MATEMÁTICA UNIVERSIDADE DO PORTO

The 13th Combinatorics Days

Core-free Degrees of Toroidal Maps

Claudio Alexandre Piedade

Centro de Matemática da Universidade do Porto, Portugal claudio.piedade@fc.up.pt
Maria Elisa Fernandes, Universidade de Aveiro, Portugal maria.elisa@ua.pt
13th July, 2023
CMUP, Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre $\mathrm{s} / \mathrm{n}, 4169-007$ Porto (Portugal). The author was partially supported by CMUP, member of LASI, which is financed by national funds through FCT - Fundação para a Ciência e a Tecnologia, I.P., under the projects with reference UIDB/00144/2020 and UIDP/00144/2020.

Permutation Representations - What about them?

- Any finite group is isomorphic to a subgroup of S_{n};

Permutation Representations - What about them?

- Any finite group is isomorphic to a subgroup of S_{n};
- We can represent faithfully any finite group as a set of permutations on n points.

Permutation Representations - What about them?

- Any finite group is isomorphic to a subgroup of S_{n};
- We can represent faithfully any finite group as a set of permutations on n points.
- Take the example of the following group

$$
G:=\left\langle\rho_{0}, \rho_{1}, \rho_{2} \mid \rho_{0}^{2}=\rho_{1}^{2}=\rho_{2}^{2}=\left(\rho_{0} \rho_{1}\right)^{4}=\left(\rho_{1} \rho_{2}\right)^{3}=\left(\rho_{0} \rho_{2}\right)^{2}=i d_{G}\right\rangle
$$

Permutation Representations - What about them?

- Any finite group is isomorphic to a subgroup of S_{n};
- We can represent faithfully any finite group as a set of permutations on n points.
- Take the example of the following group

$$
G:=\left\langle\rho_{0}, \rho_{1}, \rho_{2} \mid \rho_{0}^{2}=\rho_{1}^{2}=\rho_{2}^{2}=\left(\rho_{0} \rho_{1}\right)^{4}=\left(\rho_{1} \rho_{2}\right)^{3}=\left(\rho_{0} \rho_{2}\right)^{2}=i d_{G}\right\rangle
$$

- $G \cong C_{2} \times S_{4}$
- $G \rightarrow S_{8}$
- $\rho_{0}=(1,2)(3,4)(5,6)(7,8) ; \rho_{1}=(2,3)(6,7) ; \rho_{2}=(3,5)(4,6)$;

Permutation Representations - What about them?

- Any finite group is isomorphic to a subgroup of S_{n};
- We can represent faithfully any finite group as a set of permutations on n points.
- Take the example of the following group

$$
G:=\left\langle\rho_{0}, \rho_{1}, \rho_{2} \mid \rho_{0}^{2}=\rho_{1}^{2}=\rho_{2}^{2}=\left(\rho_{0} \rho_{1}\right)^{4}=\left(\rho_{1} \rho_{2}\right)^{3}=\left(\rho_{0} \rho_{2}\right)^{2}=i d_{G}\right\rangle
$$

- $G \cong C_{2} \times S_{4}$
- $G \rightarrow S_{8}$
- $\rho_{0}=(1,2)(3,4)(5,6)(7,8) ; \rho_{1}=(2,3)(6,7) ; \rho_{2}=(3,5)(4,6)$;
- $G \rightarrow S_{6}$
- $\rho_{0}=(1,2)(3,4)(5,6) ; \rho_{1}=(2,3)(5,6) ; \rho_{2}=(3,4)(5,6)$;

Faithful Permutation Representations Graph

- $\rho_{0}=(1,2)(3,4)(5,6)(7,8)$
- $\rho_{1}=(2,3)(6,7)$
- $\rho_{2}=(3,5)(4,6)$

Faithful Permutation Representations Graph

- $\rho_{0}=(1,2)(3,4)(5,6)(7,8)$
- $\rho_{1}=(2,3)(6,7)$
- $\rho_{2}=(3,5)(4,6)$

Faithful Permutation Representations Graph

- $\rho_{0}=(1,2)(3,4)(5,6)(7,8)$
- $\rho_{1}=(2,3)(6,7)$
- $\rho_{2}=(3,5)(4,6)$

Faithful Permutation Representations - Transitive or Not?

- $\rho_{0}=(1,2)(3,4)(5,6)(7,8)$
- $\rho_{1}=(2,3)(6,7)$
- $\rho_{2}=(3,5)(4,6)$

Faithful Permutation Representations - Transitive or Not?

- $\rho_{0}=(1,2)(3,4)(5,6)(7,8)$
- $\rho_{1}=(2,3)(6,7)$
- $\rho_{2}=(3,5)(4,6)$

- $\rho_{0}=(1,2)(3,4)(5,6)$
- $\rho_{1}=(2,3)(5,6)$
- $\rho_{2}=(3,4)(5,6)$

Faithful Permutation Representations - Transitive or Not?

- $\rho_{0}=(1,2)(3,4)(5,6)(7,8)$
- $\rho_{1}=(2,3)(6,7)$
- $\rho_{2}=(3,5)(4,6)$

- $\rho_{0}=(1,2)(3,4)(5,6)(7,8)$
- $\rho_{1}=(2,3)(5,6)(7,8)$
- $\rho_{2}=(3,4)(5,6)(7,8)$

Faithful Permutation Representations - Transitive or Not?

- $\rho_{0}=(1,2)(3,4)(5,6)(7,8)$
- $\rho_{1}=(2,3)(6,7)$
- $\rho_{2}=(3,5)(4,6)$

- $\rho_{0}=(1,2)(3,4)(5,6)(7,8)(\ldots)$
- $\rho_{1}=(2,3)(5,6)(7,8)(\ldots)$
- $\rho_{2}=(3,4)(5,6)(7,8)(\ldots)$

Faithful Transitive Permutation Representations

- A permutation representation of a group gives the action of a group on a certain set of elements;
- Consider the left cosets of a subgroup H of G;

Faithful Transitive Permutation Representations

- A permutation representation of a group gives the action of a group on a certain set of elements;
- Consider the left cosets of a subgroup H of G;
- The action of G on these cosets give a permutation representation where the elements are cosets;

Faithful Transitive Permutation Representations

- A permutation representation of a group gives the action of a group on a certain set of elements;
- Consider the left cosets of a subgroup H of G;
- The action of G on these cosets give a permutation representation where the elements are cosets;
- The action is transitive;
- When is it faithful?

Faithful Transitive Permutation Representations

- A permutation representation of a group gives the action of a group on a certain set of elements;
- Consider the left cosets of a subgroup H of G;
- The action of G on these cosets give a permutation representation where the elements are cosets;
- The action is transitive;
- When is it faithful?
- G acts faifthfully on the left cosets of H if and only if H is a core-free subgroup of G.

Core-free degrees

Definition (Core-free subgroup)

Let G be a group and $H \leq G$. We say H is a core-free subgroup of G if

$$
\cap_{g \in G} H^{g}=\left\{i d_{G}\right\} .
$$

- The action of a group G on a core-free subgroup $H \leq G$ is always transitive and faithful, giving a faithful transitive permutation representation (FTPR) on the set of cosets G / H, with degree $|G: H|$.

Core-free degrees

Question

Given a group G, what is the set of possible indexes of core-free subgroups of G ?

- For simple groups: All the index of their subgroups.
- Other groups, not so direct...

Definition (Degree of polytope/(hyper)map)

Let \mathcal{P} be a polytope/(hyper)map. We say that n is a degree of a polytope/(hyper)map \mathcal{P} if there is a core-free subgroup of the automorphism group of \mathcal{P} with index n, i.e. there is a FTPR of $\operatorname{Aut}(\mathcal{P})$ with degree n.

Coxeter groups for tesselations of the plane

Consider the infinite tesselations of the Euclidean plane by squares and triangles

$[3,6]$

Toroidal Map $\{4,4\}_{\left(s_{1}, s_{2}\right)}$

Toroidal Map $\{4,4\}_{\left(s_{1}, s_{2}\right)}$

$$
\begin{aligned}
& u=\rho_{0} \rho_{1} \rho_{2} \rho_{1} \\
& v=u^{\rho_{1}} \\
& T:=\langle u, v\rangle
\end{aligned}
$$

Toroidal Map $\{4,4\}_{\left(s_{1}, s_{2}\right)}$

$$
\begin{array}{ll}
u=\rho_{0} \rho_{1} \rho_{2} \rho_{1} & \\
v=u^{\rho_{1}} & {[4,4] /\left\langle u^{s_{1}} v^{s_{2}}\right\rangle} \\
T:=\langle u, v\rangle &
\end{array}
$$

Toroidal Map $\{4,4\}_{\left(s_{1}, s_{2}\right)}$

$$
\begin{aligned}
& u=\rho_{0} \rho_{1} \rho_{2} \rho_{1} \\
& v=u^{\rho_{1}} \\
& T:=\langle u, v\rangle
\end{aligned}
$$

$[4,4] /\left\langle u^{s_{1}} v^{s_{2}}\right\rangle$
Regular $\rightarrow s_{1} s_{2}\left(s_{1}-s_{2}\right)=0 \rightarrow(s, 0)$ or (s, s)
Chiral $\rightarrow s_{1} s_{2}\left(s_{1}-s_{2}\right) \neq 0$

Toroidal Map $\{3,6\}_{\left(s_{1}, s_{2}\right)}$

$$
\begin{aligned}
& u=\rho_{0}\left(\rho_{1} \rho_{2}\right)^{2} \\
& v=u^{\rho_{1}} \\
& T:=\langle u, v\rangle
\end{aligned}
$$

$[3,6] /\left\langle u^{s_{1}} v^{s_{2}}\right\rangle$
Regular $\rightarrow s_{1} s_{2}\left(s_{1}-s_{2}\right)=0 \rightarrow(s, 0)$ or (s, s)
Chiral $\rightarrow s_{1} s_{2}\left(s_{1}-s_{2}\right) \neq 0$

Coxeter groups for tesselations of the plane

- We can quotient the Coxeter groups [4, 4] and $[3,6]$ by a translation subgroup and get the following groups:

$$
\begin{gathered}
{[4,4]_{(s, 0)}:=\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right| \rho_{0}^{2}=\rho_{1}^{2}=\rho_{2}^{2}=\left(\rho_{0} \rho_{1}\right)^{4}=\left(\rho_{1} \rho_{2}\right)^{4}=\left(\rho_{0} \rho_{2}\right)^{2}=} \\
\left.=\left(\rho_{0} \rho_{1} \rho_{2} \rho_{1}\right)^{s}=i d_{[4,4]}\right\rangle
\end{gathered}
$$

$$
[4,4]_{(s, s)}:=\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right| \rho_{0}^{2}=\rho_{1}^{2}=\rho_{2}^{2}=\left(\rho_{0} \rho_{1}\right)^{4}=\left(\rho_{1} \rho_{2}\right)^{4}=\left(\rho_{0} \rho_{2}\right)^{2}=
$$

$$
\left.=\left(\rho_{0} \rho_{1} \rho_{2}\right)^{2 s}=i d_{[4,4]}\right\rangle
$$

$$
[3,6]_{(s, 0)}:=\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right| \rho_{0}^{2}=\rho_{1}^{2}=\rho_{2}^{2}=\left(\rho_{0} \rho_{1}\right)^{3}=\left(\rho_{1} \rho_{2}\right)^{6}=\left(\rho_{0} \rho_{2}\right)^{2}=
$$

$$
\left.=\left(\rho_{0}\left(\rho_{1} \rho_{2}\right)^{2} \rho_{1}\right)^{s}=i d_{[3,6]}\right\rangle
$$

$$
[3,6]_{(s, s)}:=\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right| \rho_{0}^{2}=\rho_{1}^{2}=\rho_{2}^{2}=\left(\rho_{0} \rho_{1}\right)^{3}=\left(\rho_{1} \rho_{2}\right)^{6}=\left(\rho_{0} \rho_{2}\right)^{2}=
$$

$$
\left.=\left(\rho_{0}\left(\rho_{1} \rho_{2}\right)^{2}\right)^{2 s}=i d_{[3,6]}\right\rangle
$$

Preliminary Results - Restrict to the $(s, 0)$

Conside the following:

- $G=\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right\rangle$ is the automorphism group of any toroidal maps $\{4,4\}_{(s, 0)},\{3,6\}_{(s, 0)}$;
- $T=\langle u, v\rangle$ is the translation subgroup; Moreover $T \triangleleft G$ and is abelian (u and v commute);
- $o(u)=s$

Proposition

The translation subgroup T is isomorphic to $C_{o(u)} \times C_{g c d\left(s_{1}, s_{2}\right)}$.

Preliminary Results - Restrict to the $(s, 0)$

Conside the following:

- $G=\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right\rangle$ is the automorphism group of any toroidal maps $\{4,4\}_{(s, 0)},\{3,6\}_{(s, 0)}$;
- $T=\langle u, v\rangle$ is the translation subgroup; Moreover $T \triangleleft G$ and is abelian (u and v commute);
- $o(u)=s$

Proposition

The translation subgroup T is isomorphic to $C_{o(u)} \times C_{g c d\left(s_{1}, s_{2}\right)}$.

Remark

$$
\begin{aligned}
& \text { If }(s, 0) \rightarrow T \cong C_{s} \times C_{s} \text { and }|T|=s^{2} \\
& \text { If }(s, s) \text {, as } o(u)=2 s \text {, then } T \cong C_{2 s} \times C_{s} \text { and }|T|=2 s^{2}
\end{aligned}
$$

Preliminary Results - Restrict to the $(s, 0)$

- Suppose that there is a faithful transitive permutation representation of G with degree n.
- The translation subgroup T can either be transitive or intransitive. Since T is a normal subgroup of G, the T-orbits form a block system (which might be trivial).

Proposition

If T is transitive, then $n=|T|=s^{2}$.

Lemma

The size of a T-orbit is $k=o(u) d$ where d is a divisor of $\operatorname{gcd}\left(s_{1}, s_{2}\right)=\operatorname{gcd}(s, 0)=s$.

Preliminary Results

Proposition

Let G be a faithful transitive permutation representation of the rotational group of a toroidal (hyper)map with degree n. If $n \neq|T|$ then G is embedded into $S_{k} \backslash S_{m}$ with $n=k m(m, k>1)$ and we have
(i) $k=o(u) d=s d$ where d is a divisor of s, and
(ii) m is a divisor of $\frac{|G|}{|T|}$.

- For example, for the toroidal maps $\{4,4\}_{(s, 0)}$,

$$
|G|=8 s^{2}=8|T|
$$

- Hence,
- if $m=1$, then $k=|T|=s^{2}$
- if $m \in\{2,4,8\}$, then $k=s d$, for some d divisor of s

Core-free Subgroups for the map $\{4,4\}_{(s, 0)}$

For the toroidal maps $\{4,4\}_{(s, 0)}$, remind that $o(u)=s$ and $|G|=8|T|=8 s^{2}$.

Proposition

Let G be the automorphism group a toroidal map $\{4,4\}_{(s, 0)}$, with $s>2$, and let a, b such that $s=\operatorname{lcm}(a, b)$. Then, the following subgroups (and their subgroups) are core-free:

1. $H=\left\langle\rho_{0}, \rho_{1}\right\rangle$, with index $|G: H|=s^{2}$;
2. $H=\left\langle\rho_{0} \rho_{1}\right\rangle$, with index $|G: H|=2 s^{2}$;
3. $H=\left\langle\rho_{0}, \rho_{2}\right\rangle$, with index $|G: H|=2 s^{2}$;
4. $H=\left\langle\rho_{0} \rho_{2}\right\rangle$, with index $|G: H|=4 s^{2}$;
5. $H=\left\langle i d_{G}\right\rangle$, with index $|G: H|=8 s^{2}$;

Core-free Subgroups for the map $\{4,4\}_{(s, 0)}$

For the toroidal maps $\{4,4\}_{(s, 0)}$, remind that $o(u)=s$ and $|G|=8|T|=8 s^{2}$.

Proposition

Let G be the automorphism group a toroidal map $\{4,4\}_{(s, 0)}$, with $s>2$, and let a, b such that $s=l c m(a, b)$. Then, the following subgroups (and their subgroups) are core-free:

$$
\begin{aligned}
& \text { 1. } H=\left\langle u^{a}, v^{b}\right\rangle \text {, with }|G: H|=8 a b \text {; } \\
& \text { 2. } H=\left\langle u^{a}, v^{b}\right\rangle \rtimes\left\langle\rho_{0}\right\rangle \text {, with }|G: H|=4 a b \text {; } \\
& \text { 3. If } a b \neq s, H=\left\langle u^{a}, v^{b}\right\rangle \rtimes\left\langle\rho_{0}, \rho_{2}\right\rangle \text {, with }|G: H|=2 a b \text {; } \\
& \text { 4. } H=\langle u\rangle \rtimes\left\langle\rho_{0}, \rho_{2}\right\rangle \text {, with }|G: H|=2 s \text {. }
\end{aligned}
$$

Remind that if $k=d s$. If $l c m(a, b)=s$, then there is a d divisor of s such that $a b=d s$.

Core-free Subgroups for the map $\{4,4\}_{(s, 0)}$

$$
\text { 1. } H=\left\langle u^{a}, v^{b}\right\rangle \text {, with }|G: H|=8 a b \text {; }
$$

Proof.

Suppose that $x \in H \cap H^{\rho_{1}}=\left\langle u^{a}, v^{b}\right\rangle \cap\left\langle u^{b}, v^{a}\right\rangle$. Then, since u and v commute, we have that $x=\left(u^{a}\right)^{i}\left(v^{b}\right)^{j}=\left(u^{b}\right)^{k}\left(v^{a}\right)^{l}$. Hence, we have that

$$
\begin{aligned}
a i & \equiv b k \bmod s \\
b j & \equiv a l \bmod s .
\end{aligned}
$$

Since $a i$ is a multiple of both a and b, it is also a multiple of s and $a i \equiv 0 \bmod s$. The same reasoning can be used for $b j$, leading to $b j \equiv 0 \bmod s$. Hence, $x=i d_{G}$ and H is core-free. The order of H is $\frac{s^{2}}{a b}$ thus $|G: H|=8 a b$.

Core-free Subgroups for the maps $\{4,4\}$

Theorem

Let G be the group of the toroidal maps $\{4,4\}_{\left(s_{1}, s_{2}\right)}$, and let d be a divisor of $\operatorname{gcd}\left(s_{1}, s_{2}\right)$. Then n is a degree of G if and only if

- $\left(s_{1}, s_{2}\right)=(s, 0)$ and

$$
n \in\left\{s^{2}, 2 d s, 4 d s, 8 d s\right\}
$$

Core-free Subgroups for the maps $\{4,4\}$

Theorem

Let G be the group of the toroidal maps $\{4,4\}_{\left(s_{1}, s_{2}\right)}$, and let d be a divisor of $\operatorname{gcd}\left(s_{1}, s_{2}\right)$. Then n is a degree of G if and only if

- $\left(s_{1}, s_{2}\right)=(s, 0)$ and

$$
n \in\left\{s^{2}, 2 d s, 4 d s, 8 d s\right\}
$$

- $\left(s_{1}, s_{2}\right)=(s, s)$ and

$$
n \in\left\{2 s^{2}, 4 d s, 8 d s, 16 d s\right\}
$$

Core-free Subgroups for the maps $\{4,4\}$

Theorem

Let G be the group of the toroidal maps $\{4,4\}_{\left(s_{1}, s_{2}\right)}$, and let d be a divisor of $\operatorname{gcd}\left(s_{1}, s_{2}\right)$. Then n is a degree of G if and only if

- $\left(s_{1}, s_{2}\right)=(s, 0)$ and

$$
n \in\left\{s^{2}, 2 d s, 4 d s, 8 d s\right\}
$$

- $\left(s_{1}, s_{2}\right)=(s, s)$ and

$$
n \in\left\{2 s^{2}, 4 d s, 8 d s, 16 d s\right\}
$$

- is chiral and

$$
n \in\{|T|, 2 o(u) d, 4 o(u) d\} .
$$

Core-free Subgroups for the maps $\{3,6\}_{(s, 0)}$

For the toroidal maps $\{3,6\}_{(s, 0)}$, remind that $o(u)=s$ and $|G|=12|T|=12 s^{2}$.

$$
m \in\{1,2,3,4,6,12\}
$$

Proposition

Let G be the automorphism group of a toroidal map $\{3,6\}_{(s, 0)}$. Then, the following subgroups (and their subgroups) are core-free:

1. $H=\left\langle\rho_{1}, \rho_{2}\right\rangle$, with index $|G: H|=s^{2}$;
2. $H=\left\langle\rho_{0}, \rho_{1}\right\rangle$, with index $|G: H|=2 s^{2}$;
3. $H=\left\langle\rho_{0}, \rho_{2}\right\rangle$, with index $|G: H|=3 s^{2}$;
4. $H=\left\langle\rho_{0} \rho_{1}\right\rangle$, with index $|G: H|=4 s^{2}$;
5. $H=\left\langle\rho_{0} \rho_{2}\right\rangle$, with index $|G: H|=6 s^{2}$;
6. $H=\left\langle i d_{G}\right\rangle$, with index $|G: H|=12 s^{2}$;

Core-free Subgroups for the maps $\{3,6\}_{(s, 0)}$

For the toroidal maps $\{3,6\}_{(s, 0)}$, remind that $o(u)=s$ and $|G|=12|T|=12 s^{2}$.

$$
m \in\{1,2,3,4,6,12\}
$$

Proposition

Let G be the automorphism group of a toroidal map $\{3,6\}_{(s, 0)}$. Then, the following subgroups (and their subgroups) are core-free:

1. $H=\left\langle u^{d}\right\rangle \rtimes\left\langle\rho_{0}, \rho_{2}\right\rangle$, with d divisor of s and $|G: H|=3 d s$;
2. $H=\left\langle u^{d}\right\rangle \rtimes\left\langle\rho_{0} \rho_{2}\right\rangle$, with divisor of s and $|G: H|=6 d s$;
3. $H=\left\langle u^{a}, v^{b}\right\rangle$, with $s=\operatorname{lcm}(a, b)$, and $|G: H|=12 a b$;

Core-free Subgroups for the maps $\{3,6\}_{(s, 0)}$

For the toroidal maps $\{3,6\}_{(s, 0)}$, remind that $o(u)=s$ and $|G|=12|T|=12 s^{2}$.

$$
m \in\{1,2,3,4,6,12\}
$$

Proposition

Let G be the automorphism group of a toroidal map $\{3,6\}_{(s, 0)}$. Then, the following subgroups (and their subgroups) are core-free:

1. $H=\left\langle u^{d}\right\rangle \rtimes\left\langle\rho_{0}, \rho_{2}\right\rangle$, with d divisor of s and $|G: H|=3 d s$;
2. $H=\left\langle u^{d}\right\rangle \rtimes\left\langle\rho_{0} \rho_{2}\right\rangle$, with d divisor of s and $|G: H|=6 d s$;
3. $H=\left\langle u^{a}, v^{b}\right\rangle$, with $s=l c m(a, b)$, and $|G: H|=12 a b$;
4. $H=\left\langle\left(v^{-\alpha} u\right)^{d}\right\rangle \rtimes\left\langle\rho_{1} \rho_{2}\right\rangle$, with $|G: H|=2 d s$;
5. $H=\left\langle\left(v^{-\alpha} u\right)^{d}\right\rangle \rtimes\left\langle\rho_{0} \rho_{1}\right\rangle$, with $|G: H|=4 d s$.
with d divisor of s and α coprime of s / d such that $\alpha^{2}-\alpha+1 \equiv 0 \bmod (s / d) \Leftrightarrow$ all prime divisors of s / d are $1 \bmod 6$.

Core-free Subgroups for the maps $\{3,6\}$

Theorem

Let G be the group of the toroidal maps $\{3,6\}_{\left(s_{1}, s_{2}\right)}$, and let d be a divisor of $\operatorname{gcd}\left(s_{1}, s_{2}\right)$. Then n is a degree of G if and only if

- $\left(s_{1}, s_{2}\right)=(s, 0)$ and

$$
n \in\left\{s^{2}, 3 d s, 6 d s, 12 d s\right\} \cup\left\{2 d^{\prime} s, 4 d^{\prime} s\right\} ;
$$

Core-free Subgroups for the maps $\{3,6\}$

Theorem

Let G be the group of the toroidal maps $\{3,6\}_{\left(s_{1}, s_{2}\right)}$, and let d be a divisor of $\operatorname{gcd}\left(s_{1}, s_{2}\right)$. Then n is a degree of G if and only if

- $\left(s_{1}, s_{2}\right)=(s, 0)$ and

$$
n \in\left\{s^{2}, 3 d s, 6 d s, 12 d s\right\} \cup\left\{2 d^{\prime} s, 4 d^{\prime} s\right\}
$$

- $\left(s_{1}, s_{2}\right)=(s, s)$ and

$$
n \in\left\{3 s^{2}, 9 d s, 18 d s, 36 d s\right\} \cup\left\{6 d^{\prime} s, 12 d^{\prime} s\right\}
$$

Core-free Subgroups for the maps $\{3,6\}$

Theorem

Let G be the group of the toroidal maps $\{3,6\}_{\left(s_{1}, s_{2}\right)}$, and let d be a divisor of $\operatorname{gcd}\left(s_{1}, s_{2}\right)$. Then n is a degree of G if and only if

- $\left(s_{1}, s_{2}\right)=(s, 0)$ and

$$
n \in\left\{s^{2}, 3 d s, 6 d s, 12 d s\right\} \cup\left\{2 d^{\prime} s, 4 d^{\prime} s\right\}
$$

- $\left(s_{1}, s_{2}\right)=(s, s)$ and

$$
n \in\left\{3 s^{2}, 9 d s, 18 d s, 36 d s\right\} \cup\left\{6 d^{\prime} s, 12 d^{\prime} s\right\}
$$

- is chiral and

$$
n \in\{|T|, 2|T|, 3 o(u) d, 6 o(u) d\}
$$

Core-free Degrees for the hypermaps $(3,3,3)$

Theorem

Let G be the group of the toroidal hypermap $(3,3,3)_{\left(s_{1}, s_{2}\right)}$, and let d be a divisor of $\operatorname{gcd}\left(s_{1}, s_{2}\right)$. Then n is a degree of G if and only if

- $\left(s_{1}, s_{2}\right)=(s, 0)$ and

$$
n \in\left\{s^{2}, 3 d s, 6 d s,\right\} \cup\left\{2 d^{\prime} s\right\}
$$

- $\left(s_{1}, s_{2}\right)=(s, s)$ and

$$
n \in\left\{3 s^{2}, 9 d s, 18 d s\right\} \cup\left\{6 d^{\prime} s\right\}
$$

- is chiral and

$$
n \in\{|T|, 3 o(u) d\}
$$

Summary

We have a group G with a translation subgroup $T:=\langle u, v\rangle$ such that $G=T \rtimes G_{0}$.
d is a divisor of $\operatorname{gcd}\left(s_{1}, s_{2}\right), \operatorname{gcd}(s, 0)=\operatorname{gcd}(s, s)=s$, and d^{\prime} is a divisor of s and all prime factors of s / d are $1 \bmod 6$

Regular case (full group) $(s, 0)$ and (s, s)

Chiral case (rot. subgroup)

	$(s, 0)$ and (s, s)	
$\{4,4\}$	$\{\|T\|, 2 o(u) d, 4 o(u) d, 8 o(u) d\}$	$\{\|T\|, 2 o(u) d, 4 o(u) d\}$
$\{3,6\}$	$\left\{\|T\|, 2 o(u) d^{\prime}, 3 o(u) d, 4 o(u) d^{\prime}\right.$,	$\{\|T\|, 2\|T\|, 3 o(u) d, 6 o(u) d\}$
$(3,3,3)$	$\left\{\|T\|, 2 o(u) d^{\prime}, 3 o(u o(u) d, 6 o(u) d\}\right.$	$\{\|T\|, 3 o(u) d\}$

What would be the next step?

- Classify core-free degrees of other groups!

And to do that...

And to do that...

I have developed a package for GAP: CoreFreeSub https://github.com/CAPiedade/corefreesub

And to do that...

I have developed a package for GAP: CoreFreeSub https://github.com/CAPiedade/corefreesub Developed with Manuel Delgado (FCUP)

And to do that...

I have developed a package for GAP: CoreFreeSub https://github.com/CAPiedade/corefreesub Developed with Manuel Delgado (FCUP) Let's take a look!

Acknowledgements

CMUP, Departamento de
Matemática, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal). The author was partially supported by CMUP, member of LASI, which is financed by national funds through FCT - Fundação para a Ciência e a Tecnologia, I.P., under the projects with reference
UIDB/00144/2020 and UIDP/00144/2020.

The 13th Combinatorics Days

Core-free Degrees of Toroidal Maps

Claudio Alexandre Piedade

Centro de Matemática da Universidade do Porto, Portugal claudio.piedade@fc.up.pt
Maria Elisa Fernandes, Universidade de Aveiro, Portugal maria.elisa@ua.pt
13th July, 2023
CMUP, Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre $\mathrm{s} / \mathrm{n}, 4169-007$ Porto (Portugal). The author was partially supported by CMUP, member of LASI, which is financed by national funds through FCT - Fundação para a Ciência e a Tecnologia, I.P., under the projects
with reference UIDB/00144/2020 and UIDP/00144/2020.

Toroidal Map $\{4,4\}_{\left(s_{1}, s_{2}\right)}$

Preliminary Results

Lemma

The size of a T-orbit is $k=o(u) d$ where d is a divisor of $\operatorname{gcd}\left(s_{1}, s_{2}\right)$.

Proof.

Consider that σ and τ are the actions of the generators of T on a block of size k. Then $K:=\langle\sigma, \tau\rangle, A:=o(\sigma), B:=|K:\langle\sigma\rangle|$ and $C:=|K:\langle\tau\rangle|$. We have that K has order $A B$ and acts regularly on the block, hence $k=A B$. As σ and τ commute, we have the following $K /\langle\sigma\rangle=\left\{\langle\sigma\rangle,\langle\sigma\rangle \tau,\langle\sigma\rangle \tau^{2}, \ldots,\langle\sigma\rangle \tau^{B-1}\right\}$ $K /\langle\tau\rangle=\left\{\langle\tau\rangle,\langle\tau\rangle \sigma,\langle\tau\rangle \sigma^{2}, \ldots,\langle\tau\rangle \sigma^{C-1}\right\}$.
Thus B divides $o(\tau)$ and C divides $o(\sigma)=A$. Let $D:=A / C$. As $k=A B=o(\tau) C$ we have $o(\tau)=D B$. Now $o(u)=\operatorname{lcm}(o(\sigma), o(\tau))=\operatorname{lcm}(C D, B D)=D \operatorname{lcm}(C, B)$ and $k=A B=D C B=D \operatorname{lcm}(C, B) \operatorname{gcd}(C, B)=o(u) g c d(C, B)$.
To conclude the proof consider $d=\operatorname{gcd}(C, B)$. It is easy to see that both B and C must be divisors of $\operatorname{gcd}\left(s_{1}, s_{2}\right)$. Hence d must be a divisor of $\operatorname{gcd}\left(s_{1}, s_{2}\right)$.

Core-free Subgroups for the maps $\{3,6\}_{\left(s_{1}, s_{2}\right)}$

Proposition

If $m=2$ then $k=|T|$.

Proof.

The only possible permutation between blocks is with b.
Let $K=\left\langle u_{1}, v_{1}\right\rangle$ be the action of T restricted to block \mathcal{B}_{1}.
As a fixes the blocks, we get $\left|u_{1}\right|=\left|v_{1}\right|$, implying that $\left|u_{1}\right|=|u|$.
Moreover, $\left|K:\left\langle u_{1}\right\rangle\right|=\left|K:\left\langle v_{1}\right\rangle\right|=d$, which is a divisor of $\operatorname{gcd}\left(s_{1}, s_{2}\right)$.
Suppose there is a $j \in\{0, \ldots, o(u)-1\}$ such that $u_{1}^{d}=v_{1}^{j}$.
Conjugating this by a, we have that $v_{1}^{d}=u_{1}^{d-j}$.
Moreover, conjugating $u_{1}^{d}=v_{1}^{j}$ by b, we get that $v_{2}^{d}=u_{2}^{d-j}$.
Finally, conjugating $v_{1}^{d}=u_{1}^{d-j}$ by b gives us that $u_{2}^{d}=u_{2}^{d-j} v_{2}^{j-d}$.
Substituting u_{2}^{d-j} by v_{2}^{d}, we get that $u_{2}^{d}=v_{2}^{j}$.
Hence, $u^{d}=v^{j}$.
Both d and j must be multiples of $\operatorname{gcd}\left(s_{1}, s_{2}\right)$. Since d must divide $\operatorname{gcd}\left(s_{1}, s_{2}\right)$, we get that $d=\operatorname{gcd}\left(s_{1}, s_{2}\right)$. As $o(u)=\frac{|T|}{\operatorname{gcd}\left(s_{1}, s_{2}\right)}$, then the size of the block is

