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Crystals

Definition
A crystal of type A,_1 is a non-empty set C together with maps

é,:C—CU {J_} (Kashiwara operators)
€i, Qi - C—7ZU {—OO} (length functions)
wt:C—7Z" (weight function)

for i € | :=={1,...,n— 1}, satisfying the following:
Cl. For any x,y € C, &(x) = y iff x = fi(y), and in that case

wt(y) = wt(x) + i, Eily) =&i(x)+1, @Gily) = Gi(x) -1

C2. 3i(x) = &i(x) + (wt(x), «;)
where o; = (0,...,0,1,-1,0,...,0).

(This definition is generalized for other Cartan types)



Crystals

» A crystal is seminormal if
gi(x) = max{k 1 &()" # L}, @i(x) = max{k: fi(x)* # L},
for all i € I and x € C. In particular, £;(x), 3;(x) > 0.
£i(x)
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> consider the subword with only symbols i and i 4+ 1, and cancel all
pairs (i + 1)i (i-inversions), until there are no pairs left.

> & changes the leftmost i + 1 to i, if possible; if not, it is L.
» f; changes the rightmost i to i + 1, if possible; if not, it is L.
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» A crystal is seminormal if
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» The crystal graph associated to a crystal C is the directed weighted
graph where y — x iff &(x) = y iff fi(y) = x.



Crystals

» The crystal graph associated to a crystal C is the directed weighted
graph where y — x iff &(x) = y iff fi(y) = x.

111
/
112
7\ 121 211
122 13/ N\, /L
222/ \123/ 221 131 212 311
| [ I
NCOSON oy 132 213 312 321
223 133
4 | [ )
5 33 331 232 313 322

T N NS NS

— 333 332 323



Stembridge crystals

> A Stembridge crystal is a seminormal crystal of simply-laced type
that satisfies some local axioms [Stembridge '03]. These are the
crystal graphs that correspond to representations of Lie algebras.

» The connected components have nice properties:
» Unique highest weight element (source vertex), from which all
vertices can be reached.
> All components whose highest weight elements have the same weight
are isomorphic.
> In type A, the character of a connected component is a Schur
function s,.



Stembridge crystals

Local axioms

S1. If &(x) =y, then Ej(y) is equal to §j(X) or §j(X) + 1 (the second case
is possible only if |/ — j| = 1).

e —> 06 —> 06 —> 06 —> 06 —> o

¢ —> 06 —> 06 —> 06 —> 06 —> ¢ —> o
) or

—> . i

e —> 0 —> 0 —> 0 —> 0 —> 0

e —> 06 —> 0 —> 06 —> 0 —> o

for [i —j| =1

e —> 06 —> 0 —> 0 —> 0 —> 0

!

e —> 06 —> 0 —> 0 —> 0 —> o

for |[i —j| > 1



Stembridge crystals

Local axioms

S2. If &(x) =
g’-(z) = E ( ) then

(and dual axioms for £, f;)

y and éj(x) = z, and

S3.

If &(x) =y and é(x) =z, and
Ei(z) =&i(x)+1and
gj(y) = E"J(x) + 1 then
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Local axioms
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(and dual axioms for £, f;)

y and éj(x) = z, and
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Stembridge crystals

Local axioms

S2. If &(x) =
£i(2) = &i(x) then

(and dual axioms for £, f;)

y and éj(X) =z, and

y and éj(x) = z, and
(x)+1and

(x) 4+ 1 then
) =

= & ej(X) 7 L

S3. If &(x) =
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iy
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Quasi-crystals

» First introduced by Cain and Malheiro (2017), providing another
characterization of the hypoplactic monoid of type A.

» Cain, Guilherme and Malheiro (2023) provided a definition of
abstract quasi-crystals for other Cartan types.

» For type A, each connected component has a unique highest weight
element, is isomorphic to a quasi-crystal of quasi-ribbon tableaux,
and its character is a fundamental quasisymmetric function F,.

» Recently, noting the decomposition of Schur functions into
fundamental quasi-symmetric functions, Maas-Gariépy (2023)
independently introduced quasi-crystals, as subgraphs of a connected
component of a crystal graph.



Quasi-crystals

Definition (Cain, Guilherme, Malheiro '23)

A quasi-crystal of type A,_; is a non-empty set Q together with maps
&, f, Q9 — 9Ll {J_} (quasi-Kashiwara operators)
Ei, i1 Q — Z U {700, +OC}
wt: Q— 7"

for i € {1,...,n— 1}, satisfying the same axioms of crystals and an
additional condition regarding &;(x) = +oc.

» A quasi-crystal is seminormal if, for all i € | and x € Q,
€i(x) = max{k : é',-(x)k # 1}, @i(x) = max{k: f,(x)k # 1}

whenever £;(x) # +o0.

> To compute f;(w) and &(w) onaword w € {1 <--- < n}*:
> If w has an i-inversion, fi(w) = &(w) = L.
» Otherwise, fi(w) = fi(w) and &(w) = &(w).



Quasi-crystals
The quasi-crystal graph associated to a quasi-crystal Q is the directed
weighted graph where:
>y L x iff &(x)=y.
> x has an i-labelled loop iff £;(x) = 400 iff @;(x) = +o0.
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Local characterization of quasi-crystals
Local quasi-crystal axioms
LQCL1. If &(x) =y, then:
> For |i —j| > 1, £j(x) = &(y).
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Local characterization of quasi-crystals

Local quasi-crystal axioms

LQC2. &;(x) = 0iff $iy1(x) =0, fori € {1,...,n—2}.

LQC3. If both &(x) and &;(x) are defined, for i # j, then
&(x) = &é&;(x) # L (and dual axiom for f;, f;.)
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Local characterization of quasi-crystals

Theorem (Cain, Malheiro, Rodrigues, R. '23)

If Q is a quasi-crystal of type A (not necessarily seminormal) satisfying
the local axioms, and such that £;(x) # 400 and ¢;(x) # +oo, for all

i€l,x € Q, then Q is a weak Stembridge crystal (i.e. not necessarily

seminormal).
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If Q is a quasi-crystal of type A (not necessarily seminormal) satisfying
the local axioms, and such that &;(x) # +oo and ¢;(x) # +oo, for all
i€l,x € Q, then Q is a weak Stembridge crystal (i.e. not necessarily
seminormal).
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Let Q be a connected component of a sesminormal quasi-crystal graph of
type A, weighted in LY, satisfying the local axioms. Then, Q has a
unique highest weight element, whose weight is a composition.

Theorem (Cain, Malheiro, Rodrigues, R. '23)

Let Q and Q' be connected components of seminormal quasi-crystal
graphs of type A satisfying the local axioms, with highest weight
elements u and v. If wt(u) = wt(v), then there exists a
weight-preserving isomorphism between Q and Q.



Quasi-tensor product of quasi-crystals

» Cain, Guilherme, and Malheiro (2023) introduced a notion of
quasi-tensor product of seminormal quasi-crystals, denoted Q & Q.
» B, is the standard crystal of type A,_1:

n—1

1oty i, ... ",

» Similarly to the case of the plactic monoid, each component of the
hypoplactic monoid is isomorphic to some B k.
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Quasi-tensor product of quasi-crystals

Theorem (Cain, Malheiro, Rodrigues, R. '23)

Let Q and Q' be seminormal quasi-crystal graphs satisfying the local
axioms. Then, Q& Q' is a seminormal quasi-crystal that satisfies the
same axioms.

» The standard crystal B, satisfies

>

>

the local axioms.

In particular, the quasi-crystal of
words satisfies the local axioms.

As a consequence, every
connected component of a
seminormal quasi-crystal
satisfying the local axioms is
isomorphic a quasi-crystal of
quasi-ribbon tableaux.
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From crystals to quasi-crystals

Let (C, f &, & J;) be a connected component of a
Stembridge crystal, weighted in Z2,, and define
(Q, f,, &, &, ;i) to have the same underlying set as
C and:
» Place a i-labelled loop on x if
&i(x) < wtiz1(x), forallie I, xeC
(equivalently, if Gi(x) < wt;(x)).
» Then, remove i-labelled edges that have
i-labelled loops on both ends.

Theorem (Cain, Malheiro, Rodrigues, R. '23)

Q is a seminormal quasi-crystal that satisfies the
local axioms.
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From crystals to quasi-crystals

Let (C, 7?,-7 &, €:,J;) be a connected component of a
Stembridge crystal, weighted in ZZ2,, and define C 121

(Q, fi, &,;, i) to have the same underlying set as / \
d € =1,e=0
Can C 221 w-a.20 131

» Place a i-labelled loop on x if
&i(x) < wtiz1(x), forallie I, xeC l l
(equivalently, if J;(x) < wt;(x)). 231 132
» Then, remove i-labelled edges that have l l
i-labelled loops on both ends.
331 232
Theorem (Cain, Malheiro, Rodrigues, R. '23) \ /
Q is a seminormal quasi-crystal that satisfies the 332

local axioms.
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From crystals to quasi-crystals

Let (C, 7, &,£;, @) be a connected component of a C 121
Stembridge crystal, weighted in Z%,, and define \

fi. &, ¢;) to have th derlying set
(9, .e &;, ¢i) to have the same underlying set as o 131
C and:

» Place a i-labelled loop on x if l l
€i(x) < wtip1(x), forallie l,xeC 231 C 132
(equivalently, if Gi(x) < wt;i(x)). l l

» Then, remove i-labelled edges that have
i-labelled loops on both ends. 331 C 232

Theorem (Cain, Malheiro, Rodrigues, R. '23) \

C 332

Q is a seminormal quasi-crystal that satisfies the

local axioms.
s = Fa1 + Fia.



From crystals to quasi-crystals

C 3121 D
A
C 4131 ‘0‘.‘1221 = Cf3231 P
C a2 DC 4231 DHC 3241 D
C 4232 DC 4331 4241° D
é..2332..:) 6.2341
— -

s311 = F311 + Fi31 + F113
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