometric mean
of weight vectors calculated from all spanning trees is
logarithmic least squares optimal in case of complete
pairwise comparison matrices.

Theorem (Bozoki, Tsyganok): Let A be an incomplete or
complete pairwise comparison matrix such that its
associated graph is connected. Then the optimal solution of
the logarithmic least squares problem is equal, up to a
scalar multiplier, to the geometric mean of weight vectors
calculated from all spanning trees.
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proof

Let G be the connected graph associated to the
(in)complete pairwise comparison matrix A and let £(G)
denote the set of edges. The edge between nodes : and j
Is denoted by e(i, 7).

The Laplacian matrix of graph G is denoted by L. Let

TY. 72, ...,7% ..., T° denote the spanning trees of G, where
S denotes the number of spanning trees. F(7*) denotes the
set of edges in T*.

Letw®, s =1,2,...,5, denote the weight vector calculated
from spanning tree 7°. Weight vector w* is unique up to a
scalar multiplication. Assume without loss of generality that
wi = 1.

Let y* :=logw?, s =1,2,...,5, where the logarithm is taken
element-wise.
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proof

Let wlL> denote the optimal solution to the incomplete
Logarithmic Least Squares problem (normalized by

wiS = 1) and y*& .= logwl!®, then
(LyLLS)i = Y b foralli=1,2,....n,
k:e(i,k)€E(G)
where b;. = loga;;, for all (¢, k) € E(G).
bir = —by; forall (¢, k) € E(G).
In order to prove the theorem, it is sufficient to show that

[5%)

= > b foralli=1.2.....n
i ke(i,k)€E(G)
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proof

Challenge: the Laplacian matrices of the spanning trees
are different from the Laplacian of G.

Consider an arbitrary spanning tree 7'*. Then g— = a;; for all
e(i,7) € E(T°).

Introduce the incomplete pairwise comparison matrix A° by
a3; = a;; for all (i, j) € E(T*) and a5, := % for all

e(i,7) € E(G)\E(T?). Again, b, :=logaf;(= y; — y5).

Note that the Laplacian matrices of A and A are the same

(L).
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proof

ai4
a23
1
1
a4
a23
1 a32a210a14
41012023 1
a51014
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proof
Consider an arbitrary spanning tree 7°. Then % = q;; for all

J

e(i,7) € E(T?®). Introduce the incomplete pairwise
comparison matrix A® by a7, := a;; for all e(s, j) € E(T*) and

ag; = g— for all e(i,7) € E(G)\E(T?). Again,

bfj = log afj(: Yi — yj)

Note that the Laplacian matrices of A and A? are the same
(L).

Since weight vector w* is generated by the matrix elements
belonging to spanning tree 7%, it is the optimal solution of
the LLS problem regarding A®, too. Equivalently, the
following system of linear equations holds.

(Ly®); = > byt > b, foralli=1,...,n
k:e(i,k)eE(T?) k:e(i,k)eEE(G)\E(T?)
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proof

Lemma

S
Z ( Z bik + Z fk) =5 Z bik
k:e( N\E(T*)

=1 i,k)EE(T?) k:e(i,k)eE(G k:e(i,k)€E(G)

»
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proof of the lemma
1
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proof of the lemma
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proof of the lemma
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proof of the lemma

biy = b5 + bsa + b3 + b3o
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proof of the lemma

@_----.&)@
4 |

5}2 = b15 + b54 + D43 + D39
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proof of the lemma

@_----.&)@
4 |

5%2 = b15 + b54 + D43 + D39

bi% = b12 + D23 + D34 + by5
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proof of the lemma

@_----.&@
4 |

5%2 = b15 + b54 + D43 + D39

bi% = 019 + b23g + D34 + by5
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proof of the lemma

@_----.&@
4 |

5%2 = b15 + b54 + D43 + D39

bﬁll5 = 019 + b23g + D34 + by5

b%z + bil5 = b1 + b15
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proof of the lemma

5%2 = b15 + b54 + D43 + D39

bﬁll5 = 019 + b23g + D34 + by5

b%z + bil5 = b1 + b15
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proof of the lemma

5%2 = b15 + b54 + D43 + D39

bﬁll5 = 019 + b23g + D34 + by5

b%g + bil5 = b1 + b15
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proof

Finally, to complete the proof, take the sum of equations

(Ly); = ) byt > s foralli=1,...,n

ke(i,k)EE(T*) ke(i,k)EE(G)\E(T*)
forall s =1,2,...,5 and apply the lemma
S
Y OX mr X w)es ¥ o
s=1 \k:e(i,k)eE(T?) k:e(i,k)eEE(G)\E(T?) k:e(i,k)eE(G)
S
to conclude that y'/> = £ >~ y*. ]

s=1
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Remark. Complete pairwise comparison matrices

(S = n™?) are included in our theorem as a special case,
and our proof can also be considered as a second, and
shorter proof of the theorem of Lundy, Siraj and Greco
(2017).
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min Z (uij — Ui + U;)”
E
e(i,j) € G
subject to Up = 0.

0\ ( 0 \ ( u12 + U13 \

1 1 1
—1 %ulz ¥ %uw — 7U23 — gU24 -+ 3 U34 —Ui9 + Wz 1 Uaa

3 5 1 1 1
—4 sU12 + gu13 + 7u23 + gu24 — gUu34 —u13 — u23 + U34

2 ) \ Su12 + 3u13 + 3U24 + SU34 } \ —U24 — U34 )
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tree U1 UQ U3 U4

4\ 0 U12 Utz + U23 Utz + U4
4/ 0 U12 Utz + U23 Uiz + U2z + U34
/.> 0 U12 Uiz + U4 — U34 Utz + U4
<\ 0 U712 U3 Uiz + U24
</ 0 U12 U13 U13 + U4
\J/ 0 U13 — U23 U13 U13 + Uss
\% 0 U3 — Us23 U13 U13 — U23 + U2
\> 0 U13 + Uzq — U2y U13 U13 + U34
arithmetic 0 gulg -+ %ulg — i’u,gg %Ulg + gulg + i’ujgg %Ulg -+ %Ulg

mean

1 1
—gU24 T gU34

1 1
TQU24 — gU34

1 1
T5U24 T 5U34
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Applications of
incomplete pairwise comparison matrices



Classical multi-criteria decision models

Ranking

- athletes

- sport teams
- movies

- universities
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Pareto optimality of weight vectors

with linear programming



Inefficient principal right eigenvector

Example of Blanquero, Carrizosa and Conde (2006, p. 282):

[ 1 2 6 2 ) (6.01438057 ) (6.01438057 \
1/2 1 4 3 WEM | 426049429 | ] 426049429
1/6 1/4 1 1/2 1 1.003

\1/2 13 2 1) \ 2.0712416 \ 2.0712416 )

i | a3 a:gM Tiq |aiz — CU;;%M laiz — z}5]
1| 6 | 6.01438057 | 5.99639139 | 0.01438057 | 0.00360859
2 | 4 | 4.26049429 | 4.24775103 | 0.26049429 | 0.24775103
3| 1 1 1 0 0

4| 2 | 207124160 | 2.06504646 | 0.07124160 | 0.06504646
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Definitions and notations

PCM,, denotes the set of pairwise comparison matrices of
sSize n X n.

Amax(A) denotes the dominant eigenvalue of pairwise
comparison matrix A of size n x n.

wEM(A) also called EM weight vector, denotes the

principal right eigenvector of A corresponding to Apax(A).

wEM(A) js usually normalized to 1, that is, 3 wa(A) =1.
=1

def | wPMA) : :
XEMA) — X EM = [‘UWW] is the consistent
J b 1=1 i

pairwise comparison matrix generated by wZM(A),
It is the approximation of A by the eigenvector method.
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The multi-objective optimization problem is as follows:
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Efficiency

Let A = |aij; ,_; _,, b€ @ann xn pairwise comparison matrix
and w = (w1, ws,...,w,)' be a positive weight vector.
Definition: weight vector w is called efficient, if there exists
no positive weight vector w’ = (w!,w),...,w!)" such that
w, W;
a,,,;j——,zgaij——z forall 1 <i,57 <n,
w . Ww;
7 J
/
w w
age — — | < akg——k forsome 1 <k, /¢ <n.
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An efficient weight vector cannot be improved such that
every element of the pairwise comparison matrix is

approximated at least as good, and at least one element is
approximated strictA y better.

T R
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Local efficiency

Definition: weight vector w is called locally efficient, if
there is a neighborhood of w, denoted by V' (w), such that
there exists no positive weight vector w’ € V(w) fulfilling

/
aij——fgaij——z forall1 <i,7 <n,
w Wy
b
/
w w
akg——]f < akg——k forsome 1 <k, ¢ <n.

Ineff
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Internal efficiency

Definition: weight vector w is called internally efficient, if

there exists no positive weight vector w’ = (w}, ws, . .. Jwh) T
such that
aij < ot = aiy < oF S E
! forall1 <i,j <n, and
azngwj — angwg__ij
Wk w, Wk
akﬁ S Wy — ’LU% < Wy

forsome 1 <k, ¢ <n.

/
Wi Wy, Wk
ALy = s — 0 > -y
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w;/w,
/7 !
w;/w,
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efficient = locally efficient = internally efficient

Proposition (Blanquero, Carrizosa and Conde, 2006;
Bozoki, Fulop, 2015):

Definitions of

» efficiency

# local efficiency
# internal efficiency
are equivalent.
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Following the way of Blanquero, Carrizosa and Conde (2006)

Wi
W

Proposition: w is efficient if and only if for any pair of
indices £,/ =1,2,...,n, k# /¢, wis an optimal solution to
the fractional optimization problem

Denote Eij = — Q45

N
inf | — — axy
Ty
x_’f — aii| < &3 for all pairs (i, j) # (k, £)
J
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min ) = —s;; (26)

(i,))el
Yi—Yi = —bj for all (i, j) €1, (27)
Vi—Yj+5sij <V —v; for all (i, 7)) €1, (28)
yi —yj = bj for all (1, )) €], (29)
sij =0 for all (1, ) €, (30)
y1=0 (31)

Variables are y;,1 <i <nand s; > 0,(i, j) € I.

Theorem 4.1. The optimum value of the linear program (26)-(31) is
at most 0 and it is equal to 0 if and only if weight vector w is efficient

for (1).



Characterization of efficiency

Definition: Let A = [a;;], ,_, , € PCM, and
w = (w1, ws,...,w,) be a positive weight vector. Directed
graph (V, ﬁ)A,W Is defined as follows: V' = {1,2,... ,n} and

—

E = {arc(z—>g |—>aZ],z7£]}

Theorem (Blanquero, Carrizosa and Conde, 2006): Weight

vector w is efficient if and only if (V, E) A.w IS strongly
connected, that is, there exist directed paths from i to j and
from 5 to ¢ for all pairs of i # 5 nodes.
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XEM L

(1 2 6
/2 1 4
/6 1/4 1
\1/2 1/3 2
(1 141
0.71 1
0.1663 0.23
\ 0.34  0.49

2\

1/

2
L)
6.01
4.26

1
2.07

2.90 )
2.06
0.48

L)

(6.01438057 )
4.26049429
|
\ 2.0712416

14
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Special cases

Efficient principal right eigenvector:
#® simple perturbed PCM
#® double perturbed PC'M

Inefficient principal right eigenvector:
& PCM with arbitrarily small inconsistency
#® Numerical examples
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Simple perturbed PCM

Consider a consistent matrix:

( 1 r1 T2 Tp—1 \
1 1 T2 Ln—1
X1 1 1
1 Zy Tn—1
A=| £ & 1 . B epeM,,
\ 1 L1 4 i) 1 )
Ln—1 Ln—1 Ln—1 C

then perturb a single element and its reciprocal. The
perturbation is realized by a multiplication by 6 > 0,9 # 1,
while the reciprocal element is divided by .
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Simple perturbed PCM: w*¥ is efficient

/ 1 5331 L9 oo ITnpn—1 \
. 1 L Ln—1
5:5‘1 1 I1
L Ir1 Ln—1
A‘6 — Io T 1 e o 6 PCMTL'
\ 1 I1 o i) 1 )
Ln—1 LTn—1 Ln—1 Co

Theorem (Abele-Nagy, Bozoki, 2015):

The principal right eigenvector of a simple perturbed
pairwise comparison matrix is efficient.

Proof is based on the explicit formulas of w& .

Inefficiency — p. 20/29



Double perturbed PCM (n > 4)

( 1 0Ty YI2 I3 | \
1 1 xo &3 Tn—1
dx1 T1 i T
L L1 1 r3 Tn—1
Y2 2 T2 To
A T1 T2 1 Ty —1
3 s s s
\ 1 1 92 s 1 )
Tn—1 Ln—1 Tn—1 Tn—1
( 1 5&?1 X2 I3 LTn—1 \
1 1 #g Z3 Tp—1
ox1 %1 X1 L1
L L1 1 r3 Tn—1
o xro T2 L2
B i 1 T2 1 Tp—1
T3 x3 Yx3 T T3

Inefficiency — p. 21/29



Double perturbed PCM: w*" is efficient

Theorem (Abele-Nagy, Bozoki, Rebak, 2015):
The principal right eigenvector of a double perturbed
pairwise comparison matrix is efficient.

Proof is based on the explicit formulas of w”™ and the
characterization of efficiency by a strongly connected
digraph.
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I/p 1 q 1 1 1/q
l/p 1/¢g 1 q ... 1 1
Ap,q) =1 : R : N
1/p 1 1 1 1 q
\l/p ¢ 1 1 /g 1)

Proposition. (Bozoki, 2014) Let ¢ be positive and ¢ # 1.
Then wPM is internally inefficient, therefore inefficient.

Furthermore, C'R inconsistency can be arbitrarily small if ¢
IS close enough to 1.
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Pareto optimality of weight vectors

- eigenvector
- arithmetic mean of spanning trees’ weight vectors
- cosine



Weighting methods

cosine maximization — similarity of vectors measured by their
angle

AMAST - arithmetic mean of weight vectors calculated from
all spanning trees (minimally sufficient subset of pairwise
comparisons).

Geometric mean is another possibility, it is equivalent to the
logarithmic least squares method.
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Efficiency (Pareto optimality)

Let A = |aij; ,_; _,, b€ @ann xn pairwise comparison matrix
and w = (w1, ws,...,w,)' be a positive weight vector.
Definition: weight vector w is called efficient, if there exists
no positive weight vector w’ = (w!,w),...,w!)" such that
/
ai; — —| < |Qij — — forall 1 <i,57 <n,
w-. Ww;
7 J
/
w w
akg——lf < akg——k forsome 1 <k, /¢ <n.

An efficient weight vector cannot be improved such that
every element of the pairwise comparison matrix is
approximated at least as good, and at least one element is
approximated strictly better.

Efficiency — p. 8/19



1
1/4
\ 1/9

1

1
1/7
1/5

1/4

(0.404518)
0.436173
0.110295

\0.049014



[ 1

1.0783
0.2727

\ 0.1212

(0.404518)
0.436173
0.110295
\0.049014

0.9274  3.6676
1 3.9546

0.2529 1

0.1124  0.4444

82531 )
3.8989
2.9503
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[ 1

1.0783
0.2727

\ 0.1212

(0.404518)
0.436173
0.110295
\0.049014

0.9274  3.6676
1 3.9546

0.2529 1

0.1124  0.4444

(0.436173 )
0.436173
0.110295
\ 0.049014 )

8.2531 )
8.8989
2.2503

L)
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[ 1

EM] | 1.0783

0.2727
\0.1212

[ 1
1
0.2529

\ 0.1124

(0.404518)
0.436173
0.110295
\0.049014

0.9274  3.6676
1 3.9546

0.2529 1

0.1124  0.4444

1 3.9546
1 3.9546
0.2529 1

0.1124  0.4444

(0.436173 )

8.2531 )

8.8989
2.2503

oy

\ 0.049014 )

8.8989 )

8.8989
2.2503
1

0.436173
0.110295

/
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Main questions

How often are the eigenvector, the AMAST and the cosine
weight vectors inefficient?

Why are the eigenvector, the AMAST and the cosine weight
vectors inefficient? Can we give necessary and sufficient

conditions?
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4 x 4 matrices

There are 1007097 pairwise comparison matrices of size

4 x 4 such that all elements are from the ratio scale
1,2,...,9,1/2,1/3,...,1/9, and no pair of matrices can be
transformed into each other by row/column permutations
(without permutation filtering there would be 17° = 24 137569
matrices).

Out of the 32 157 permutation filtered matrices fulfilling

C'R < 0.1 (CR is an inconsistency index),

#® 591 (1.84%) have inefficient eigenvector

# 197 (0.61%) have inefficient weight vector calculated by
the spanning trees’ arithmetic mean (AMAST)

#® 602 (1.87%) have inefficient weight vector calculated by
the cosine maximization method
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relative frequency of inefficient weight vectors (%)

30
: 44
20
15
10

30
25 5 X 5
20
15
10

30

25 6 X 6
20
15

30
25 7 X 7
20
15
10

0 1 2 3  CR

eigenvector
arithmetic mean of all spanning trees' weight vectors
cosine
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f
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/
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—
L — —
0 0.04 0.08 0.12 0.16 0.2
A s
0 0.04 0.08 0.12 0.16 0.2
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Main questions

How often are the eigenvector, the AMAST and the cosine
weight vectors inefficient?

Not too often, but not at all with negligible frequency.
For small C'R, the higher C'R is, the more frequent
iInefficiency is.

Why are the eigenvector, the AMAST and the cosine weight
vectors inefficient? Can we give necessary and sufficient
conditions?

Not yet, it is open for all the three methods.
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Geometry of efficient weight vectors
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Our assumptions

@ We can choose the comparisons, i.e., they are not given a priori.

@ We do not have any further prior information, we treat the items to be

compared in a symmetric way (the isomorphic representing graphs are

not distinguished).
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Research question

Research question

For a given number of alternatives (n) and a given number of comparisons
(e) which filling in pattern estimates the preferences of the decision maker

in the best way from all the possible patterns? What is the relation between

these filling in patterns for different values of e?

In this study we only focus on connected representing graphs and the cases
with n < 6. J
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Simulation

@ Weight calculation techniques: Logarithmic Least Squares Method
(LLSM) (and the Eigenvector Method based on the CR-minimal
completion)

@ Metrics: Euclidean distance and Kendall’s tau:

deuc(ua V) — \ Z(Ui — Vi)2 (1)

ne(u,v) — ng(u, v)
n(n— 1)d/2 )

@ We always compare the results to the weightvector calculated from the

T(u,v) =

complete case, the applied sample-size is 1 000 000
@ o = 0.01 significance level and € = 0.0005 margin of error in case
of the Euclidean distance, @ = 0.05 significance level and ¢ = 0.001

margin of error in case of the Kendall's 7




Simulation ||

@ We use three well-distinguishable inconsistency (perturbation) levels
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Simulation ||
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Results

@ There is a strong relation between the different measures and the dif-

ferent perturbation levels

@ The filling in patterns (the representing graphs) can be ranked, thus

we can determine the best one
@ The problem is only interesting from n =4

@ We present our results with the help of the GRAPH of graphs concept
p==2p=1 n=dg=2 n=Je=3
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Other GRAPHSs of graphs

@ Bondy and Lovasz (1977) showed that the GRAPH of graphs is con-
nected, where GRAPH is defined as follows: let G be a 2-connected
graph on n nodes, v is a node of G; NODEs are the spanning trees of
G, and two NODEs are connected by an EDGE if the corresponding

spanning trees have a common subtree on n — 1 nodes including v.

@ The GRAPH of graphs of the Petersen family of seven graphs, including
the Petersen graph itself (see Hashimoto and Nikkuni (2013)). Two
graphs are connected by an EDGE if they can be transformed from
each other by replacing a triangle by a 3-star (including the addition of

its center).

@ The GRAPH of graphs by Mesbahi (2002) is motivated by the evolution

of graphs in a dynamic system.
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Results: n=4
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Results: n=5 GRAPH of graphs
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Results: n=5
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Results: n=6 GRAPH of graphs
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Results: n=6 optimal graphs
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Results: n=6
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Summary

@ We examined filling in patterns of incomplete pairwise comparison ma-
trices for all possible patterns in case of a given number of alternatives

and a given number of comparisons up until 6 alternatives.

@ We determined the optimal graphs based on the simulations, and in
many cases we were able to find optimal filling in sequences as well,

which were presented with the help of the concept of GRAPH of graphs.

@ The proposed filling in patterns and sequences can be used easily and

rapidly in practical problems.
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Future research

@ Which comparisons have the largest impact on the results? At which

level of margin of error should we stop the filling in process?

@ Optimal filling in sequences for larger cases, indirect paths between
graphs (inclusion relations) and adding ordinal information to the study

could also be interesting.

@ We would like to create a collection of different GRAPH of graphs.
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GRAPH of labelled graphs
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The geometric mean of weight vectors, calculated from all the incomplete matrices
corresponding to the labelled connected subgraphs with e edges, is equal to the weight
vector calculated from the complete matrix (with the logarithmic least squares method).

Theorem
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Theorem

The geometric mean of weight vectors, calculated from all the incomplete matrices
corresponding to the labelled connected subgraphs with e edges, is equal to the weight
vector calculated from the complete matrix (with the logarithmic least squares method).
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Theorem

The geometric mean of weight vectors, calculated from all the incomplete matrices
corresponding to the labelled connected subgraphs with e edges, is equal to the weight
vector calculated from the complete matrix (with the logarithmic least squares method).



