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Notation and background

m,n ∈ N \ {0}
R = (r1, . . . , rm), S = (s1, . . . , sn) positive integral vectors.

Definition

A (R,S) := {A = (ai,j) ∈ Mm,n ({0, 1}) s.t.
n
∑

j=1

aℓ,j = rℓ,

m
∑

i=1

ai,t = rt,

for all 1 ≤ ℓ ≤ m, 1 ≤ t ≤ n}

Question

For which R,S is A (R,S) 6= ∅?
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Answer

Gale-Ryser theorem!

Interesting instance:
m = n, k ∈ N \ {0} such that ri = si = k for all 1 ≤ i ≤ n.

In this case, write A (n, k) instead of A (R,S).
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Generalization of Bruhat Order

Definition (Brualdi and Hwang)

Let R,S be such that A (R,S) 6= ∅, and A = (ai,j) ∈ A (R,S).
ΣA = (σij(A)) ∈ Mm,n ({0, 1}) such that

σi,j(A) :=

i
∑

ℓ=1

j
∑

t=1

aℓ,t, 1 ≤ i ≤ m, 1 ≤ j ≤ n

If A1,A2 ∈ A (R,S), define A1 4 A2 if and only if ΣA1
> ΣA2

in
the entrywise order, i.e., σi,j(A1) ≥ σi,j(A2), for all 1 ≤ i ≤ m
and 1 ≤ j ≤ n.
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Remark

A (n, 1) ≃ Sn, since it is the set of permutation matrices, and
here 4 is nothing but the well known Bruhat order.

A. Conflitti et al. Binary matrices with Bruhat order



Overview
Known Results and Problems

Our Theorems
Extremely Vague Sketch of Proof

Further Readings

Preliminaries
Bruhat Order for Binary Matrices

Examples

A=





















1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1





















A. Conflitti et al. Binary matrices with Bruhat order



Overview
Known Results and Problems

Our Theorems
Extremely Vague Sketch of Proof

Further Readings

Preliminaries
Bruhat Order for Binary Matrices

Examples

A=





















1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1





















ΣA=





















1 2 2 2 2
2 4 4 4 4
2 4 5 6 6
2 4 6 7 8
2 4 6 8 10





















A. Conflitti et al. Binary matrices with Bruhat order



Overview
Known Results and Problems

Our Theorems
Extremely Vague Sketch of Proof

Further Readings

Preliminaries
Bruhat Order for Binary Matrices

Examples

A=





















1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1





















ΣA=





















1 2 2 2 2
2 4 4 4 4
2 4 5 6 6
2 4 6 7 8
2 4 6 8 10





















B=





















1 1 0 0 0
1 0 1 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 1 1





















A. Conflitti et al. Binary matrices with Bruhat order



Overview
Known Results and Problems

Our Theorems
Extremely Vague Sketch of Proof

Further Readings

Preliminaries
Bruhat Order for Binary Matrices

Examples

A=





















1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1





















ΣA=





















1 2 2 2 2
2 4 4 4 4
2 4 5 6 6
2 4 6 7 8
2 4 6 8 10





















B=





















1 1 0 0 0
1 0 1 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 1 1





















ΣB=





















1 2 2 2 2
2 3 4 4 4
2 4 6 6 6
2 4 6 7 8
2 4 6 8 10





















A. Conflitti et al. Binary matrices with Bruhat order



Overview
Known Results and Problems

Our Theorems
Extremely Vague Sketch of Proof

Further Readings

Preliminaries
Bruhat Order for Binary Matrices

Examples

A=





















1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1





















ΣA=





















1 2 2 2 2
2 4 4 4 4
2 4 5 6 6
2 4 6 7 8
2 4 6 8 10





















B=





















1 1 0 0 0
1 0 1 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 1 1





















ΣB=





















1 2 2 2 2
2 3 4 4 4
2 4 6 6 6
2 4 6 7 8
2 4 6 8 10





















A and B are not comparable in (A (5, 2) ,4).
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Theorem

Let n ∈ N \ {0} and 0 ≤ k ≤ n.
(A (n, k),4) admits a unique minimal element if and only if
k ∈ {0, 1,n − 1,n} or n = 2k.

The minimal matrix in A (2k, k) is

Pk = Jk ⊕ Jk =

(

Jk Ok

Ok Jk

)

,

where Jk is the matrix of all 1’s of order k and Ok is the zero
matrix also of order k, and the maximal matrix is

Qk =

(

Ok Jk

Jk Ok

)

.
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Remarks

There are 5 cases: k ∈ {0, 1,n − 1,n} or n = 2k, but

A (n, k) ≃ A (n,n − k) (swap 0’s and 1’s)

A (n, 0) = {On}

A (n, 1) ≃ Sn

therefore the most interesting case is A (2k, k), the set of binary
square matrices with all rows and columns having as many
zeros as ones.

#A (2k, k) is the sequence A058527 in the The On-Line
Encyclopedia of Integer Sequences and computing a closed
formula for such sequence is an open problem which looks quite
hard.
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Questions by Brualdi and Deaett

1 In (A (2k, k),4) is the maximal length of a chain equal to
4k2?

2 What is the largest size of an antichain in (A (2k, k),4)?
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Our results

Theorem

For any integer k ≥ 2, the maximal length of a chain in
(A (2k, k),4) equals k4, and the largest size of an antichain is
at least

(

⌊

k

2

⌋4

+ 1

)2

.

Our proofs are constructive.

We prove that the length of a chain in (A (2k, k),4) must be at
most k4, and we design an algorithm which, for any integer
k ≥ 2, explicitly generates a chain of length k4 and an antichain

of size
(

⌊

k
2

⌋4
+ 1
)2

.
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Vague sketch of proof for the antichain algorithm

Definition

Call Chain our algorithm which generates a chain of maximal
length n4 between Pn and Qn, for any integer n > 2, and
Rev–Chain its reverse, viz. the algorithm which generates the
same chain backwards from Qn and Pn.
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Further Readings

Vague sketch of proof for the antichain algorithm

Definition

Call Chain our algorithm which generates a chain of maximal
length n4 between Pn and Qn, for any integer n > 2, and
Rev–Chain its reverse, viz. the algorithm which generates the
same chain backwards from Qn and Pn.

Consider the easiest case: k ≡ 0 (mod 2), and let A be the
half–way matrix of both Chain and Rev–Chain, i.e. the matrix
generated at step k4

2
by both algorithm.
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To full antichain
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Further Readings

Apply simultaneously Chain and Rev–Chain algorithms to •

and ⊙, and denote this operation as central–antichain algorithm.
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and ⊙, and denote this operation as central–antichain algorithm.

This process generates (k
2
)4 + 1 elements incomparable, as well.

This is not at all trivial, and requires a careful proof!
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and ⊙, and denote this operation as central–antichain algorithm.

This process generates (k
2
)4 + 1 elements incomparable, as well.

This is not at all trivial, and requires a careful proof!

Analogously, apply simultaneously Chain and Rev–Chain
algorithms to the submatrices ∗ and †, denoting this operation
as lateral–antichain algorithm.

Go to matrix A
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)4 + 1 elements incomparable, as well.

This is not at all trivial, and requires a careful proof!

Analogously, apply simultaneously Chain and Rev–Chain
algorithms to the submatrices ∗ and †, denoting this operation
as lateral–antichain algorithm.

Go to matrix A

This process generates (k
2
)4 + 1 elements incomparable, as well.

Again, this is not at all trivial, and requires a careful proof!
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In fact, it is possible to apply independently both
central–antichain and lateral–antichain algorithms, obtaining an
antichain of size

(

(

k

2

)4

+ 1

)2

.

Once more, the proof is quite lengthy and sophisticated!
Go to matrix A
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