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Introduction

We are interested in the study of a class of tilings of the sphere,
spherical f-tilings.
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Introduction

@ Introduction

A We are interested in the study of a class of tilings of the sphere,
e Spherical f-tilings.

I
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ngs Spherical f-tilings are strongly related to the theory of isometric

S. A. Robertson, Isometric foldings of Riemannian manifolds,
Proceedings of the Royal Society of Edinburgh 79 (1977) 275-284.




Isometric folding

Let M and N be smooth Riemannian manifolds. A map

® |sometric foldirj

f:M— N
> f for
m IS an isometric folding if f sends finite piecewise geodesic segments
to finite piecewise geodesic segments of the same length.
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Isometric folding

Let M and N be smooth Riemannian manifolds. A map
f:M— N

IS an isometric folding if f sends finite piecewise geodesic segments
to finite piecewise geodesic segments of the same length.

Let F(M, N) be set of all isometrics foldings from M into N. Then,
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Isometric folding

Let M and N be smooth Riemannian manifolds. A map
f:M— N

IS an isometric folding if f sends finite piecewise geodesic segments
to finite piecewise geodesic segments of the same length.

Let F(M, N) be set of all isometrics foldings from M into N. Then,

) F(M)=JF(M,M)is a semigroup with identity element id,,; and
contains the isometry group Z(M) as a sub-semigroup;
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. Let F(M, N) be set of all isometrics foldings from M into N. Then,
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. ) F(M)=F(M,DM)is a semigroup with identity element ¢d;, and
contains the isometry group Z(M) as a sub-semigroup;

i) forall x, y € M, dn(f(x), f(y)) < dp(x,y), where dy; and dy are,
respectively, the induced metrics on M and N by their Riemannian
structure. And so any isometric folding is a continuous map;
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Isometric folding

Let M and N be smooth Riemannian manifolds. A map
f:M— N

IS an isometric folding if f sends finite piecewise geodesic segments
to finite piecewise geodesic segments of the same length.

Let F(M, N) be set of all isometrics foldings from M into N. Then,
) F(M)=JF(M,M)is a semigroup with identity element id,,; and
contains the isometry group Z(M) as a sub-semigroup;

i) forall x, y € M, dn(f(x), f(y)) < dp(x,y), where dy; and dy are,
respectively, the induced metrics on M and N by their Riemannian
structure. And so any isometric folding is a continuous map;

i) any differentiable isometric folding is an isometry.
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A general description of X f, for any f € F(M, N), was given by
S. A. Robertson in 77.




Description of X f for surfaces

Let M and N be complete Riemannian 2-manifolds and let
' feF(M,N).
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Description of X f for surfaces

Let M and N be complete Riemannian 2-manifolds and let
feF(M,N).

The singularities of f near z (x € X f) form the image of an even
number of geodesic rays emanating from x and making alternated

angles aq, 81, as, B2, ..., an, Bn, Where

ZO&j:ZBJ’:TF. (D
j=1 j=1
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Description of X f for surfaces

Let M and N be complete Riemannian 2-manifolds and let
feF(M,N).

=G
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The singularities of f near z (x € X f) form the image of an even
number of geodesic rays emanating from =z and making alternated

angles aq, 81, as, B2, ..., an, Bn, Where

gularities

 tilings
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) Y aj=> pi=m (1)
j=1 j=1

The singularity set of an isometric folding on surfaces can be seen
as an embedded graph of even valency at any vertex and satisfying
the angle folding relation (1)).
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Spherical isometric foldings / Spherical folding tilings

The compactness of the sphere assures that the singularity set of
any spherical isometric folding is connected with finitely many
regions.
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A spherical folding tiling is an edge-to-edge finite polygonal-tiling
7 of S? whose underlying graph is of the type described in 1.




Spherical isometric foldings / Spherical folding tilings

® Spherical iso ‘ ‘h ‘
Spherical foldi

The compactness of the sphere assures that the singularity set of
N any spherical isometric folding is connected with finitely many
regions.
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A spherical folding tiling is an edge-to-edge finite polygonal-tiling
7 of S? whose underlying graph is of the type described in 1.

We shall denote by 7(S5?) the set of all folding tilings of 52
identifying the singularity sets of non-trivial foldings with spherical
folding tilings.
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Spherical folding tilings

Classification of spherical folding tilings with a specified fixed type

““ of prototiles:
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1. Classification of all spherical monohedral f-tilings, A. M. Breda, 1992.

obs: The prototile must be a spherical triangle since any (convex) polyhedron in R

““ must have, at least, a triangular face or a vertex of valency 3.




Spherical folding tilings

Classification of spherical folding tilings with a specified fixed type
of prototiles:

b 1. Classification of all spherical monohedral f-tilings, A. M. Breda, 1992.

Spherical foldi
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e‘SOSCE'eS obs: The prototile must be a spherical triangle since any (convex) polyhedron in R3

sceles

must have, at least, a triangular face or a vertex of valency 3.

Ten years later was established the complete classification of
all triangular spherical monohedral tilings. (which obviously
Includes the monohedral f -tilings). Y. ueno, Y. Agaoka - 2002.
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Spherical folding tilings

e Dihedral spherical f-tilings:
Triangle —+ Triangle

® Spherical isom:
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NH“ 2. Classification of all dihedral spherical f-tilings by triangles and

parallelograms, A. M. Breda, A. F. Santos - from 2004 to 2006.




Spherical folding tilings

e Dihedral spherical f-tilings:
Triangle —+ Triangle

ings Triangle + Quadrangle
" Sonercal il Triangle -+ Convex Polygon
le isosce““;es
e . | o |
’ 2. Classification of all dihedral spherical f-tilings by triangles and

parallelograms, A. M. Breda, A. F. Santos - from 2004 to 2006.

2.1 Dihedral f-tilings by spherical triangles and spherical squares.
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Spherical folding tilings

e Dihedral spherical f-tilings:
Triangle —+ Triangle
Triangle + Quadrangle
Triangle + Convex Polygon

2. Classification of all dihedral spherical f-tilings by triangles and
parallelograms, A. M. Breda, A. F. Santos - from 2004 to 2006.

2.1 Dihedral f-tilings by spherical triangles and spherical squares.

2.2 Dihedral f-tilings by spherical triangles and spherical rhombi.



Spherical folding tilings

e Dihedral spherical f-tilings:
Triangle —+ Triangle

o Triangle + Quadrangle
® Spherical .M

Spherical foldi Triangle + Convex Polygon
” |I. isosceles
! celes

2. Classification of all dihedral spherical f-tilings by triangles and
parallelograms, A. M. Breda, A. F. Santos - from 2004 to 2006.

2.1 Dihedral f-tilings by spherical triangles and spherical squares.

2.2 Dihedral f-tilings by spherical triangles and spherical rhombi.

2.3 Dihedral f-tilings by spherical triangles and spherical
parallelograms with distinct pairs of congruent opposite angles
and with distinct pairs of congruent opposite sides.
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3. Classification of all dihedral f-tilings of the sphere by triangles and
r-sided regular polygons (r > 5), C. P. Avelino, A. F. Santos - 2008.
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Spherical folding tilings

4. Classification of all dihedral triangular f-tilings of the sphere
I whose prototiles are an equilateral triangle and any other triangle,
A. M. Breda, P. S. Ribeiro and A. F. Santos - from 2008 to 2009.
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Spherical folding tilings

4. Classification of all dihedral triangular f-tilings of the sphere
““““ N whose prototiles are an equilateral triangle and any other triangle,
!lH A. M. Breda, P. S. Ribeiro and A. F. Santos - from 2008 to 2009.
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e 5. Classification of all dihedral f-tilings of the sphere by isosceles

- trapezoids and (equilateral and isosceles) triangles, c. p. Avelino, A. F.
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“Hm Santos - 2011.
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Spherical folding tilings

. Classification of all dihedral triangular f-tilings of the sphere

whose prototiles are an equilateral triangle and any other triangle,
A. M. Breda, P. S. Ribeiro and A. F. Santos - from 2008 to 2009.

. Classification of all dihedral f-tilings of the sphere by isosceles

trapezoids and (equilateral and isosceles) triangles, c. p. Avelino, A. F.
Santos - 2011.

. Classification of all dihedral f-tilings of the sphere by isosceles

trapezoids and scalene triangles, c. P Avelino, A. F. Santos - from 2009 to
2012.



Spherical folding tilings

4. Classification of all dihedral triangular f-tilings of the sphere
““ i whose prototiles are an equilateral triangle and any other triangle,
: A. M. Breda, P. S. Ribeiro and A. F. Santos - from 2008 to 2009.

® Spherical .H‘ |

spherical folcing Al 5. Classification of all dihedral f-tilings of the sphere by isosceles
,yisosce.es trapezoids and (equilateral and isosceles) triangles, c. P Avelino, A. F.
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H“ Santos - 2011.

tilings

6. Classification of all dihedral f-tilings of the sphere by isosceles
trapezoids and scalene triangles, c. P Avelino, A. F. Santos - from 2009 to
2012.

7. Classification of the dihedral f-tilings of the sphere by two right
triangles being one of each isosceles, c. p. Avelino, A. F. Santos - 2012.




Spherical folding tilings

4. Classification of all dihedral triangular f-tilings of the sphere
““N “ whose prototiles are an equilateral triangle and any other triangle,
\H“ H A. M. Breda, P. S. Ribeiro and A. F. Santos - from 2008 to 2009.

g tilings
@ Spherical isc

Sphercal ol 5. Classification of all dihedral f-tilings of the sphere by isosceles

byisosce.es trapezoids and (equilateral and isosceles) triangles, c. p. Avelino, A. F.

sosceles
Santos - 2011.

6. Classification of all dihedral f-tilings of the sphere by isosceles
trapezoids and scalene triangles, c. P Avelino, A. F. Santos - from 2009 to
2012.

7. Classification of the dihedral f-tilings of the sphere by two right
triangles being one of each isosceles, c. p. Avelino, A. F. Santos - 2012.

8. Classification of the dihedral f-tilings of the sphere by any two
Isosceles triangles, A. M. Breda, P. S. Ribeiro - in work.

A tour through spherical f-tilings - p. 15/26



|
gs
(}\Im
| f-tilings b ‘H\

| trapezoid

Dihedral f-tilings by isosceles triangles
and isosceles trapezoids

trapezoids




Spherical isosceles trapezoid

““N Let S? be the Euclidean sphere of radius 1. A spherical isosceles
VI,H! trapezoid is a spherical quadrangle congruent to the intersection
E of two spherical lunes, Q = L, N Ly, where L, and L, have

ccles vertices in the plane x = 0, in orthogonal positions, and L, has
the point (1,0, 0) at its center.

N

— 7S

y
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Adjacency cases

Let 2 (Q,T) be the set, up to an isomorphism, of all dihedral -tilings
““““ Bl of S? whose prototiles are an isosceles trapezoid () and an isosceles
W — triangle T.
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Adjacency cases

Let 2 (Q,T) be the set, up to an isomorphism, of all dihedral f-tilings
of S? whose prototiles are an isosceles trapezoid @ and an isosceles
triangle T'.
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Results

Proposition 1. 1f 2(Q,T") # () then there cannot be a pair of tiles as in cases | or IV.
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Results

Proposition 1. 1 (Q,T") # () then there cannot be a pair of tiles as in cases | or IV.

“““ Proposition 2. Let () and 1" be a spherical isosceles trapezoid and a spherical

HH iIsosceles triangle, respectively, such that they are in adjacent positions as in case Il.
gs

nu} Bl Then, Q(Q,T') # 0 iff

I:;sceles (|) Ol]_ _|_ /6 — T and 052 o ’y = % or

e s trapezoid

(i) a1 +y=m 202 +y=mand 5= 5 or

® Results

(i) oy + v =7, g = % andﬁ = g or

(iv) vy +v =m, g =

b3

and § = T, forsome k > 2.




Results

Proposition 1. 1 (Q,T") # () then there cannot be a pair of tiles as in cases | or IV.

““““ Proposition 2. Let () and 1" be a spherical isosceles trapezoid and a spherical
Wlw B isosceles triangle, respectively, such that they are in adjacent positions as in case |l.
I

;- Then, Q(Q,T') # 0 iff
4 '.ZZS*'“ () a1 + B8 =mandagy =7 = 3:

celes trapezoid

Figure 1: filing 7
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Results

Proposition 1. 1 (Q,T") # () then there cannot be a pair of tiles as in cases | or IV.

Proposition 2. Let () and 1" be a spherical isosceles trapezoid and a spherical
N isosceles triangle, respectively, such that they are in adjacent positions as in case |l.

’ ngs
\uM\ Then, Q(Q, T) # ( iff
(i) a1 +v=m, 200 +y=mand B = 5

celes trapezoid

Figure 2: t-tiling C



Results

Proposition 1. 1 (Q,T") # () then there cannot be a pair of tiles as in cases | or IV.

Proposition 2. Let () and 1" be a spherical isosceles trapezoid and a spherical
iIsosceles triangle, respectively, such that they are in adjacent positions as in case Il.

I b Then, Q(Q,T') # 0 iff

I
celes trapezoid

|
® Results

isosceles

F (i) a1 +y=m as=%and = 3:

Figure 3: t4iing C, v € (=, T)
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Results

Proposition 1.

Proposition 2.

If Q2(Q,T") # () then there cannot be a pair of tiles as in cases | or IV.

Let () and 'I" be a spherical isosceles trapezoid and a spherical

iIsosceles triangle, respectively, such that they are in adjacent positions as in case Il.

Then, Q(Q,T') # 0 iff

(iv) a1 +y=m az = 5 and § = 7, forsome k > 2:

57 P
1 2
Y v ‘ Y LY
o, o\ 0 ‘ o, /oy ‘ o,
1 3 5
o L\ &y YA %
o, oA/ a, O\ Oy o,
10 6 11
Oy /oy O\ &y %
Y Y Y Y
8 7 9

Figure 4: tiiing RY, k> 2anda; € (%, (k;i”)
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Results

Proposition 3. If two sp_herical iIsosceles trapezoids are in adjacent positions as in case
““““ I, then Q(Q,T) = {RE, | k> 3}U{C}, where RE_ is adihedral f-tiling satisfying
— aty=max+f=mandy = 7, withay € (7 — arccos (—cos® T) , 2T)
M\ S and k > 3.
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Results

Proposition 3. If two sp_herical iIsosceles trapezoids are in adjacent positions as in case
I, then Q(Q,T) = {RE, | k> 3}U{C}, where RE_ is adihedral f-tiling satisfying

_ a1+ =mas+ B =mandy = T, withas € (7 — arccos (—cos* T ), 27)

’H
\m\ and k > 3.

Figure 5: t-iling 7_2’;2, k > 3and ag € (7T — arccos (— cos? %) , 27")
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How to obtain the f-tilings?

‘JE’“““ (i) Consider restrictions over () and T
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An “algorithm”

How to obtain the f-tilings?

)

MM\ u
MN - (i) Consider restrictions over Q and T

m supeia (1) cOmmon vertex of () and T' (adjacents);

An “algorithm”...

L

[

(i) list of possible vertices; remove those that do not allow the
local configuration give rise to a global configuration;

® An “algorithm®




An “algorithm”

s How to obtain the f-tilings?

Ww An “algorithm”...
I

s g (i) common vertex of  and 1" (adjacents);

o a2l (i) list of possible vertices; remove those that do not allow the
local configuration give rise to a global configuration;

. (i) Consider restrictions over Q and T;

(iv) build a planar representation;
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An “algorithm”

How to obtain the f-tilings?

An “algorithm”...

(i) Consider restrictions over (Q and T';
(i) common vertex of () and 1T" (adjacents);

(i) list of possible vertices; remove those that do not allow the
local configuration give rise to a global configuration;

(iv) build a planar representation;

(v) complete analysis of all the angles and edges; study the
congruence of them;
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An “algorithm”

HN — How to obtain the f-tilings?
a3
.. (i) Consider restrictions over Q and T

An “algorithm”...

weeos (1) COMMonN vertex of @ and T (adjacents);

o a2l (i) list of possible vertices; remove those that do not allow the
local configuration give rise to a global configuration;

(iv) build a planar representation;

(v) complete analysis of all the angles and edges; study the
congruence of them;

(vi) build a 3D representation.
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An example: f-tiling C

: M =24
I

N =16

—

S

Q

u trapezoid

® An example
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Summary

N f-Tiling oq o2 R B V] M N G
““ T arccos 1_2\/5 % % ™ — o] 3 8 4 C2
i ey =7 3 (£:3) % oo on
i =K (5.040%) 5 .o F 8 s @ caxo
H“ ﬁ’&2 T — (04]5, 2%) % T — a9 3 4k 2k Doy

Summary

Table 1: Combinatorial Structure of the Dihedral f-Tilings of .S 2 by Isosceles Trapezoids

and Isosceles Triangles

k 2 :
® o, = T — arccos (—cos %),kZS,

e | V| is the number of distinct classes of congruent vertices;

e M and N are, respectively, the number of triangles congruent to 7" and the number of isosceles
trapezoids congruent to @), used in the dihedral f-tilings;

e G(7) is the symmetry group of each tiling = € Q (Q, T'); by C,, we mean the cyclic group of order
n; D,, is the dihedral group of order 2n; the octahedral group is O;, = C2 x S4 (the symmetry
group of the cube).
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