The rank partition and partial symmetries on tensors

Inês Legatheaux Martins
CEAFEL - Universidade de Lisboa

The 13th Combinatorics Days,
July 13th, 2023, Covilhã
flt

Matroids

Let n be a positive integer and $[n]=\{1, \ldots, n\}$. A matroid with ground set $[n]$ is a pair $M=([n], \mathcal{I})$, where \mathcal{I} is a collection of subsets of $[n]$, called independent sets, satisfying:
(i) $\emptyset \in \mathcal{I}$;
(ii) If $X \in \mathcal{I}$ and $Y \subseteq X$, then $Y \in \mathcal{I}$;
(iii) If $X, Y \in \mathcal{I}$ and $|X|>|Y|$, there is some $x \in X \backslash Y$ such that $Y \cup\{x\} \in \mathcal{I}$.

A maximal independent set contained in $[n]$ is called a basis of M. The rank of an arbitrary subset $A \subseteq[n]$ is the size of a maximal independent set contained in A and is denoted $\rho_{M}(A)$.

Let V be a vector space over the complex numbers. If $v=\left(v_{1}, \ldots, v_{n}\right)$ is a list of vectors in V, the pair $M(v)=([n] ; \mathcal{I})$ is called a vectorial matroid, if, for all $I \subseteq[n]$,

$$
I \in \mathcal{I} \Leftrightarrow\left(v_{i}\right)_{i \in I} \text { is linearly independent in } V \text {. }
$$

The rank partition of a matroid

Let $M=([n], \mathcal{I})$ be a matroid with ground set $[n]$. The rank partition of M is the sequence $\rho(M)=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{k}, \ldots\right)$ defined by the condition that, for each integer $k \geq 1$,
$\rho_{1}+\rho_{2}+\ldots+\rho_{k}=\max \left\{|I|: I=I_{1} \cup \ldots \cup I_{k}, I_{j} \in \mathcal{I}\right.$, for $\left.j=1, \ldots, k\right\}$.

The concept of rank partition was introduced by J. A. Dias da Silva in 1990. The choice of terminology is justified in the following theorem (which is not obvious!).

Theorem (Dias da Silva, 1990)
For every matroid $M, \rho(M)$ is a partition, i.e., $\rho_{1} \geq \rho_{2} \geq \ldots$

The rank partition of a matroid

Example

Let x, y and z be linearly independent vectors in $V=\mathbb{C}^{6}$ and let $v=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right)$, where

$$
\begin{aligned}
& v_{1}=x, \quad v_{3}=x, \quad v_{5}=x \\
& v_{2}=y, \quad v_{4}=x-y, \quad v_{6}=x+y
\end{aligned}
$$

Let $M(v)=M\left(v_{1}, \ldots, v_{6}\right)$ be the correspoonding vectorial matroid. Since $\mathcal{B}_{1}=\{1,2,5\}$ is a basis of $M(v)$, then $\rho_{1}=\left|\mathcal{B}_{1}\right|=3$. Also,

$$
\begin{gathered}
\rho_{1}+\rho_{2}=\left|\mathcal{B}_{1} \cup\{3,4\}\right|=|\{1,2,5\} \cup\{3,4\}|=3+2=5 ; \\
\rho_{1}+\rho_{2}+\rho_{3}=|\{1,2,5\} \cup\{3,4\} \cup\{6\}|=3+2+1=6=n
\end{gathered}
$$

and hence

$$
\rho(M(v))=(3,2,1) \vdash 6 .
$$

Symmetries of tensors

Let n and d be positive integers. Let S_{n} be the symmetric group on $[n]=\{1, \cdots, n\}$.

Let $V \cong \mathbb{C}^{d}$ be a d-dimensional vector space over \mathbb{C}.
The tensor space $\otimes^{n} V$ has the structure of a right $\mathbb{C}\left[S_{n}\right]$-module in which S_{n} acts by place permutations as

$$
\left(v_{1} \otimes \cdots \otimes v_{n}\right) \sigma=v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}
$$

where $\sigma \in S_{n}$ and $v_{1}, \cdots, v_{n} \in V$.

Symmetries of tensors

Let $\lambda \vdash n$ and χ^{λ} be the irreducible character of S_{n} indexed by λ. Let $\pi_{\lambda}: \otimes^{n} V \rightarrow \otimes^{n} V$ be the endomorphism of $\otimes^{n} V$ given by

$$
\pi_{\lambda}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\frac{\chi^{\lambda}\left(i d_{n}\right)}{n!} \sum_{\sigma \in S_{n}} \chi^{\lambda}(\sigma)\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}\right)
$$

where $v_{1}, \cdots, v_{n} \in V$.

For each partition λ of n and vectors $v_{1}, \cdots, v_{n} \in V$,

- the range of $\pi_{\lambda}, \pi_{\lambda}\left(\otimes^{n} V\right)$, is known as a symmetry class of tensors and
- $\pi_{\lambda}\left(v_{1} \otimes \cdots \otimes v_{n}\right)$ is known as a symmetrized decomposable tensor.

Symmetries of tensors

- If $\lambda=(n) \vdash n$, then $\chi^{\lambda}(\sigma)=1$, for all $\sigma \in S_{n}$, (unit character) and
- $\pi_{(n)}\left(\otimes^{n} V\right)=\bigvee^{n} V=\operatorname{Sym}^{n}(V)$ (symmetric power),
$-\pi_{(n)}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=v_{1} \vee \cdots \vee v_{n}$, for all $v_{1}, \cdots, v_{n} \in V$.
- If $\lambda=(1,1, \cdots, 1) \vdash n$, then $\chi^{\lambda}(\sigma)=\operatorname{sign}(\sigma)$, for all $\sigma \in S_{n}$, (sign character) and
- $\pi_{(1,1, \cdots, 1)}\left(\otimes^{n} V\right)=\bigwedge^{n} V$ (exterior power),
- $\pi_{(1,1, \cdots, 1)}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=v_{1} \wedge \cdots \wedge v_{n}$, for all $v_{1}, \cdots, v_{n} \in V$.

Matroids and symmetries of tensors: a meeting point

Theorem (Dias da Silva, 1990)
If $v=\left(v_{1}, \ldots, v_{n}\right)$ is a list of nonzero vectors in V and $\lambda \vdash n$, then

$$
\pi_{\lambda}\left(v_{1} \otimes \cdots \otimes v_{n}\right) \neq 0 \Leftrightarrow \lambda^{*} \leq_{d} \rho(M(v))
$$

where λ^{*} is the conjugate partition of λ and \leq_{d} is the dominance order on partitions.

If $\lambda \vdash n$, then its conjugate is the partition $\lambda^{*} \vdash n$ obtained by taking the transpose of the Young diagram of λ.

Let λ and γ be partitions of n. Then γ dominates $\lambda \vdash n$ (denoted $\lambda \leq_{d} \gamma$) if and only if, for each $k \geq 1$, the sum of the first k parts of λ is less or equal than the sum of the first k parts of γ.

Matroids and symmetries of tensors: a meeting point

Example
Let $M(v)=M\left(v_{1}, \ldots, v_{6}\right)$ be the previous matroid, where

$$
v_{1}=x, v_{2}=y, v_{3}=y, v_{4}=x-y, v_{5}=z \text { and } v_{6}=x+y
$$

Since $\rho(M(v))=(3,2,1) \vdash 6$, we have

\[

\]

Matroids and symmetries of tensors: a meeting point

Example
Let $M(v)=M\left(v_{1}, \ldots, v_{6}\right)$ be the previous matroid, where

$$
v_{1}=x, v_{2}=y, v_{3}=y, v_{4}=x-y, v_{5}=z \text { and } v_{6}=x+y
$$

Since $\rho(M(v))=(3,2,1) \vdash 6$, we have

$$
\begin{aligned}
& \pi_{\lambda}\left(v_{1} \otimes \cdots \otimes v_{6}\right) \neq 0 \Leftrightarrow \lambda^{*} \leq_{d}(3,2,1) . \\
& \rho=(3,2,1) \stackrel{\square}{\square} \quad \begin{array}{l}
\square \\
\square
\end{array} \sqrt[\square]{\square} \quad \square \\
& \square \square \\
& \square \square \square \square \square \square \square
\end{aligned}
$$

Symmetries of tensors and module decomposition

The right $\mathbb{C}\left[S_{n}\right]$-module $\otimes^{n} V$ admits the following decomposition:

$$
\otimes^{n} V=\bigoplus_{\lambda \vdash n} \pi_{\lambda}\left(\otimes^{n} V\right)
$$

Let $v_{1}, \cdots, v_{n} \in V$ and $v^{\otimes}=v_{1} \otimes \cdots \otimes v_{n} \in \otimes^{n} V$.
Denote by $\mathcal{S}\left(v^{\otimes}\right)$ the $\mathbb{C}\left[S_{n}\right]$-submodule of $\otimes^{n} V$ generated by v^{\otimes}.

Fact

Let $\lambda \vdash n$. The following are equivalent:
(i) the multiciplicity of λ is positive in $\mathcal{S}\left(v^{\otimes}\right)$;
(ii) $\pi_{\lambda}\left(v_{1} \otimes \cdots \otimes v_{n}\right) \neq 0$.

Symmetries of tensors and module decomposition

Example
Let $M(v)=M\left(v_{1}, \ldots, v_{6}\right)$ be the previous vectorial matroid, where

$$
\begin{aligned}
& v_{1}=x, \quad v_{3}=x, \quad v_{5}=y \\
& v_{2}=y, \quad v_{4}=x-y, \quad v_{6}=x+y
\end{aligned}
$$

There exist positive integers m_{1}, \ldots, m_{6} such that

$$
\mathcal{S}\left(v^{\otimes}\right) \cong m_{1} \cdot \square \sqcap \square+m_{2} \cdot \square \square \square+m_{3} \cdot \square \square
$$

$$
+m_{4} \cdot \square \square \square+m_{5} \cdot \square+m_{6} \cdot \square
$$

Through the looking-glass: Schur-Weyl duality

Let $G=G L_{d}(\mathbb{C}) . G$ acts diagonally on $\otimes^{n} V$ via the action

$$
g\left(v_{1} \otimes \cdots \otimes v_{n}\right)=g \cdot v_{1} \otimes \cdots \otimes g \cdot v_{n} .
$$

This action centralizes the right action of $\mathbb{C}\left[S_{n}\right]$ on $\otimes^{n} V$ by place permutations.

Theorem (Schur-Weyl Duality, 1927)
Let $\operatorname{dim}(V)=d \geq n$ and let $G=G L_{d}(\mathbb{C})$. Then

$$
\mathbb{C}\left[S_{n}\right] \cong \operatorname{End}_{\mathbb{C}[G]}\left(\otimes^{n} V\right)
$$

and the centralizer algebra $\operatorname{End}_{\mathbb{C}\left[S_{n}\right]}\left(\otimes^{n} V\right)$ is the subalgebra of End $\mathbb{C}_{\mathbb{C}}\left(\otimes^{n} V\right)$ generated by all endomorphisms

$$
v_{1} \otimes \ldots \otimes v_{n} \mapsto g v_{1} \otimes \ldots \otimes g v_{n}
$$

with $v_{1}, \ldots, v_{n} \in V$ and $g \in G$.

Symmetries of tensors and module decomposition

In 2009, A. Berget used techniques of representation theory and, in particular, Schur-Weyl duality to simplify and extend classical results about symmetries of tensors.

Let $v_{1}, \cdots, v_{n} \in V$ and $v^{\otimes}=v_{1} \otimes \cdots \otimes v_{n} \in \otimes^{n} V$. Denote by

- $G\left(v^{\otimes}\right)$ the $\mathbb{C}[G]$-submodule of $\otimes^{n} V$ generated by v^{\otimes};
- $\mathcal{S}\left(v^{\otimes}\right)$ the $\mathbb{C}\left[S_{n}\right]$-submodule of $\otimes^{n} V$ generated by v^{\otimes}.

Theorem (Berget, 2009)

Let $\lambda \vdash n$. The following are equivalent:
(i) the multiciplicity of λ is positive in $G\left(v^{\otimes}\right)$;
(ii) the multiciplicity of λ is positive in $\mathcal{S}\left(v^{\otimes}\right)$;
(iii) $\pi_{\lambda}\left(v_{1} \otimes \cdots \otimes v_{n}\right) \neq 0$.

The rook monoid

The rook monoid R_{n} is the set of all partial permutations of $[n]$ endowed with the usual composition of partial functions. It is well known that

$$
\left|R_{n}\right|=\sum_{r=0}^{n}\binom{n}{r}^{2} r!
$$

Example

Let $\sigma, \tau \in R_{4}$ be given by

$$
\begin{gathered}
\sigma=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & - & 1 & 4
\end{array}\right) \in R_{4}, \tau=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & -
\end{array}\right) \in S_{3} \subseteq R_{4} \\
\sigma \tau=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
- & 2 & 1 & -
\end{array}\right) \in R_{4}
\end{gathered}
$$

Representations of the rook monoid

Theorem (Munn, 1957)

Let $\mathbb{C}\left[R_{n}\right]$ be the complex monoid algebra of the rook monoid on n letters. There is an isomorphism of \mathbb{C}-algebras such that

$$
\mathbb{C}\left[R_{n}\right] \cong \bigoplus_{r=0}^{n} \mathcal{M}_{\binom{n}{r}}\left(\mathbb{C}\left[S_{r}\right]\right)=\mathcal{R}_{n}
$$

Theorem (Munn, Ponizovskii)
If $0 \leq r \leq n$ and $\mu \vdash r$, let ψ_{μ} be an irreducible representation of $\mathbb{C}\left[S_{r}\right]$ indexed by μ and let ψ_{μ}^{*} be the corresponding representation of $\mathbb{C}\left[R_{n}\right]$. The set

$$
\left\{\psi_{\mu}^{*}: \mu \text { is a partition of } r, r=0,1, \cdots n\right\}
$$

is a full set of inequivalent irreducible representations of R_{n}.

Schur-Weyl duality for R_{n} and $G L_{d}(\mathbb{C})$

Let $V\left(\cong \mathbb{C}^{d}\right)$ be a vector space over \mathbb{C} with basis $\left\{e_{1}, \cdots, e_{d}\right\}$ and let $U=V \oplus \mathbb{C} e_{\infty}$ with basis $\left\{e_{1}, \cdots, e_{d}, e_{\infty}\right\}$ and thus

$$
\operatorname{dim}_{\mathbb{C}}(U)=d+1
$$

Theorem (André, L.M.)

$$
\begin{gathered}
\mathbb{C}\left[G L_{d+1}(\mathbb{C})\right] \cdot \otimes^{n} U \cdot \mathbb{C}\left[S_{n}\right] \\
\Downarrow \\
\mathbb{C}\left[G L_{d}(\mathbb{C})\right] \cdot \otimes^{n} U \cdot \mathcal{R}_{n}
\end{gathered}
$$

where

$$
\mathcal{R}_{n}=\bigoplus_{r=0}^{n} \mathcal{M}_{\binom{n}{r}}\left(\mathbb{C}\left[S_{r}\right]\right) \cong \mathbb{C}\left[R_{n}\right]
$$

Schur-Weyl duality for R_{n} and $G L_{d}(\mathbb{C})$

In 2002, L. Solomon proved that the irreducible $\mathbb{C}\left[R_{n}\right]$-modules can be realized via "place permutation" on the n-th tensor power $\otimes^{n} U$.

Theorem (Solomon, 2002)
Let $G L_{d}(\mathbb{C})$ act on $\otimes^{n} U$ by fixing $\mathbb{C} e_{\infty}$ and $\phi: R_{n} \mapsto \operatorname{End}_{\mathbb{C}}\left(\otimes^{n} U\right)$ defined by the right action of R_{n} over $\otimes^{n} U$. If $d \geq n$, there is an isomorphism of \mathbb{C}-algebras

$$
\mathbb{C}\left[R_{n}\right] \cong \operatorname{End}_{\mathbb{C}\left[G L_{d}(\mathbb{C})\right]}\left(\otimes^{n} U\right)
$$

Let $\mu \vdash r$ where $0 \leq r \leq n$. Denote the projection onto the μ-isotypic component of $\otimes^{n} U$ by $\pi_{\mu}^{*}: \otimes^{n} U \mapsto \otimes^{n} U$. Then

- the range of $\pi_{\mu}^{*}, \pi_{\mu}^{*}\left(\otimes^{n} U\right)$, will be called a partial symmetry class of tensors and
- $\pi_{\mu}^{*}\left(u_{1} \otimes \cdots \otimes u_{n}\right)$ will be known as a partially symmetrized decomposable tensor.

Capturing symmetry inside the rook monoid

By the distributivity of the tensor product, it is clear that

$$
\otimes^{n} U \cong \bigoplus_{r=0}^{n}\left(\otimes^{r} V \oplus \otimes^{r} V \oplus \cdots \oplus \otimes^{r} V\right)
$$

Partial symmetries of tensors and module decomposition

Let $G=G L_{d}(\mathbb{C})$ and $\mu \vdash r$, where $0 \leq r \leq n$. Consider the partial symmetrizer corresponding to the partition $\mu, \pi_{\mu}^{*} \in \operatorname{End}_{\mathbb{C}[G]}\left(\otimes^{n} U\right)$.

Let $u_{1}, \cdots, u_{n} \in U$ and $u^{\otimes}=u_{1} \otimes \cdots \otimes u_{n} \in \otimes^{n} U$. Denote by

- $G\left(u^{\otimes}\right)$ the $\mathbb{C}[G]$-submodule of $\otimes^{n} U$ generated by u^{\otimes};
- $\mathcal{R}\left(u^{\otimes}\right)$ the $\mathbb{C}\left[R_{n}\right]$-submodule of $\otimes^{n} U$ generated by u^{\otimes}.

Theorem (André, L.M.)

Let $0 \leq r \leq n$ and let $\mu \vdash r$. The following are equivalent:
(i) the multiciplicity of μ is positive in $G\left(u^{\otimes}\right)$;
(ii) the multiciplicity of μ is positive in $\mathcal{R}\left(u^{\otimes}\right)$;
(iii) $\pi_{\mu}^{*}\left(u_{1} \otimes \cdots \otimes u_{n}\right) \neq 0$.

Horizontal strips

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ and $\mu=\left(\mu_{1}, \ldots, \mu_{c}\right)$ be partitions (of possibly different integers).

We write $\mu \subseteq \lambda$ to mean that the diagram of λ contains the diagram of μ. That is, for all $i \geq 1, \lambda_{i} \geq \mu_{i}$.

If $\mu \subseteq \lambda$, the set-theoretic difference $\lambda-\mu$ will be called a skew diagram.

$$
\begin{aligned}
& \lambda=(4,3,1) \vdash 8 \quad \mu_{1}=(3,2) \vdash 5 \quad \mu_{2}=(2,2) \vdash 4 \\
& \lambda-\mu_{1} \\
& \lambda-\mu_{2}
\end{aligned}
$$

Horizontal strips

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ and $\mu=\left(\mu_{1}, \ldots, \mu_{c}\right)$ be partitions (of possibly different integers).

We write $\mu \subseteq \lambda$ to mean that the diagram of λ contains the diagram of μ. That is, for all $i \geq 1, \lambda_{i} \geq \mu_{i}$.

If $\mu \subseteq \lambda$, we say that the skew diagram $\lambda-\mu$ is a horizontal strip if it contains at most one box in each column.

$$
\lambda=(4,3,1) \vdash 8 \quad \mu_{1}=(3,2) \vdash 5 \quad \mu_{2}=(2,2) \vdash 4
$$

$\lambda-\mu_{2}$
is not a
 horizontal strip

Partial symmetries of tensors and matroids

Let $G=G L_{d}(\mathbb{C})$ and $\mu \vdash r$, where $0 \leq r \leq n$. Consider the partial symmetrizer corresponding to the partition $\mu, \pi_{\mu}^{*} \in \operatorname{End}_{\mathbb{C}[G]}\left(\otimes^{n} U\right)$.

Let u_{1}, \ldots, u_{n} be nonzero vectors in U and let $\rho_{U} \vdash n$ be the rank partition of the vectorial matroid $M(u)=M\left(u_{1}, \ldots, u_{n}\right)$.

Theorem (L. M.)
Let $0 \leq r \leq n$ and let $\mu \vdash r$. If $\pi_{\mu}^{*}\left(u_{1} \otimes \cdots \otimes u_{n}\right) \neq 0$, there is a partition $\lambda \vdash n$ such that $\mu \subseteq \lambda$ and
(i) $\lambda-\mu$ is a horizontal strip;
(ii) $\lambda^{*} \leq_{d} \rho_{U}$.

Partial symmetries of tensors and matroids

Let x and y be linearly independent vectors in $V=\mathbb{C}^{7}$. Let $U=V \oplus \mathbb{C} e_{\infty}$ and consider the following vectors of U :
$u_{1}=x+e_{\infty}, u_{2}=y+e_{\infty}, u_{3}=y+e_{\infty}, u_{4}=x$ and $u_{5}=y+e_{\infty}$.
Then $M(u)=M\left(u_{1}, \ldots, u_{5}\right)$ has rank partition $\rho_{U}=(3,1,1) \vdash 5$.
If $\mu=(1,1,1,1,1) \vdash 5$, then $\pi_{\left(1^{5}\right)}^{*}\left(u_{1} \otimes u_{2} \otimes u_{3} \otimes u_{4} \otimes u_{5}\right)=0$.

$$
\mu=(1,1,1,1,1): \begin{array}{|}
\square \\
\hline
\end{array} \begin{array}{r}
\mu=\lambda \rightarrow \lambda^{*}: \square \mid \\
\lambda^{*}=(5) \quad \lambda^{*} \not \AA_{d} \rho_{U}=(3,1,1)
\end{array}
$$

Partial symmetries of tensors and matroids

Let x and y be linearly independent vectors in $V=\mathbb{C}^{7}$. Let $U=V \oplus \mathbb{C} e_{\infty}$ and consider the following vectors of U :
$u_{1}=x+e_{\infty}, u_{2}=y+e_{\infty}, u_{3}=y+e_{\infty}, u_{4}=x$ and $u_{5}=y+e_{\infty}$.
Then $M(u)=M\left(u_{1}, \ldots, u_{5}\right)$ has rank partition $\rho_{U}=(3,1,1) \vdash 5$.
If $\mu=(2,1,1,1) \vdash 5$, then $\pi_{\left(2,1^{3}\right)}^{*}\left(u_{1} \otimes u_{2} \otimes u_{3} \otimes u_{4} \otimes u_{5}\right)=0$.

Partial symmetries of tensors and matroids

Let x and y be linearly independent vectors in $V=\mathbb{C}^{7}$. Let $U=V \oplus \mathbb{C} e_{\infty}$ and consider the following vectors of U :
$u_{1}=x+e_{\infty}, u_{2}=y+e_{\infty}, u_{3}=y+e_{\infty}, u_{4}=x$ and $u_{5}=y+e_{\infty}$.
Then $M(u)=M\left(u_{1}, \ldots, u_{5}\right)$ has rank partition $\rho_{U}=(3,1,1) \vdash 5$.
If $\mu=(2,2,1) \vdash 5$, then $\pi_{(2,2,1)}^{*}\left(u_{1} \otimes u_{2} \otimes u_{3} \otimes u_{4} \otimes u_{5}\right)=0$.

Partial symmetries of tensors and matroids

Let x and y be linearly independent vectors in $V=\mathbb{C}^{7}$. Let $U=V \oplus \mathbb{C} e_{\infty}$ and consider the following vectors of U :
$u_{1}=x+e_{\infty}, u_{2}=y+e_{\infty}, u_{3}=y+e_{\infty}, u_{4}=x$ and $u_{5}=y+e_{\infty}$.
Then $M(u)=M\left(u_{1}, \ldots, u_{5}\right)$ has rank partition $\rho_{U}=(3,1,1) \vdash 5$.
If $\mu=(1,1,1,1) \vdash 4$, then $\pi_{\left(1^{4}\right)}^{*}\left(u_{1} \otimes u_{2} \otimes u_{3} \otimes u_{4} \otimes u_{5}\right)=0$.

Partial symmetries of tensors and matroids

Let x and y be linearly independent vectors in $V=\mathbb{C}^{7}$. Let $U=V \oplus \mathbb{C} e_{\infty}$ and consider the following vectors of U :
$u_{1}=x+e_{\infty}, u_{2}=y+e_{\infty}, u_{3}=y+e_{\infty}, u_{4}=x$ and $u_{5}=y+e_{\infty}$.
Then $M(u)=M\left(u_{1}, \ldots, u_{5}\right)$ has rank partition $\rho_{U}=(3,1,1) \vdash 5$.
There exist non-negative integers m_{1}, \ldots, m_{15} such that

Partial symmetries of tensors and matroids

Let $G=G L_{d}(\mathbb{C})$ and $\mu \vdash r$, where $0 \leq r \leq n$. Consider the partial symmetrizer corresponding to the partition $\mu, \pi_{\mu}^{*} \in \operatorname{End}_{\mathbb{C}[G]}\left(\otimes^{n} U\right)$.

Let $u_{1}, \ldots, u_{n} \in U$ and let $v_{1}, \ldots, v_{t} \in V \leq U=V \oplus \mathbb{C} e_{\infty}$ be the nonzero projections of the vectors $u_{i} \in U$ on V.

Denote by $M(v)$ the vectorial matroid corresponding to the vector configuration $v=\left(v_{1}, \ldots, v_{t}\right)$ in V and its rank partition by $\rho_{V} \vdash t$.
Theorem (L. M.)
Let $0 \leq r \leq n$ and let $\mu \vdash r$. The following are equivalent:
(i) $\pi_{\mu}^{*}\left(u_{1} \otimes \cdots \otimes u_{n}\right) \neq 0$.
(ii) There is a partition $\lambda \vdash t$ such that $\mu \subseteq \lambda$ and

$$
\lambda^{*} \leq_{d} \rho_{V}
$$

where λ^{*} is the conjugate partition of λ.

Partial symmetries of tensors and matroids

Let x and y be linearly independent vectors in $V=\mathbb{C}^{7}$. Let $U=V \oplus \mathbb{C} e_{\infty}$. If $1 \leq i \leq 5, u_{i} \in U$ and v_{i} is its projection on V :
$u_{1}=x+e_{\infty}, u_{2}=y+e_{\infty}, u_{3}=y+e_{\infty}, u_{4}=x$ and $u_{5}=y+e_{\infty}$.

$$
v_{1}=x, \quad v_{2}=y, \quad v_{3}=y, \quad v_{4}=x \quad \text { and } \quad v_{5}=y .
$$

Then $M(u)=M\left(u_{1}, \ldots, u_{5}\right)$ has rank partition $\rho_{U}=(3,1,1) \vdash 5$ and $M(v)=M\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ has rank partition $\rho_{V}=(2,2,1) \vdash 5$.
Then

$$
\rho_{V}=(2,2,1) \leq_{d}(3,1,1)=\rho_{U}
$$

There exist positive integers m_{1}, \ldots, m_{11} such that

$$
\begin{aligned}
& \mathcal{R}\left(u^{\otimes}\right) \cong m_{1} \cdot 1+m_{2} \cdot \square+m_{3} \cdot \square+m_{4} \cdot \square+m_{5} \cdot \square \square+m_{6} \cdot \square \square \\
& +m_{7} \cdot \square \square \square+m_{8} \cdot \square \square \square+m_{9} \cdot \square \square+m_{10} \cdot \square \square \square+m_{11} \cdot \square \square \square
\end{aligned}
$$

Partial symmetries of tensors and matroids

Let x, y and z be linearly independent vectors in $V=\mathbb{C}^{7}$. Let $U=V \oplus \mathbb{C} e_{\infty}$. If $1 \leq i \leq 5, u_{i} \in U$ and w_{i} is its projection on V :

$$
\begin{gathered}
u_{1}=x+e_{\infty}, u_{2}=e_{\infty}, u_{3}=2 y-e_{\infty}, u_{4}=z, u_{5}=y \\
w_{1}=x, w_{2}=0, w_{3}=2 y, w_{4}=z \text { and } w_{5}=y
\end{gathered}
$$

Then $M(v)=M\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$, where $v_{1}=x, v_{2}=2 y, v_{3}=z$ and $v_{4}=y$. It follows that $t=4$ and $\rho_{V}=(3,1) \vdash 4$.

If $\lambda=\lambda^{*}=(2,2) \vdash 4$, then $\lambda^{*} \leq_{d}(3,1)=\rho_{V}$. Therefore,

$$
\pi_{\mu}^{*}\left(u_{1} \otimes u_{2} \otimes u_{3} \otimes u_{4} \otimes u_{5}\right) \neq 0 \text { for all } \mu \subseteq(2,2)
$$

Further directions

In the near future, we expect to

- explore the relation between $M(u)$ and $M(v)$ in terms of matroid operations (weak maps, etc...), explain how distinct rank partitions relate to one another and translate these results in terms of representation theory;
- obtain some of the multiplicities involved in the decompositions into irreducible modules of $\mathcal{R}\left(u^{\otimes}\right)$ and $G\left(u^{\otimes}\right)$ in combinatorial terms (hook shapes...)
- obtain combinatorial solutions for the annulment of partially symmetrized decomposable tensors which don't rely on the classical case for symmetrized decomposable tensors.

