A local characterization of quasi-crystal graphs

Inês (Martins) Rodrigues

(joint work with Alan J. Cain, António Malheiro and Fátima Rodrigues)

Center for Mathematics and Applications (NOVA Math), NOVA SST

The 13th Combinatorics Days, Covilhã
July 13, 2023

Motivation

Plactic monoid

[Lascoux, Schützenberger '81]

Motivation

Plactic monoid

[Lascoux, Schützenberger '81]

- Young tableaux, Schensted insertion

$\begin{aligned} & \frac{1}{1} \begin{array}{l} 1 \\ \frac{2}{1} \\ \frac{3}{3} \end{array} 1^{1} 11 \\ & \hline \end{aligned}$

- Knuth relations

$$
\begin{aligned}
a c b & \equiv c a b, a \leq b<c \\
b a c & \equiv b c a, a<b \leq c
\end{aligned}
$$

- Crystals

Motivation

Plactic monoid

[Lascoux, Schützenberger '81]

Hypoplactic monoid
[Krob, Thibon '97], [Novelli '00]

- Young tableaux, Schensted insertion

- Knuth relations

$$
\begin{aligned}
a c b & \equiv c a b, a \leq b<c \\
b a c & \equiv b c a, a<b \leq c
\end{aligned}
$$

- Crystals

Motivation

Plactic monoid

[Lascoux, Schützenberger '81]

- Young tableaux, Schensted insertion

$\begin{aligned} & \frac{1}{1} \begin{array}{l} 1 \\ \frac{2}{1} \\ \frac{3}{3} \end{array} 1^{1} 11 \\ & \hline \end{aligned}$

- Knuth relations

$$
\begin{aligned}
& a c b \equiv c a b, a \leq b<c \\
& b a c \equiv b c a, a<b \leq c
\end{aligned}
$$

- Crystals

Hypoplactic monoid
[Krob, Thibon '97], [Novelli '00]

- Quasi-ribbon tableaux, Krob-Thibon insertion

- Knuth + quartic relations

$$
\begin{aligned}
& c a d b \equiv a c b d, a \leq b<c \leq d \\
& b d a c \equiv d b c a, a<b \leq c<d
\end{aligned}
$$

- Quasi-crystals

Crystals

Definition

A crystal of type A_{n-1} is a non-empty set \mathcal{C} together with maps

$$
\begin{aligned}
& \tilde{e}_{i}, \tilde{f}_{i}: \mathcal{C} \longrightarrow \mathcal{C} \sqcup\{\perp\} \\
& \tilde{\varepsilon}_{i}, \tilde{\varphi}_{i}: \mathcal{C} \longrightarrow \mathbb{Z} \sqcup\{-\infty\} \\
& \quad w t: \mathcal{C} \longrightarrow \mathbb{Z}^{n}
\end{aligned}
$$

(Kashiwara operators)
(length functions)
(weight function)
for $i \in I:=\{1, \ldots, n-1\}$, satisfying the following:
C1. For any $x, y \in \mathcal{C}, \tilde{e}_{i}(x)=y$ iff $x=\tilde{f}_{i}(y)$, and in that case

$$
w t(y)=w t(x)+\alpha_{i}, \quad \tilde{\varepsilon}_{i}(y)=\tilde{\varepsilon}_{i}(x)+1, \quad \tilde{\varphi}_{i}(y)=\tilde{\varphi}_{i}(x)-1
$$

C2. $\tilde{\varphi}_{i}(x)=\tilde{\varepsilon}_{i}(x)+\left\langle w t(x), \alpha_{i}\right\rangle$
where $\alpha_{i}=(0, \ldots, 0,1,-1,0, \ldots, 0)$.
(This definition is generalized for other Cartan types)

Crystals

- A crystal is seminormal if

$$
\tilde{\varepsilon}_{i}(x)=\max \left\{k: \tilde{e}_{i}(x)^{k} \neq \perp\right\}, \quad \tilde{\varphi}_{i}(x)=\max \left\{k: \tilde{f}_{i}(x)^{k} \neq \perp\right\},
$$

for all $i \in I$ and $x \in \mathcal{C}$. In particular, $\tilde{\varepsilon}_{i}(x), \tilde{\varphi}_{i}(x) \geq 0$.

Crystals

- A crystal is seminormal if

$$
\tilde{\varepsilon}_{i}(x)=\max \left\{k: \tilde{e}_{i}(x)^{k} \neq \perp\right\}, \quad \tilde{\varphi}_{i}(x)=\max \left\{k: \tilde{f}_{i}(x)^{k} \neq \perp\right\},
$$

for all $i \in I$ and $x \in \mathcal{C}$. In particular, $\tilde{\varepsilon}_{i}(x), \tilde{\varphi}_{i}(x) \geq 0$.

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in\{1<\cdots<n\}^{*}$:
- consider the subword with only symbols i and $i+1$, and cancel all pairs $(i+1) i$ (i-inversions), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost $i+1$ to i, if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost i to $i+1$, if possible; if not, it is \perp.

Crystals

- A crystal is seminormal if

$$
\tilde{\varepsilon}_{i}(x)=\max \left\{k: \tilde{e}_{i}(x)^{k} \neq \perp\right\}, \quad \tilde{\varphi}_{i}(x)=\max \left\{k: \tilde{f}_{i}(x)^{k} \neq \perp\right\},
$$

for all $i \in I$ and $x \in \mathcal{C}$. In particular, $\tilde{\varepsilon}_{i}(x), \tilde{\varphi}_{i}(x) \geq 0$.

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in\{1<\cdots<n\}^{*}$:
- consider the subword with only symbols i and $i+1$, and cancel all pairs $(i+1) i$ (i-inversions), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost $i+1$ to i, if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost i to $i+1$, if possible; if not, it is \perp.

Crystals

- A crystal is seminormal if

$$
\tilde{\varepsilon}_{i}(x)=\max \left\{k: \tilde{e}_{i}(x)^{k} \neq \perp\right\}, \quad \tilde{\varphi}_{i}(x)=\max \left\{k: \tilde{f}_{i}(x)^{k} \neq \perp\right\},
$$

for all $i \in I$ and $x \in \mathcal{C}$. In particular, $\tilde{\varepsilon}_{i}(x), \tilde{\varphi}_{i}(x) \geq 0$.

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in\{1<\cdots<n\}^{*}$:
- consider the subword with only symbols i and $i+1$, and cancel all pairs $(i+1) i$ (i-inversions), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost $i+1$ to i, if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost i to $i+1$, if possible; if not, it is \perp.

Crystals

- A crystal is seminormal if

$$
\tilde{\varepsilon}_{i}(x)=\max \left\{k: \tilde{e}_{i}(x)^{k} \neq \perp\right\}, \quad \tilde{\varphi}_{i}(x)=\max \left\{k: \tilde{f}_{i}(x)^{k} \neq \perp\right\},
$$

for all $i \in I$ and $x \in \mathcal{C}$. In particular, $\tilde{\varepsilon}_{i}(x), \tilde{\varphi}_{i}(x) \geq 0$.

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in\{1<\cdots<n\}^{*}$:
- consider the subword with only symbols i and $i+1$, and cancel all pairs $(i+1) i$ (i-inversions), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost $i+1$ to i, if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost i to $i+1$, if possible; if not, it is \perp.

Crystals

- A crystal is seminormal if

$$
\tilde{\varepsilon}_{i}(x)=\max \left\{k: \tilde{e}_{i}(x)^{k} \neq \perp\right\}, \quad \tilde{\varphi}_{i}(x)=\max \left\{k: \tilde{f}_{i}(x)^{k} \neq \perp\right\},
$$

for all $i \in I$ and $x \in \mathcal{C}$. In particular, $\tilde{\varepsilon}_{i}(x), \tilde{\varphi}_{i}(x) \geq 0$.

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in\{1<\cdots<n\}^{*}$:
- consider the subword with only symbols i and $i+1$, and cancel all pairs $(i+1) i(i$-inversions), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost $i+1$ to i, if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost i to $i+1$, if possible; if not, it is \perp.

$$
\perp \stackrel{\tilde{e}_{1}}{\leftarrow} 1221111 \stackrel{\tilde{e}_{1}}{\leftarrow} \underline{1221112} \xrightarrow{\tilde{f}_{1}} 1221122 \xrightarrow{\tilde{f}_{1}} 221122 \xrightarrow{\tilde{f}_{1}} \perp
$$

Crystals

- The crystal graph associated to a crystal \mathcal{C} is the directed weighted graph where $y \xrightarrow{i} x$ iff $\tilde{e}_{i}(x)=y$ iff $\tilde{f}_{i}(y)=x$.

Crystals

- The crystal graph associated to a crystal \mathcal{C} is the directed weighted graph where $y \xrightarrow{i} x$ iff $\tilde{e}_{i}(x)=y$ iff $\tilde{f}_{i}(y)=x$.

Stembridge crystals

- A Stembridge crystal is a seminormal crystal of simply-laced type that satisfies some local axioms [Stembridge '03]. These are the crystal graphs that correspond to representations of Lie algebras.
- The connected components have nice properties:
- Unique highest weight element (source vertex), from which all vertices can be reached.
- All components whose highest weight elements have the same weight are isomorphic.
- In type A, the character of a connected component is a Schur function s_{λ}.

Stembridge crystals

Local axioms

S1. If $\tilde{e}_{i}(x)=y$, then $\tilde{\varepsilon}_{j}(y)$ is equal to $\tilde{\varepsilon}_{j}(x)$ or $\tilde{\varepsilon}_{j}(x)+1$ (the second case is possible only if $|i-j|=1$).

$$
\text { for }|i-j|=1
$$

$$
\text { for }|i-j|>1
$$

Stembridge crystals

Local axioms

S2. If $\tilde{e}_{i}(x)=y$ and $\tilde{e}_{j}(x)=z$, and $\tilde{\varepsilon}_{i}(z)=\tilde{\varepsilon}_{i}(x)$ then

$$
\tilde{e}_{i} \tilde{e}_{j}(x)=\tilde{e}_{j} \tilde{e}_{i}(x) \neq \perp .
$$

S3. If $\tilde{e}_{i}(x)=y$ and $\tilde{e}_{j}(x)=z$, and
$\tilde{\varepsilon}_{i}(z)=\tilde{\varepsilon}_{i}(x)+1$ and $\tilde{\varepsilon}_{j}(y)=\tilde{\varepsilon}_{j}(x)+1$ then

$$
\tilde{e}_{i} \tilde{e}_{j}^{2} \tilde{e}_{j}(x)=\tilde{e}_{j} \tilde{e}_{i}^{2} \tilde{e}_{j}(x) \neq \perp .
$$

(and dual axioms for $\tilde{f}_{i}, \tilde{f}_{j}$)

Stembridge crystals

Local axioms

S2. If $\tilde{e}_{i}(x)=y$ and $\tilde{e}_{j}(x)=z$, and $\tilde{\varepsilon}_{i}(z)=\tilde{\varepsilon}_{i}(x)$ then

$$
\tilde{e}_{i} \tilde{e}_{j}(x)=\tilde{e}_{j} \tilde{e}_{i}(x) \neq \perp .
$$

S3. If $\tilde{e}_{i}(x)=y$ and $\tilde{e}_{j}(x)=z$, and
$\tilde{\varepsilon}_{i}(z)=\tilde{\varepsilon}_{i}(x)+1$ and $\tilde{\varepsilon}_{j}(y)=\tilde{\varepsilon}_{j}(x)+1$ then

$$
\tilde{e}_{i} \tilde{e}_{j}^{2} \tilde{e}_{j}(x)=\tilde{e}_{j} \tilde{e}_{i}^{2} \tilde{e}_{j}(x) \neq \perp .
$$

Stembridge crystals

Local axioms

S2. If $\tilde{e}_{i}(x)=y$ and $\tilde{e}_{j}(x)=z$, and $\tilde{\varepsilon}_{i}(z)=\tilde{\varepsilon}_{i}(x)$ then

$$
\tilde{e}_{i} \tilde{e}_{j}(x)=\tilde{e}_{j} \tilde{e}_{i}(x) \neq \perp
$$

(and dual axioms for $\tilde{f}_{i}, \tilde{f}_{j}$)

S3. If $\tilde{e}_{i}(x)=y$ and $\tilde{e}_{j}(x)=z$, and
$\tilde{\varepsilon}_{i}(z)=\tilde{\varepsilon}_{i}(x)+1$ and $\tilde{\varepsilon}_{j}(y)=\tilde{\varepsilon}_{j}(x)+1$ then

$$
\tilde{e}_{i} \tilde{e}_{j}^{2} \tilde{e}_{j}(x)=\tilde{e}_{j} \tilde{e}_{i}^{2} \tilde{e}_{j}(x) \neq \perp .
$$

Quasi-crystals

- First introduced by Cain and Malheiro (2017), providing another characterization of the hypoplactic monoid of type A.
- Cain, Guilherme and Malheiro (2023) provided a definition of abstract quasi-crystals for other Cartan types.
- For type A, each connected component has a unique highest weight element, is isomorphic to a quasi-crystal of quasi-ribbon tableaux, and its character is a fundamental quasisymmetric function F_{α}.
- Recently, noting the decomposition of Schur functions into fundamental quasi-symmetric functions, Maas-Gariépy (2023) independently introduced quasi-crystals, as subgraphs of a connected component of a crystal graph.

Quasi-crystals

Definition (Cain, Guilherme, Malheiro '23)

A quasi-crystal of type A_{n-1} is a non-empty set \mathcal{Q} together with maps

$$
\begin{aligned}
\ddot{e}_{i}, \ddot{f}_{i} & : \mathcal{Q} \longrightarrow \mathcal{Q} \sqcup\{\perp\} \\
\ddot{\varepsilon}_{i}, \ddot{\varphi}_{i} & : \mathcal{Q} \longrightarrow \mathbb{Z} \sqcup\{-\infty,+\infty\} \\
w t & : \mathcal{Q} \longrightarrow \mathbb{Z}^{n}
\end{aligned}
$$

(quasi-Kashiwara operators)
for $i \in\{1, \ldots, n-1\}$, satisfying the same axioms of crystals and an additional condition regarding $\ddot{\varepsilon}_{i}(x)=+\infty$.

- A quasi-crystal is seminormal if, for all $i \in I$ and $x \in \mathcal{Q}$,

$$
\ddot{\varepsilon}_{i}(x)=\max \left\{k: \ddot{e}_{i}(x)^{k} \neq \perp\right\}, \quad \ddot{\varphi}_{i}(x)=\max \left\{k: \ddot{f}_{i}(x)^{k} \neq \perp\right\}
$$

whenever $\ddot{\varepsilon}_{i}(x) \neq+\infty$.

- To compute $\ddot{f}_{i}(w)$ and $\ddot{e}_{i}(w)$ on a word $w \in\{1<\cdots<n\}^{*}$:
- If w has an i-inversion, $\ddot{f}_{i}(w)=\ddot{e}_{i}(w)=\perp$.
- Otherwise, $\ddot{f}_{i}(w)=\tilde{f}_{i}(w)$ and $\ddot{e}_{i}(w)=\tilde{e}_{i}(w)$.

Quasi-crystals

The quasi-crystal graph associated to a quasi-crystal \mathcal{Q} is the directed weighted graph where:

- $y \xrightarrow{i} x$ iff $\ddot{e}_{i}(x)=y$.
- x has an i-labelled loop iff $\ddot{\varepsilon}_{i}(x)=+\infty$ iff $\ddot{\varphi}_{i}(x)=+\infty$.

Quasi-crystals

The quasi-crystal graph associated to a quasi-crystal \mathcal{Q} is the directed weighted graph where:

- $y \xrightarrow{i} x$ iff $\ddot{e}_{i}(x)=y$.
- x has an i-labelled loop iff $\ddot{\varepsilon}_{i}(x)=+\infty$ iff $\ddot{\varphi}_{i}(x)=+\infty$.

Quasi-crystals

The quasi-crystal graph associated to a quasi-crystal \mathcal{Q} is the directed weighted graph where:

- $y \xrightarrow{i} x$ iff $\ddot{e}_{i}(x)=y$.
- x has an i-labelled loop iff $\ddot{\varepsilon}_{i}(x)=+\infty$ iff $\ddot{\varphi}_{i}(x)=+\infty$.

Local characterization of quasi-crystals

Local quasi-crystal axioms
LQC1. If $\ddot{e}_{i}(x)=y$, then:

- For $|i-j|>1, \ddot{\varepsilon}_{j}(x)=\ddot{\varepsilon}_{j}(y)$.

Local characterization of quasi-crystals

Local quasi-crystal axioms
LQC1. If $\ddot{e}_{i}(x)=y$, then:

- For $|i-j|>1, \ddot{\varepsilon}_{j}(x)=\ddot{\varepsilon}_{j}(y)$.

Local characterization of quasi-crystals

Local quasi-crystal axioms
LQC1. If $\ddot{e}_{i}(x)=y$, then:

- For $|i-j|>1, \ddot{\varepsilon}_{j}(x)=\ddot{\varepsilon}_{j}(y)$.

- For $j=i+1$,

$$
\ddot{\varepsilon}_{i+1}(x) \neq \ddot{\varepsilon}_{i+1}(y) \Leftrightarrow\left(\ddot{\varepsilon}_{i+1}(x)=+\infty \wedge \ddot{\varepsilon}_{i}(y)=0\right) \Rightarrow \ddot{\varepsilon}_{i+1}(y)>0 .
$$

Local characterization of quasi-crystals

Local quasi-crystal axioms
LQC1. If $\ddot{e}_{i}(x)=y$, then:
\rightarrow For $|i-j|>1, \ddot{\varepsilon}_{j}(x)=\ddot{\varepsilon}_{j}(y)$.

- For $j=i+1$,

$$
\ddot{\varepsilon}_{i+1}(x) \neq \ddot{\varepsilon}_{i+1}(y) \Leftrightarrow\left(\ddot{\varepsilon}_{i+1}(x)=+\infty \wedge \ddot{\varepsilon}_{i}(y)=0\right) \Rightarrow \ddot{\varepsilon}_{i+1}(y)>0 .
$$

or

Local characterization of quasi-crystals

Local quasi-crystal axioms
LQC1. If $\ddot{e}_{i}(x)=y$, then:

- For $|i-j|>1, \ddot{\varepsilon}_{j}(x)=\ddot{\varepsilon}_{j}(y)$.

- For $j=i+1$,

$$
\ddot{\varepsilon}_{i+1}(x) \neq \ddot{\varepsilon}_{i+1}(y) \Leftrightarrow\left(\ddot{\varepsilon}_{i+1}(x)=+\infty \wedge \ddot{\varepsilon}_{i}(y)=0\right) \Rightarrow \ddot{\varepsilon}_{i+1}(y)>0 .
$$

or

- For $j=i-1$,

$$
\ddot{\varphi}_{i-1}(x) \neq \ddot{\varphi}_{i-1}(y) \Leftrightarrow\left(\ddot{\varphi}_{i-1}(y)=+\infty \wedge \ddot{\varphi}_{i}(x)=0\right) \Rightarrow \ddot{\varphi}_{i-1}(x)>0 .
$$

Local characterization of quasi-crystals

Local quasi-crystal axioms
LQC1. If $\ddot{e}_{i}(x)=y$, then:

- For $|i-j|>1, \ddot{\varepsilon}_{j}(x)=\ddot{\varepsilon}_{j}(y)$.

- For $j=i+1$,

$$
\ddot{\varepsilon}_{i+1}(x) \neq \ddot{\varepsilon}_{i+1}(y) \Leftrightarrow\left(\ddot{\varepsilon}_{i+1}(x)=+\infty \wedge \ddot{\varepsilon}_{i}(y)=0\right) \Rightarrow \ddot{\varepsilon}_{i+1}(y)>0 .
$$

- For $j=i-1$,

$$
\ddot{\varphi}_{i-1}(x) \neq \ddot{\varphi}_{i-1}(y) \Leftrightarrow\left(\ddot{\varphi}_{i-1}(y)=+\infty \wedge \ddot{\varphi}_{i}(x)=0\right) \Rightarrow \ddot{\varphi}_{i-1}(x)>0 .
$$

or

Local characterization of quasi-crystals

Local quasi-crystal axioms

LQC2. $\ddot{\varepsilon}_{i}(x)=0$ iff $\ddot{\varphi}_{i+1}(x)=0$, for $i \in\{1, \ldots, n-2\}$.

LQC3. If both $\ddot{e}_{i}(x)$ and $\ddot{e}_{j}(x)$ are defined, for $i \neq j$, then $\ddot{e}_{i} \ddot{e}_{j}(x)=\ddot{e}_{j} \ddot{e}_{i}(x) \neq \perp$ (and dual axiom for $\ddot{f}_{i}, \ddot{f}_{j}$.)

Local characterization of quasi-crystals

Local quasi-crystal axioms

LQC2. $\ddot{\varepsilon}_{i}(x)=0$ iff $\ddot{\varphi}_{i+1}(x)=0$, for $i \in\{1, \ldots, n-2\}$.

LQC3. If both $\ddot{e}_{i}(x)$ and $\ddot{e}_{j}(x)$ are defined, for $i \neq j$, then $\ddot{e}_{i} \ddot{e}_{j}(x)=\ddot{e}_{j} \ddot{e}_{i}(x) \neq \perp$ (and dual axiom for $\ddot{f}_{i}, \ddot{f}_{j}$.)

Local characterization of quasi-crystals

Theorem (Cain, Malheiro, Rodrigues, R. '23)
If \mathcal{Q} is a quasi-crystal of type A (not necessarily seminormal) satisfying the local axioms, and such that $\ddot{\varepsilon}_{i}(x) \neq+\infty$ and $\ddot{\varphi}_{i}(x) \neq+\infty$, for all $i \in I, x \in \mathcal{Q}$, then \mathcal{Q} is a weak Stembridge crystal (i.e. not necessarily seminormal).

Local characterization of quasi-crystals

Theorem (Cain, Malheiro, Rodrigues, R. '23)

If \mathcal{Q} is a quasi-crystal of type A (not necessarily seminormal) satisfying the local axioms, and such that $\ddot{\varepsilon}_{i}(x) \neq+\infty$ and $\ddot{\varphi}_{i}(x) \neq+\infty$, for all $i \in I, x \in \mathcal{Q}$, then \mathcal{Q} is a weak Stembridge crystal (i.e. not necessarily seminormal).

Theorem (Cain, Malheiro, Rodrigues, R. '23)

Let \mathcal{Q} be a connected component of a seminormal quasi-crystal graph of type A, weighted in $\mathbb{Z}_{\geq 0}^{n}$, satisfying the local axioms. Then, \mathcal{Q} has a unique highest weight element, whose weight is a composition.

Local characterization of quasi-crystals

Theorem (Cain, Malheiro, Rodrigues, R. '23)

If \mathcal{Q} is a quasi-crystal of type A (not necessarily seminormal) satisfying the local axioms, and such that $\ddot{\varepsilon}_{i}(x) \neq+\infty$ and $\ddot{\varphi}_{i}(x) \neq+\infty$, for all $i \in I, x \in \mathcal{Q}$, then \mathcal{Q} is a weak Stembridge crystal (i.e. not necessarily seminormal).

Theorem (Cain, Malheiro, Rodrigues, R. '23)

Let \mathcal{Q} be a connected component of a seminormal quasi-crystal graph of type A, weighted in $\mathbb{Z}_{\geq 0}^{n}$, satisfying the local axioms. Then, \mathcal{Q} has a unique highest weight element, whose weight is a composition.

Theorem (Cain, Malheiro, Rodrigues, R. '23)

Let \mathcal{Q} and \mathcal{Q}^{\prime} be connected components of seminormal quasi-crystal graphs of type A satisfying the local axioms, with highest weight elements u and v. If $w t(u)=w t(v)$, then there exists a weight-preserving isomorphism between \mathcal{Q} and \mathcal{Q}^{\prime}.

Quasi-tensor product of quasi-crystals

- Cain, Guilherme, and Malheiro (2023) introduced a notion of quasi-tensor product of seminormal quasi-crystals, denoted $\mathcal{Q} \ddot{\otimes} \mathcal{Q}^{\prime}$.
- \mathcal{B}_{n} is the standard crystal of type A_{n-1} :

$$
1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \cdots \quad \xrightarrow{n-1} n
$$

- Similarly to the case of the plactic monoid, each component of the hypoplactic monoid is isomorphic to some $\mathcal{B}_{n}^{\otimes} k$.

Quasi-tensor product of quasi-crystals

- Cain, Guilherme, and Malheiro (2023) introduced a notion of quasi-tensor product of seminormal quasi-crystals, denoted $\mathcal{Q} \ddot{\otimes} \mathcal{Q}^{\prime}$.
- \mathcal{B}_{n} is the standard crystal of type A_{n-1} :

$$
1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \cdots \quad \xrightarrow{n-1} n
$$

- Similarly to the case of the plactic monoid, each component of the hypoplactic monoid is isomorphic to some $\mathcal{B}_{n}^{\otimes} k$.

A connected component of $\mathcal{B}_{3} \ddot{\otimes} \mathcal{B}_{3}$

A connected component of $\mathcal{B}_{3} \otimes \mathcal{B}_{3}$

Quasi-tensor product of quasi-crystals

Theorem (Cain, Malheiro, Rodrigues, R. '23)

Let \mathcal{Q} and \mathcal{Q}^{\prime} be seminormal quasi-crystal graphs satisfying the local axioms. Then, $\mathcal{Q} \ddot{\otimes} \mathcal{Q}^{\prime}$ is a seminormal quasi-crystal that satisfies the same axioms.

- The standard crystal \mathcal{B}_{n} satisfies the local axioms.
- In particular, the quasi-crystal of words satisfies the local axioms.
- As a consequence, every connected component of a seminormal quasi-crystal satisfying the local axioms is isomorphic a quasi-crystal of
 quasi-ribbon tableaux.

From crystals to quasi-crystals

Let $\left(\mathcal{C}, \tilde{f}_{i}, \tilde{e}_{i}, \tilde{\varepsilon}_{i}, \tilde{\varphi}_{i}\right)$ be a connected component of a Stembridge crystal, weighted in $\mathbb{Z}_{\geq 0}^{n}$, and define $\left(\mathcal{Q}, \ddot{f}_{i}, \ddot{e}_{i}, \ddot{\varepsilon}_{i}, \ddot{\varphi}_{i}\right)$ to have the same underlying set as \mathcal{C} and:

- Place a i-labelled loop on x if
$\tilde{\varepsilon}_{i}(x)<w t_{i+1}(x)$, for all $i \in I, x \in \mathcal{C}$ (equivalently, if $\left.\tilde{\varphi}_{i}(x)<w t_{i}(x)\right)$.
- Then, remove i-labelled edges that have i-labelled loops on both ends.

Theorem (Cain, Malheiro, Rodrigues, R. '23)

\mathcal{Q} is a seminormal quasi-crystal that satisfies the

From crystals to quasi-crystals

Let $\left(\mathcal{C}, \tilde{f}_{i}, \tilde{e}_{i}, \tilde{\varepsilon}_{i}, \tilde{\varphi}_{i}\right)$ be a connected component of a Stembridge crystal, weighted in $\mathbb{Z}_{\geq 0}^{n}$, and define $\left(\mathcal{Q}, \ddot{f}_{i}, \ddot{e}_{i}, \ddot{\varepsilon}_{i}, \ddot{\varphi}_{i}\right)$ to have the same underlying set as \mathcal{C} and:

- Place a i-labelled loop on x if
$\tilde{\varepsilon}_{i}(x)<w t_{i+1}(x)$, for all $i \in I, x \in \mathcal{C}$ (equivalently, if $\tilde{\varphi}_{i}(x)<w t_{i}(x)$).
- Then, remove i-labelled edges that have i-labelled loops on both ends.

Theorem (Cain, Malheiro, Rodrigues, R. '23)

\mathcal{Q} is a seminormal quasi-crystal that satisfies the local axioms.

From crystals to quasi-crystals

Let $\left(\mathcal{C}, \tilde{f}_{i}, \tilde{e}_{i}, \tilde{\varepsilon}_{i}, \tilde{\varphi}_{i}\right)$ be a connected component of a Stembridge crystal, weighted in $\mathbb{Z}_{\geq 0}^{n}$, and define ($\mathcal{Q}, \ddot{f}_{i}, \ddot{e}_{i}, \ddot{\varepsilon}_{i}, \ddot{\varphi}_{i}$) to have the same underlying set as \mathcal{C} and:

- Place a i-labelled loop on x if
$\tilde{\varepsilon}_{i}(x)<w t_{i+1}(x)$, for all $i \in I, x \in \mathcal{C}$ (equivalently, if $\left.\tilde{\varphi}_{i}(x)<w t_{i}(x)\right)$.
- Then, remove i-labelled edges that have i-labelled loops on both ends.

Theorem (Cain, Malheiro, Rodrigues, R. '23)

\mathcal{Q} is a seminormal quasi-crystal that satisfies the local axioms.

From crystals to quasi-crystals

Let $\left(\mathcal{C}, \tilde{f}_{i}, \tilde{e}_{i}, \tilde{\varepsilon}_{i}, \tilde{\varphi}_{i}\right)$ be a connected component of a Stembridge crystal, weighted in $\mathbb{Z}_{\geq 0}^{n}$, and define $\left(\mathcal{Q}, \ddot{f}_{i}, \ddot{e}_{i}, \ddot{\varepsilon}_{i}, \ddot{\varphi}_{i}\right)$ to have the same underlying set as \mathcal{C} and:

- Place a i-labelled loop on x if
$\tilde{\varepsilon}_{i}(x)<w t_{i+1}(x)$, for all $i \in I, x \in \mathcal{C}$ (equivalently, if $\left.\tilde{\varphi}_{i}(x)<w t_{i}(x)\right)$.
- Then, remove i-labelled edges that have i-labelled loops on both ends.

From crystals to quasi-crystals

Let $\left(\mathcal{C}, \tilde{f}_{i}, \tilde{e}_{i}, \tilde{\varepsilon}_{i}, \tilde{\varphi}_{i}\right)$ be a connected component of a Stembridge crystal, weighted in $\mathbb{Z}_{\geq 0}^{n}$, and define $\left(\mathcal{Q}, \ddot{f}_{i}, \ddot{e}_{i}, \ddot{\varepsilon}_{i}, \ddot{\varphi}_{i}\right)$ to have the same underlying set as \mathcal{C} and:

- Place a i-labelled loop on x if
$\tilde{\varepsilon}_{i}(x)<w t_{i+1}(x)$, for all $i \in I, x \in \mathcal{C}$ (equivalently, if $\left.\tilde{\varphi}_{i}(x)<w t_{i}(x)\right)$.
- Then, remove i-labelled edges that have i-labelled loops on both ends.

From crystals to quasi-crystals

Let $\left(\mathcal{C}, \tilde{f}_{i}, \tilde{e}_{i}, \tilde{\varepsilon}_{i}, \tilde{\varphi}_{i}\right)$ be a connected component of a Stembridge crystal, weighted in $\mathbb{Z}_{\geq 0}^{n}$, and define $\left(\mathcal{Q}, \ddot{f}_{i}, \ddot{e}_{i}, \ddot{\varepsilon}_{i}, \ddot{\varphi}_{i}\right)$ to have the same underlying set as \mathcal{C} and:

- Place a i-labelled loop on x if
$\tilde{\varepsilon}_{i}(x)<w t_{i+1}(x)$, for all $i \in I, x \in \mathcal{C}$ (equivalently, if $\left.\tilde{\varphi}_{i}(x)<w t_{i}(x)\right)$.

From crystals to quasi-crystals

Let $\left(\mathcal{C}, \tilde{f}_{i}, \tilde{e}_{i}, \tilde{\varepsilon}_{i}, \tilde{\varphi}_{i}\right)$ be a connected component of a Stembridge crystal, weighted in $\mathbb{Z}_{\geq 0}^{n}$, and define $\left(\mathcal{Q}, \ddot{f}_{i}, \ddot{e}_{i}, \ddot{\varepsilon}_{i}, \ddot{\varphi}_{i}\right)$ to have the same underlying set as \mathcal{C} and:

- Place a i-labelled loop on x if
$\tilde{\varepsilon}_{i}(x)<w t_{i+1}(x)$, for all $i \in I, x \in \mathcal{C}$ (equivalently, if $\left.\tilde{\varphi}_{i}(x)<w t_{i}(x)\right)$.

From crystals to quasi-crystals

Let $\left(\mathcal{C}, \tilde{f}_{i}, \tilde{e}_{i}, \tilde{\varepsilon}_{i}, \tilde{\varphi}_{i}\right)$ be a connected component of a Stembridge crystal, weighted in $\mathbb{Z}_{\geq 0}^{n}$, and define $\left(\mathcal{Q}, \ddot{f}_{i}, \ddot{e}_{i}, \ddot{\varepsilon}_{i}, \ddot{\varphi}_{i}\right)$ to have the same underlying set as \mathcal{C} and:

- Place a i-labelled loop on x if
$\tilde{\varepsilon}_{i}(x)<w t_{i+1}(x)$, for all $i \in I, x \in \mathcal{C}$ (equivalently, if $\left.\tilde{\varphi}_{i}(x)<w t_{i}(x)\right)$.
- Then, remove i-labelled edges that have i-labelled loops on both ends.

From crystals to quasi-crystals

Let $\left(\mathcal{C}, \tilde{f}_{i}, \tilde{e}_{i}, \tilde{\varepsilon}_{i}, \tilde{\varphi}_{i}\right)$ be a connected component of a Stembridge crystal, weighted in $\mathbb{Z}_{\geq 0}^{n}$, and define $\left(\mathcal{Q}, \ddot{f}_{i}, \ddot{e}_{i}, \ddot{\varepsilon}_{i}, \ddot{\varphi}_{i}\right)$ to have the same underlying set as \mathcal{C} and:

- Place a i-labelled loop on x if
$\tilde{\varepsilon}_{i}(x)<w t_{i+1}(x)$, for all $i \in I, x \in \mathcal{C}$ (equivalently, if $\left.\tilde{\varphi}_{i}(x)<w t_{i}(x)\right)$.
- Then, remove i-labelled edges that have i-labelled loops on both ends.

Theorem (Cain, Malheiro, Rodrigues, R. '23)

\mathcal{Q} is a seminormal quasi-crystal that satisfies the

From crystals to quasi-crystals

Let $\left(\mathcal{C}, \tilde{f}_{i}, \tilde{e}_{i}, \tilde{\varepsilon}_{i}, \tilde{\varphi}_{i}\right)$ be a connected component of a Stembridge crystal, weighted in $\mathbb{Z}_{\geq 0}^{n}$, and define ($\mathcal{Q}, \ddot{f}_{i}, \ddot{e}_{i}, \ddot{\varepsilon}_{i}, \ddot{\varphi}_{i}$) to have the same underlying set as \mathcal{C} and:

- Place a i-labelled loop on x if
$\tilde{\varepsilon}_{i}(x)<w t_{i+1}(x)$, for all $i \in I, x \in \mathcal{C}$ (equivalently, if $\left.\tilde{\varphi}_{i}(x)<w t_{i}(x)\right)$.
- Then, remove i-labelled edges that have i-labelled loops on both ends.

Theorem (Cain, Malheiro, Rodrigues, R. '23)

\mathcal{Q} is a seminormal quasi-crystal that satisfies the local axioms.

From crystals to quasi-crystals

Let $\left(\mathcal{C}, \tilde{f}_{i}, \tilde{e}_{i}, \tilde{\varepsilon}_{i}, \tilde{\varphi}_{i}\right)$ be a connected component of a Stembridge crystal, weighted in $\mathbb{Z}_{\geq 0}^{n}$, and define $\left(\mathcal{Q}, \ddot{f}_{i}, \ddot{e}_{i}, \ddot{\varepsilon}_{i}, \ddot{\varphi}_{i}\right)$ to have the same underlying set as \mathcal{C} and:

- Place a i-labelled loop on x if
$\tilde{\varepsilon}_{i}(x)<w t_{i+1}(x)$, for all $i \in I, x \in \mathcal{C}$ (equivalently, if $\tilde{\varphi}_{i}(x)<w t_{i}(x)$).
- Then, remove i-labelled edges that have i-labelled loops on both ends.

Theorem (Cain, Malheiro, Rodrigues, R. '23)

\mathcal{Q} is a seminormal quasi-crystal that satisfies the
 local axioms.

From crystals to quasi-crystals

Let $\left(\mathcal{C}, \tilde{f}_{i}, \tilde{e}_{i}, \tilde{\varepsilon}_{i}, \tilde{\varphi}_{i}\right)$ be a connected component of a Stembridge crystal, weighted in $\mathbb{Z}_{\geq 0}^{n}$, and define ($\mathcal{Q}, \ddot{f}_{i}, \ddot{e}_{i}, \ddot{\varepsilon}_{i}, \ddot{\varphi}_{i}$) to have the same underlying set as \mathcal{C} and:

- Place a i-labelled loop on x if
$\tilde{\varepsilon}_{i}(x)<w t_{i+1}(x)$, for all $i \in I, x \in \mathcal{C}$ (equivalently, if $\left.\tilde{\varphi}_{i}(x)<w t_{i}(x)\right)$.
- Then, remove i-labelled edges that have i-labelled loops on both ends.

Theorem (Cain, Malheiro, Rodrigues, R. '23)

\mathcal{Q} is a seminormal quasi-crystal that satisfies the
 local axioms.

From crystals to quasi-crystals

Let $\left(\mathcal{C}, \tilde{f}_{i}, \tilde{e}_{i}, \tilde{\varepsilon}_{i}, \tilde{\varphi}_{i}\right)$ be a connected component of a Stembridge crystal, weighted in $\mathbb{Z}_{\geq 0}^{n}$, and define ($\mathcal{Q}, \ddot{f}_{i}, \ddot{e}_{i}, \ddot{\varepsilon}_{i}, \ddot{\varphi}_{i}$) to have the same underlying set as \mathcal{C} and:

- Place a i-labelled loop on x if
$\tilde{\varepsilon}_{i}(x)<w t_{i+1}(x)$, for all $i \in I, x \in \mathcal{C}$ (equivalently, if $\left.\tilde{\varphi}_{i}(x)<w t_{i}(x)\right)$.
- Then, remove i-labelled edges that have i-labelled loops on both ends.

Theorem (Cain, Malheiro, Rodrigues, R. '23)

\mathcal{Q} is a seminormal quasi-crystal that satisfies the

From crystals to quasi-crystals

Let $\left(\mathcal{C}, \tilde{f}_{i}, \tilde{e}_{i}, \tilde{\varepsilon}_{i}, \tilde{\varphi}_{i}\right)$ be a connected component of a Stembridge crystal, weighted in $\mathbb{Z}_{\geq 0}^{n}$, and define $\left(\mathcal{Q}, \ddot{f}_{i}, \ddot{e}_{i}, \ddot{\varepsilon}_{i}, \ddot{\varphi}_{i}\right)$ to have the same underlying set as \mathcal{C} and:

- Place a i-labelled loop on x if $\tilde{\varepsilon}_{i}(x)<w t_{i+1}(x)$, for all $i \in I, x \in \mathcal{C}$ (equivalently, if $\left.\tilde{\varphi}_{i}(x)<w t_{i}(x)\right)$.
- Then, remove i-labelled edges that have i-labelled loops on both ends.

Theorem (Cain, Malheiro, Rodrigues, R. '23)

\mathcal{Q} is a seminormal quasi-crystal that satisfies the local axioms.

From crystals to quasi-crystals

Some references

A．J．Cain，R．P．Guilherme，A．Malheiro＂Quasi－crystals for arbitrary root systems and associated generalizations of the hypoplactic monoid＂．arXiv：2301．00271．

国
A．J．Cain，A．Malheiro＂Crystallizing the hypoplactic monoid：from quasi－Kashiwara operators to the Robinson－Schensted－Knuth－type correspondence for quasi－ribbon tableaux＂，J．Algebr．Comb． 45 （2），475－524 （2017）．
囯
D．Krob，J．－Y．Thibon＂Noncommutative symmetric functions．IV：Quantum linear groups and Hecke Algebras at $q=0$＂，J．Algebr．Comb． 6 （4）， $339-376$ （1997）．

J．－C．Novelli＂On the hypoplactic monoid＂，Discrete Math．， 217 （1－3），315－336 （2000）．
目
J．R．Stembridge＂A local characterization of simply－laced crystals＂，Trans．Am． Math．Soc． 355 （12），4807－4823（2003）．

