Locating domination in graphs

Ignacio M Pelayo*

All the graphs considered are finite, undirected, simple, and connected. The vertex set and edge set of a graph G are denoted by V(G) and E(G). The distance between vertices $v, w \in V(G)$ is denoted by d(v, w).

Definition 1. A set D of vertices in a graph G is a dominating set if every vertex of $V(G) \setminus D$ has a neighbour in D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G.

Definition 2. A set $D = \{x_1, \ldots, x_k\}$ of vertices in a graph G is a locating set if for every pair of distinct vertices $u, v \in V(G), (d(u, x_1), \ldots, d(u, x_k)) \neq (d(v, x_1), \ldots, d(v, x_k))$. The location number $\beta(G)$ is the minimum cardinality of a locating set of G.

Definition 3. An η -code is a locating dominating set of minimum cardinality. The metric-location-domination number $\eta(G)$ is the cardinality of an η -code of G.

Definition 4. A set D of vertices in a graph G is a locating-dominating set if for every two vertices $u, v \in V(G) \setminus D$, $\emptyset \neq N(u) \cap D \neq N(v) \cap D \neq \emptyset$. A λ -code is a locating-dominating set of minimum cardinality. The location-domination number $\lambda(G)$ is the cardinality of a λ -code of G.

As a straightforward consequence of these definitions, the following inequalities hold:

Proposition 1. For every graph G, $\max\{\gamma(G), \beta(G)\} \le \eta(G) \le \min\{\gamma(G) + \beta(G), \lambda(G)\}$

In this talk, we will present the state of the art, including some of our contributions, concerning η -codes and λ -codes. To be more precise, we will discuss and provide details mainly, but not only, regarding the results appearing in Table 1 and Theorem 1.

G	γ	β	η	λ
P_2	1	1	1	1
P_3	1	1	2	2
$P_n, n > 3$	$\left\lceil \frac{n}{3} \right\rceil$	1	$\left\lceil \frac{n}{3} \right\rceil$	$\left\lceil \frac{2n}{5} \right\rceil$
C_4, C_5	2	2	2	2
C_6	2	2	3	3
$C_n, n > 6$	$\left\lceil \frac{n}{3} \right\rceil$	2	$\left\lceil \frac{n}{3} \right\rceil$	$\left\lceil \frac{2n}{5} \right\rceil$
$K_n, n > 1$	1	n-1	n-1	n-1
$K_{1,n-1}, n > 2$	1	n-2	n-1	n-1
$K_{r,n-r}, r > 1, n > 4$	2	n-2	n-2	n-2
$W_{1,4}$	1	2	2	2
$W_{1,5}$	1	2	3	3
$W_{1,6}$	1	3	3	3
$W_{1,n-1}, n > 7$	1	$\lfloor \frac{2n}{5} \rfloor$	$\left\lceil \frac{2n-2}{5} \right\rceil$	$\left\lceil \frac{2n-2}{5} \right\rceil$

Table 1: Domination parameters of some basic families

Theorem 1. Let G be a graph such that |V(G)| = n, $diam(G) = D \ge 3$, $\eta(G) = \eta$ and $\lambda(G) = \lambda$. Then

- $\eta(G) + \lceil \frac{2D}{3} \rceil \le n \le \eta + \eta \cdot 3^{\eta-1}$, and both bounds are tight.
- $\lambda + \lfloor \frac{3D+1}{5} \rfloor \le n \le \lambda + 2^{\lambda} 1$, and both bounds are tight.
- Let $h \in \{1, 2, n 2, n 1\}$. The set of all graphs of order $n \ge 2$ satisfying $\eta(G) = h$ (resp. $\lambda(G) = h$) has been completely characterized.
- Given three positive integers a, b, c verifying that $\max\{a, b\} \le c \le a + b$, there always exists a graph G such that $\gamma(G) = a, \beta(G) = b$ and $\eta(G) = c$, except for the case 1 = b < a < c = a + 1.

^{*}Universitat Politècnica de Catalunya, Barcelona, Spain.