

FUNDAÇÃO para a Ciência e a Tecnologia

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The 13th Combinatorics Days

Core-free Degrees of Toroidal Maps

Claudio Alexandre Piedade Centro de Matemática da Universidade do Porto, Portugal claudio.piedade@fc.up.pt Maria Elisa Fernandes, Universidade de Aveiro, Portugal maria.elisa@ua.pt 13th July, 2023

CMUP, Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169–007 Porto (Portugal). The author was partially supported by CMUP, member of LASI, which is financed by national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the projects with reference UIDB/00144/2020 and UIDP/00144/2020.

• Any finite group is isomorphic to a subgroup of S_n ;

- Any finite group is isomorphic to a subgroup of S_n ;
- We can represent faithfully any finite group as a set of permutations on n points.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Any finite group is isomorphic to a subgroup of S_n;
- We can represent faithfully any finite group as a set of permutations on n points.
- Take the example of the following group

$$G := \langle \rho_0, \rho_1, \rho_2 \mid \rho_0^2 = \rho_1^2 = \rho_2^2 = (\rho_0 \rho_1)^4 = (\rho_1 \rho_2)^3 = (\rho_0 \rho_2)^2 = id_G \rangle$$

- Any finite group is isomorphic to a subgroup of S_n;
- We can represent faithfully any finite group as a set of permutations on n points.
- Take the example of the following group

$$G := \langle \rho_0, \rho_1, \rho_2 \mid \rho_0^2 = \rho_1^2 = \rho_2^2 = (\rho_0 \rho_1)^4 = (\rho_1 \rho_2)^3 = (\rho_0 \rho_2)^2 = id_G \rangle$$

•
$$G \cong C_2 \times S_4$$

• $G \to S_8$
• $\rho_0 = (1, 2)(3, 4)(5, 6)(7, 8); \rho_1 = (2, 3)(6, 7); \rho_2 = (3, 5)(4, 6);$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Any finite group is isomorphic to a subgroup of S_n;
- We can represent faithfully any finite group as a set of permutations on n points.
- Take the example of the following group

$$G := \langle \rho_0, \rho_1, \rho_2 \mid \rho_0^2 = \rho_1^2 = \rho_2^2 = (\rho_0 \rho_1)^4 = (\rho_1 \rho_2)^3 = (\rho_0 \rho_2)^2 = id_G \rangle$$

$$\begin{array}{l} \bullet \quad G \cong C_2 \times S_4 \\ \bullet \quad G \to S_8 \\ \bullet \quad \rho_0 = (1,2)(3,4)(5,6)(7,8); \rho_1 = (2,3)(6,7); \rho_2 = (3,5)(4,6); \\ \bullet \quad G \to S_6 \\ \bullet \quad \rho_0 = (1,2)(3,4)(5,6); \rho_1 = (2,3)(5,6); \rho_2 = (3,4)(5,6); \end{array}$$

Faithful Permutation Representations Graph

$$\rho_0 = (1,2)(3,4)(5,6)(7,8) \rho_1 = (2,3)(6,7) \rho_2 = (3,5)(4,6)$$

(日)

æ

Faithful Permutation Representations Graph

$$\rho_0 = (1,2)(3,4)(5,6)(7,8)
\rho_1 = (2,3)(6,7)
\rho_2 = (3,5)(4,6)$$

Faithful Permutation Representations Graph

$$\rho_0 = (1, 2)(3, 4)(5, 6)(7, 8)
\rho_1 = (2, 3)(6, 7)
\rho_2 = (3, 5)(4, 6)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 二臣 - のへで

•
$$\rho_0 = (1, 2)(3, 4)(5, 6)(7, 8)$$

• $\rho_1 = (2, 3)(6, 7)$
• $\rho_2 = (3, 5)(4, 6)$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

•
$$\rho_0 = (1,2)(3,4)(5,6)(7,8)$$

• $\rho_1 = (2,3)(6,7)$
• $\rho_2 = (3,5)(4,6)$

•
$$\rho_0 = (1, 2)(3, 4)(5, 6)$$

• $\rho_1 = (2, 3)(5, 6)$
• $\rho_2 = (3, 4)(5, 6)$

ヘロト 人間 とくほとくほとう

2

•
$$\rho_0 = (1, 2)(3, 4)(5, 6)(7, 8)$$

• $\rho_1 = (2, 3)(6, 7)$
• $\rho_2 = (3, 5)(4, 6)$

•
$$\rho_0 = (1,2)(3,4)(5,6)(7,8)$$

• $\rho_1 = (2,3)(5,6)(7,8)$
• $\rho_2 = (3,4)(5,6)(7,8)$

•
$$\rho_0 = (1, 2)(3, 4)(5, 6)(7, 8)$$

• $\rho_1 = (2, 3)(6, 7)$
• $\rho_2 = (3, 5)(4, 6)$

•
$$\rho_0 = (1, 2)(3, 4)(5, 6)(7, 8)(...)$$

• $\rho_1 = (2, 3)(5, 6)(7, 8)(...)$
• $\rho_2 = (3, 4)(5, 6)(7, 8)(...)$

 A permutation representation of a group gives the action of a group on a certain set of elements;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

► Consider the left cosets of a subgroup *H* of *G*;

 A permutation representation of a group gives the action of a group on a certain set of elements;

- ► Consider the left cosets of a subgroup *H* of *G*;
- The action of G on these cosets give a permutation representation where the elements are cosets;

 A permutation representation of a group gives the action of a group on a certain set of elements;

- ► Consider the left cosets of a subgroup *H* of *G*;
- The action of G on these cosets give a permutation representation where the elements are cosets;
- The action is transitive;
- When is it faithful?

- A permutation representation of a group gives the action of a group on a certain set of elements;
- ► Consider the left cosets of a subgroup *H* of *G*;
- The action of G on these cosets give a permutation representation where the elements are cosets;
- The action is transitive;
- When is it faithful?
- ► G acts faifthfully on the left cosets of H if and only if H is a core-free subgroup of G.

Core-free degrees

Definition (Core-free subgroup)

Let G be a group and $H \leq G.$ We say H is a core-free subgroup of G if

 $\cap_{g\in G}H^g = \{id_G\}.$

► The action of a group G on a core-free subgroup H ≤ G is always transitive and faithful, giving a faithful transitive permutation representation (FTPR) on the set of cosets G/H, with degree |G : H|.

Core-free degrees

Question

Given a group G, what is the set of possible indexes of core-free subgroups of G?

- ► For simple groups: All the index of their subgroups.
- Other groups, not so direct...

Definition (Degree of polytope/(hyper)map)

Let \mathcal{P} be a polytope/(hyper)map. We say that n is a *degree of a polytope/(hyper)map* \mathcal{P} if there is a core-free subgroup of the automorphism group of \mathcal{P} with index n, i.e. there is a FTPR of $Aut(\mathcal{P})$ with degree n.

Coxeter groups for tesselations of the plane

Consider the infinite tesselations of the Euclidean plane by squares and triangles

[3, 6]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

[4, 4]

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$u = \rho_0 \rho_1 \rho_2 \rho_1$$
$$v = u^{\rho_1}$$
$$T := \langle u, v \rangle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 $u = \rho_0 \rho_1 \rho_2 \rho_1$ $v = u^{\rho_1}$ $T := \langle u, v \rangle$

$$[4,4]/\langle u^{s_1}v^{s_2}\rangle$$

 $u = \rho_0 \rho_1 \rho_2 \rho_1$ $v = u^{\rho_1}$ $T := \langle u, v \rangle$

$$\begin{split} & [4,4]/\langle u^{s_1}v^{s_2}\rangle \\ & \text{Regular} \to s_1s_2(s_1-s_2) = 0 \to (s,0) \text{ or } (s,s) \\ & \text{Chiral} \to s_1s_2(s_1-s_2) \not\equiv 0 \\ & \Rightarrow s_1s_2(s_1-s_2) \not= 0 \\ &$$

 $u = \rho_0 (\rho_1 \rho_2)^2$ $v = u^{\rho_1}$ $T := \langle u, v \rangle$

 $\begin{array}{l} [3,6]/\langle u^{s_1}v^{s_2}\rangle\\ \text{Regular} \to s_1s_2(s_1-s_2) = 0 \to (s,0) \text{ or } (s,s)\\ \text{Chiral} \to s_1s_2(s_1-s_2) \neq 0 \\ \downarrow = 0 \\ \downarrow =$

Coxeter groups for tesselations of the plane

▶ We can quotient the Coxeter groups [4, 4] and [3, 6] by a translation subgroup and get the following groups:

$$\begin{split} [4,4]_{(s,0)} &:= \langle \rho_0, \rho_1, \rho_2 \mid \rho_0^2 = \rho_1^2 = \rho_2^2 = (\rho_0 \rho_1)^4 = (\rho_1 \rho_2)^4 = (\rho_0 \rho_2)^2 = \\ &= (\rho_0 \rho_1 \rho_2 \rho_1)^s = id_{[4,4]} \rangle \\ [4,4]_{(s,s)} &:= \langle \rho_0, \rho_1, \rho_2 \mid \rho_0^2 = \rho_1^2 = \rho_2^2 = (\rho_0 \rho_1)^4 = (\rho_1 \rho_2)^4 = (\rho_0 \rho_2)^2 = \\ &= (\rho_0 \rho_1 \rho_2)^{2s} = id_{[4,4]} \rangle \\ [3,6]_{(s,0)} &:= \langle \rho_0, \rho_1, \rho_2 \mid \rho_0^2 = \rho_1^2 = \rho_2^2 = (\rho_0 \rho_1)^3 = (\rho_1 \rho_2)^6 = (\rho_0 \rho_2)^2 = \\ &= (\rho_0 (\rho_1 \rho_2)^2 \rho_1)^s = id_{[3,6]} \rangle \\ [3,6]_{(s,s)} &:= \langle \rho_0, \rho_1, \rho_2 \mid \rho_0^2 = \rho_1^2 = \rho_2^2 = (\rho_0 \rho_1)^3 = (\rho_1 \rho_2)^6 = (\rho_0 \rho_2)^2 = \\ &= (\rho_0 (\rho_1 \rho_2)^2)^{2s} = id_{[3,6]} \rangle \end{split}$$

Preliminary Results - Restrict to the (s, 0)

Conside the following:

• $G = \langle \rho_0, \rho_1, \rho_2 \rangle$ is the automorphism group of any toroidal maps $\{4, 4\}_{(s,0)}$, $\{3, 6\}_{(s,0)}$;

▶ $T = \langle u, v \rangle$ is the translation subgroup; Moreover $T \lhd G$ and is abelian (*u* and *v* commute);

$$\blacktriangleright o(u) = s$$

Proposition

The translation subgroup T is isomorphic to $C_{o(u)} \times C_{gcd(s_1,s_2)}$.

Preliminary Results - Restrict to the (s, 0)

Conside the following:

• $G = \langle \rho_0, \rho_1, \rho_2 \rangle$ is the automorphism group of any toroidal maps $\{4, 4\}_{(s,0)}$, $\{3, 6\}_{(s,0)}$;

T = ⟨u, v⟩ is the translation subgroup; Moreover T ⊲ G and is abelian (u and v commute);

$$\blacktriangleright o(u) = s$$

Proposition

The translation subgroup T is isomorphic to $C_{o(u)} \times C_{gcd(s_1,s_2)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Remark

If
$$(s, 0) \rightarrow T \cong C_s \times C_s$$
 and $|T| = s^2$
If (s, s) , as $o(u) = 2s$, then $T \cong C_{2s} \times C_s$ and $|T| = 2s^2$

Preliminary Results - Restrict to the (s, 0)

- Suppose that there is a faithful transitive permutation representation of G with degree n.
- The translation subgroup T can either be transitive or intransitive. Since T is a normal subgroup of G, the T-orbits form a block system (which might be trivial).

(日)(

Proposition

If T is transitive, then $n = |T| = s^2$.

Lemma

The size of a T-orbit is k = o(u)d where d is a divisor of $gcd(s_1, s_2) = gcd(s, 0) = s$.

Preliminary Results

Proposition

Let G be a faithful transitive permutation representation of the rotational group of a toroidal (hyper)map with degree n. If $n \neq |T|$ then G is embedded into $S_k \wr S_m$ with $n = km \ (m, \ k > 1)$ and we have

(i)
$$k = o(u)d = sd$$
 where d is a divisor of s , and
(ii) m is a divisor of $\frac{|G|}{|T|}$.

For example, for the toroidal maps $\{4,4\}_{(s,0)}$, $|G| = 8s^2 = 8|T|$

Hence,

• if
$$m = 1$$
, then $k = |T| = s^2$

• if $m \in \{2, 4, 8\}$, then k = sd, for some d divisor of s

Core-free Subgroups for the map $\{4, 4\}_{(s,0)}$

For the toroidal maps $\{4,4\}_{(s,0)},$ remind that o(u)=s and $|G|=8|T|=8s^2.$

Proposition

Let G be the automorphism group a toroidal map $\{4,4\}_{(s,0)}$, with s > 2, and let a, b such that s = lcm(a, b). Then, the following subgroups (and their subgroups) are core-free:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1.
$$H = \langle \rho_0, \rho_1 \rangle$$
, with index $|G : H| = s^2$;
2. $H = \langle \rho_0 \rho_1 \rangle$, with index $|G : H| = 2s^2$;
3. $H = \langle \rho_0, \rho_2 \rangle$, with index $|G : H| = 2s^2$;
4. $H = \langle \rho_0 \rho_2 \rangle$, with index $|G : H| = 4s^2$;
5. $H = \langle id_G \rangle$, with index $|G : H| = 8s^2$;

Core-free Subgroups for the map $\{4, 4\}_{(s,0)}$

For the toroidal maps $\{4,4\}_{(s,0)},$ remind that o(u)=s and $|G|=8|T|=8s^2.$

Proposition

Let G be the automorphism group a toroidal map $\{4,4\}_{(s,0)}$, with s > 2, and let a, b such that s = lcm(a, b). Then, the following subgroups (and their subgroups) are core-free:

1.
$$H = \langle u^a, v^b \rangle$$
, with $|G : H| = 8ab$;
2. $H = \langle u^a, v^b \rangle \rtimes \langle \rho_0 \rangle$, with $|G : H| = 4ab$;
3. If $ab \neq s$, $H = \langle u^a, v^b \rangle \rtimes \langle \rho_0, \rho_2 \rangle$, with $|G : H| = 2ab$;
4. $H = \langle u \rangle \rtimes \langle \rho_0, \rho_2 \rangle$, with $|G : H| = 2s$.

Remind that if k = ds. If lcm(a, b) = s, then there is a d divisor of s such that ab = ds.

Core-free Subgroups for the map $\{4,4\}_{(s,0)}$

1.
$$H = \langle u^a, v^b \rangle$$
, with $|G:H| = 8ab$;

Proof.

Suppose that $x \in H \cap H^{\rho_1} = \langle u^a, v^b \rangle \cap \langle u^b, v^a \rangle$. Then, since u and v commute, we have that $x = (u^a)^i (v^b)^j = (u^b)^k (v^a)^l$. Hence, we have that

 $ai \equiv bk \mod s$ $bj \equiv al \mod s.$

Since ai is a multiple of both a and b, it is also a multiple of s and $ai \equiv 0 \mod s$. The same reasoning can be used for bj, leading to $bj \equiv 0 \mod s$. Hence, $x = id_G$ and H is core-free. The order of H is $\frac{s^2}{ab}$ thus |G:H| = 8ab.

Core-free Subgroups for the maps $\{4, 4\}$

Theorem

Let G be the group of the toroidal maps $\{4,4\}_{(s_1,s_2)}$, and let d be a divisor of $gcd(s_1,s_2)$. Then n is a degree of G if and only if

▶
$$(s_1, s_2) = (s, 0)$$
 and

$$n \in \left\{s^2, \ 2ds, \ 4ds, \ 8ds\right\};$$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Core-free Subgroups for the maps $\{4, 4\}$

Theorem

Let G be the group of the toroidal maps $\{4,4\}_{(s_1,s_2)}$, and let d be a divisor of $gcd(s_1,s_2)$. Then n is a degree of G if and only if

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

•
$$(s_1, s_2) = (s, 0)$$
 and
 $n \in \{s^2, 2ds, 4ds, 8ds\};$
• $(s_1, s_2) = (s, s)$ and
 $n \in \{2s^2, 4ds, 8ds, 16ds\};$

Core-free Subgroups for the maps $\{4, 4\}$

Theorem

is chiral and

Let G be the group of the toroidal maps $\{4,4\}_{(s_1,s_2)}$, and let d be a divisor of $gcd(s_1,s_2)$. Then n is a degree of G if and only if

•
$$(s_1, s_2) = (s, 0)$$
 and
 $n \in \{s^2, 2ds, 4ds, 8ds\};$
• $(s_1, s_2) = (s, s)$ and
 $n \in \{2s^2, 4ds, 8ds, 16ds\};$

$$n \in \Big\{ |T|, \ 2o(u)d, \ 4o(u)d \Big\}.$$

(日) (四) (日) (日) (日)

Core-free Subgroups for the maps $\{3, 6\}_{(s,0)}$

For the toroidal maps $\{3,6\}_{(s,0)},$ remind that o(u)=s and $|G|=12|T|=12s^2.$

 $m \in \{1, 2, 3, 4, 6, 12\}$

Proposition

Let G be the automorphism group of a toroidal map $\{3, 6\}_{(s,0)}$. Then, the following subgroups (and their subgroups) are core-free: 1. $H = \langle \rho_1, \rho_2 \rangle$, with index $|G : H| = s^2$; 2. $H = \langle \rho_0, \rho_1 \rangle$, with index $|G : H| = 2s^2$; 3. $H = \langle \rho_0, \rho_2 \rangle$, with index $|G : H| = 3s^2$; 4. $H = \langle \rho_0 \rho_1 \rangle$, with index $|G : H| = 4s^2$; 5. $H = \langle \rho_0 \rho_2 \rangle$, with index $|G : H| = 6s^2$; 6. $H = \langle id_G \rangle$, with index $|G : H| = 12s^2$; Core-free Subgroups for the maps $\{3, 6\}_{(s,0)}$

For the toroidal maps $\{3,6\}_{(s,0)}$, remind that o(u) = s and $|G| = 12|T| = 12s^2$.

$$m \in \{1, 2, 3, 4, 6, 12\}$$

Proposition

Let G be the automorphism group of a toroidal map $\{3,6\}_{(s,0)}$. Then, the following subgroups (and their subgroups) are core-free:

1.
$$H = \langle u^d \rangle \rtimes \langle \rho_0, \rho_2 \rangle$$
, with d divisor of s and $|G:H| = 3ds$;

2.
$$H = \langle u^d \rangle \rtimes \langle \rho_0 \rho_2 \rangle$$
, with d divisor of s and $|G:H| = 6ds$;

3.
$$H = \langle u^a, v^b \rangle$$
, with $s = lcm(a, b)$, and $|G:H| = 12ab$;

Core-free Subgroups for the maps $\{3, 6\}_{(s,0)}$

For the toroidal maps $\{3,6\}_{(s,0)},$ remind that o(u)=s and $|G|=12|T|=12s^2.$

$$m \in \{1, 2, 3, 4, 6, 12\}$$

Proposition

Let G be the automorphism group of a toroidal map $\{3,6\}_{(s,0)}$. Then, the following subgroups (and their subgroups) are core-free:

1.
$$H = \langle u^d \rangle \rtimes \langle \rho_0, \rho_2 \rangle$$
, with d divisor of s and $|G:H| = 3ds$;
2. $H = \langle u^d \rangle \rtimes \langle \rho_0 \rho_2 \rangle$, with d divisor of s and $|G:H| = 6ds$;
3. $H = \langle u^a, v^b \rangle$, with $s = lcm(a, b)$, and $|G:H| = 12ab$;
4. $H = \langle (v^{-\alpha}u)^d \rangle \rtimes \langle \rho_1 \rho_2 \rangle$, with $|G:H| = 2ds$;

5.
$$H = \langle (v^{-\alpha}u)^d \rangle \rtimes \langle \rho_0 \rho_1 \rangle$$
, with $|G:H| = 4ds$.
with d divisor of s and α coprime of s/d such that
 $\alpha^2 - \alpha + 1 \equiv 0 \mod (s/d) \Leftrightarrow all \text{ prime divisors of } s/d \text{ are } 1 \mod 6$.

Core-free Subgroups for the maps $\{3, 6\}$

Theorem

Let G be the group of the toroidal maps $\{3,6\}_{(s_1,s_2)}$, and let d be a divisor of $gcd(s_1,s_2)$. Then n is a degree of G if and only if

•
$$(s_1, s_2) = (s, 0)$$
 and

$$n \in \left\{s^2, \ 3ds, \ 6ds, \ 12ds\right\} \cup \left\{2d's, \ 4d's\right\};$$

Core-free Subgroups for the maps $\{3, 6\}$

Theorem

Let G be the group of the toroidal maps $\{3,6\}_{(s_1,s_2)}$, and let d be a divisor of $gcd(s_1,s_2)$. Then n is a degree of G if and only if

•
$$(s_1, s_2) = (s, 0)$$
 and

$$n \in \left\{s^2, \ 3ds, \ 6ds, \ 12ds\right\} \cup \left\{2d's, \ 4d's\right\};$$

•
$$(s_1, s_2) = (s, s)$$
 and
 $n \in \{3s^2, 9ds, 18ds, 36ds\} \cup \{6d's, 12d's\};$

Core-free Subgroups for the maps $\{3, 6\}$

Theorem

Let G be the group of the toroidal maps $\{3,6\}_{(s_1,s_2)}$, and let d be a divisor of $gcd(s_1,s_2)$. Then n is a degree of G if and only if

•
$$(s_1, s_2) = (s, 0)$$
 and

$$n \in \left\{s^2, \ 3ds, \ 6ds, \ 12ds\right\} \cup \left\{2d's, \ 4d's\right\};$$

•
$$(s_1, s_2) = (s, s)$$
 and
 $n \in \{3s^2, 9ds, 18ds, 36ds\} \cup \{6d's, 12d's\};$

is chiral and

$$n \in \Big\{ |T|, \ 2|T|, \ 3o(u)d, \ 6o(u)d \Big\}.$$

Core-free Degrees for the hypermaps (3,3,3)

Theorem

Let G be the group of the toroidal hypermap $(3,3,3)_{(s_1,s_2)}$, and let d be a divisor of $gcd(s_1,s_2)$. Then n is a degree of G if and only if $(s_1,s_2) = (s,0)$ and

$$n \in \left\{s^2, \ 3ds, \ 6ds, \right\} \cup \left\{2d's\right\};$$

• $(s_1, s_2) = (s, s)$ and

$$n \in \left\{3s^2, \ 9ds, \ 18ds\right\} \cup \left\{6d's\right\};$$

is chiral and

$$n \in \Big\{ |T|, \ 3o(u)d \Big\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Summary

We have a group G with a translation subgroup $T := \langle u, v \rangle$ such that $G = T \rtimes G_0$. d is a divisor of $gcd(s_1, s_2)$, gcd(s, 0) = gcd(s, s) = s, and d' is a divisor of s and all prime factors of s/d are $1 \mod 6$

	Regular case (full group)	Chiral case (rot. subgroup)
	(s,0) and (s,s)	(s_1,s_2)
$\{4,4\}$	$\{ T , 2o(u)d, 4o(u)d, 8o(u)d\}$	$\{ T , 2o(u)d, 4o(u)d\}$
$\{3, 6\}$	$ \{ T , 2o(u)d', 3o(u)d, 4o(u)d', \\ 6o(u)d, 12o(u)d \} $	$\{ T , 2 T , 3o(u)d, 6o(u)d\}$
(3,3,3)	$\{ T , 2o(u)d', 3o(u)d, 6o(u)d\}$	$\{ T , 3o(u)d\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What would be the next step?

Classify core-free degrees of other groups!

And to do that...

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>

I have developed a package for GAP: CoreFreeSub https://github.com/CAPiedade/corefreesub

I have developed a package for GAP: CoreFreeSub https://github.com/CAPiedade/corefreesub Developed with Manuel Delgado (FCUP)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

I have developed a package for GAP: CoreFreeSub https://github.com/CAPiedade/corefreesub Developed with Manuel Delgado (FCUP) Let's take a look!

Acknowledgements

FUNDAÇÃO para a Ciência e a Tecnologia

CMUP, Departamento de Matemática. Faculdade de Ciências. Universidade do Porto, Rua do Campo Alegre s/n, 4169–007 Porto (Portugal). The author was partially supported by CMUP, member of LASI, which is financed by national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the projects with reference UIDB/00144/2020 and UIDP/00144/2020.

The 13th Combinatorics Days

Core-free Degrees of Toroidal Maps

Claudio Alexandre Piedade Centro de Matemática da Universidade do Porto, Portugal claudio.piedade@fc.up.pt Maria Elisa Fernandes, Universidade de Aveiro, Portugal maria.elisa@ua.pt 13th July, 2023

CMUP, Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169–007 Porto (Portugal). The author was partially supported by CMUP, member of LASI, which is financed by national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the projects with reference UIDB/00144/2020 and UIDP/00144/2020.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Toroidal Map $\{4,4\}_{(s_1,s_2)}$

• □ ▶ < 同 ▶ < 三 ▶</p>

æ

back

Preliminary Results

Lemma

The size of a T-orbit is k = o(u)d where d is a divisor of $gcd(s_1, s_2)$.

Proof.

Consider that σ and τ are the actions of the generators of T on a block of size k. Then $K := \langle \sigma, \tau \rangle$, $A := o(\sigma)$, $B := |K : \langle \sigma \rangle|$ and $C := |K : \langle \tau \rangle|$. We have that K has order AB and acts regularly on the block, hence k = AB. As σ and τ commute, we have the following $K/\langle \sigma \rangle = \{ \langle \sigma \rangle, \langle \sigma \rangle \tau, \langle \sigma \rangle \tau^2, \dots, \langle \sigma \rangle \tau^{B-1} \}$ $K/\langle \tau \rangle = \{ \langle \tau \rangle, \langle \tau \rangle \sigma, \langle \tau \rangle \sigma^2, \dots, \langle \tau \rangle \sigma^{C-1} \}.$ Thus B divides $o(\tau)$ and C divides $o(\sigma) = A$. Let D := A/C. As $k = AB = o(\tau)C$ we have $o(\tau) = DB$. Now $o(u) = lcm(o(\sigma), o(\tau)) = lcm(CD, BD) = D lcm(C, B)$ and k = AB = DCB = Dlcm(C, B) qcd(C, B) = o(u) qcd(C, B).To conclude the proof consider d = qcd(C, B). It is easy to see that both B and C must be divisors of $gcd(s_1, s_2)$. Hence d must be a divisor of $qcd(s_1, s_2).$

Core-free Subgroups for the maps $\{3, 6\}_{(s_1, s_2)}$

Proposition

If m = 2 then k = |T|.

Proof.

The only possible permutation between blocks is with b. Let $K = \langle u_1, v_1 \rangle$ be the action of T restricted to block \mathcal{B}_1 . As a fixes the blocks, we get $|u_1| = |v_1|$, implying that $|u_1| = |u|$. Moreover, $|K: \langle u_1 \rangle| = |K: \langle v_1 \rangle| = d$, which is a divisor of $gcd(s_1, s_2)$. Suppose there is a $j \in \{0, \ldots, o(u) - 1\}$ such that $u_1^d = v_1^j$. Conjugating this by a, we have that $v_1^d = u_1^{d-j}$. Moreover, conjugating $u_1^d = v_1^j$ by b, we get that $v_2^d = u_2^{d-j}$. Finally, conjugating $v_1^d = u_1^{d-j}$ by b gives us that $u_2^d = u_2^{\overline{d-j}} v_2^{j-d}$. Substituting u_2^{d-j} by v_2^d , we get that $u_2^d = v_2^j$. Hence, $u^d = v^j$. Both d and j must be multiples of $gcd(s_1, s_2)$. Since d must divide $gcd(s_1, s_2)$, we get that $d = gcd(s_1, s_2)$. As $o(u) = \frac{|T|}{acd(s_1, s_2)}$, then the size of the block is

|T| = |T|