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Context
Partition congruences

The generating function for the number of partitions of n is

P(q) =
∞∏

k=1

(1− qk)−1 =
∑

n≥0
p(n)qn .

Ramanujan first observed that its coefficients satisfy congruences
in arithmetic progression, such as p(5k + 4) ≡ 0 mod 5 and
p(11k + 6) ≡ 0 mod 11, among others. This work was extended to
an infinite family of congruences through work of many
mathematicians, including Ono, Bringmann, and Mahlburg, based
on the Andrews-Garvan-Dyson crank.



Context
Partition power congruences

Powers of the partition function can be interpreted, when positive,
as multipartitions, vectors of partitions, and when negative as
shifted powers of the eta function.

Pr (q) :=
∞∏

k=1

(1− qk)−r =
∑

n≥0
pr (n)qn .

These functions also satisfy infinite families of congruences, and
were studied by Newman, Andrews, Atkin, and Serre, among
others, the methods of the latter several being the theory of
modular forms. Ramanujan himself did some work with these using
elementary means, explicated in a recent paper of Berndt, Gugg
and Kim.



Context
The hooklength formula

Discovered independently (and by very different means) first by
Nekrasov and Okounkov, and then by Guo-Niu Han, the
hooklength formula beautifully relates these powers to a sum over
the set of partitions P and the hooklengths hij in those partitions.

∞∏

k=1

(1− qk)
b−1

=
∑

λ∈P
q|λ|

∏

hij∈λ

(
1− b

h2
ij

)
=:
∑

n≥0

qn

n!
pn(b)

The coefficient of any qn is clearly a polynomial in the b, and if we
extract a factor of n! the coefficient pn(b) is integral. (Han shows
this, or an integral recurrence can be derived with Wilf’s q ∂

∂q log
technique.)



Congruence analogues

The existence of families of congruences for Pr (q) suggests that
the pn(b) must obey some regularities. As it turns out, there seem
to be more than we might have ever expected.

The pn(b) have numerous symmetries for their coefficients in
arithmetic progressions mod primes, which may be regarded as
analogous to congruence results for their individual evaluations
(e.g., b = 0 being the partition function).



Congruence analogues
Examples

For instance: p4(b) = 120− 218b + 119b2 − 22b3 + b4, which
reduced mod 5 gives p4(b) ≡ 0 + 2b + 4b2 + 3b3 + b4. The case
p9(b) has coefficients that reduce to:

(0, 0, 2, 4, 3, 1, 3, 1, 2, 4).

For the arithmetic progression 5k + 4, we have the following
congruence analogue:



Congruence analogues

Theorem

The pn(b) defined by
∏∞

k=1(1− qk)b−1 =
∑∞

n=0
qn

n! pn(b), when
n = 5k + 4, have integer coefficients with the symmetries:
• The nonzero residues mod 5 equally populate the residue classes
1, 2, 3, and 4.
• These appear in groups of four as a rotation of (2, 4, 3, 1).
• The k + 1 terms of lowest degree are all 0 mod 5. (There may
be others.)

The second and third clauses of the theorem tell us that we can
identify the residue classes of the coefficients of p5k+4(b) by taking
just every fourth one after removing k + 1 zeros at the front. If we
do that, we get this array:



Hooklength congruences
Examples

Hook-length formula congruences 3

which are corollaries of the proof of Theorem 1 and well-known facts
on binomial coefficients. We then consider other prime and prime
power arithmetic progressions. In Section 4 we discuss a few open
questions on the combinatorics of these polynomials, which will hope-
fully motivate future work in this study.

n=4: {2}
n=9: {2,3}
n=14: {2,1,2}
n=19: {2,4,1,3}
n=24: {2,2,2,2,2}
n=29: {2, , , , ,3}
n=34: {2,3, , , ,3,2}
n=39: {2,1,2, , ,3,4,3}
n=44: {2,4,1,3, ,3,1,4,2}
n=49: {2,2,2,2,2,3,3,3,3,3}
n=54: {2, , , , ,1, , , , ,2}
n=59: {2,3, , , ,1,4, , , ,2,3}
n=64: {2,1,2, , ,1,3,1, , ,2,1,2}
n=69: {2,4,1,3, ,1,2,3,4, ,2,4,1,3}
n=74: {2,2,2,2,2,1,1,1,1,1,2,2,2,2,2}
n=79: {2, , , , ,4, , , , ,1, , , , ,3}
n=84: {2,3, , , ,4,1, , , ,1,4, , , ,3,2}
n=89: {2,1,2, , ,4,2,4, , ,1,3,1, , ,3,4,3}
n=94: {2,4,1,3, ,4,3,2,1, ,1,2,3,4, ,3,1,4,2}
n=99: {2,2,2,2,2,4,4,4,4,4,1,1,1,1,1,3,3,3,3,3}
n=104: {2, , , , ,2, , , , ,2, , , , ,2, , , , ,2}
n=109: {2,3, , , ,2,3, , , ,2,3, , , ,2,3, , , ,2,3}
n=114: {2,1,2, , ,2,1,2, , ,2,1,2, , ,2,1,2, , ,2,1,2}
n=119: {2,4,1,3, ,2,4,1,3, ,2,4,1,3, ,2,4,1,3, ,2,4,1,3}
n=124: {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
n=129: {2, , , , , , , , , , , , , , , , , , , , , , , , ,3}
n=134: {2,3, , , , , , , , , , , , , , , , , , , , , , , ,3,2}

2 Proof of the main theorem

We begin by expanding the product out using the generalized bino-
mial theorem. Recall that for any value x, including the indetermi-
nate in C[x], we can define the generalized binomial coefficient with

a whole number k as
�
x
k

�
= x(x−1)(x−2)···(x−k+1)

k! .

We use the notation e � n to mean that e is a partition of n,
and write partitions in the frequency notation e = 1e12e23e3 . . . to
denote the partition in which 1 occurs e1 times, 2 occurs e2 times,
etc. It is understood that the ei are nonnegative integers and that
only finitely many of the ei are nonzero.

Expanding with the generalized binomial theorem, we first obtain



Hooklength congruences

Almost anything you could conjecture about the apparent
symmetry in this triangle is quite possibly true!

It turns out that this is Pascal’s triangle, multiplied by 2 and an
alternating sign, reduced mod 5, and proving this will give us our
theorem.



Proof sketch for main theorem

In order to get to newer work and open question, we’ll simply
outline the proof strategy, which will introduce some useful ideas.

We begin by expanding the product out using the generalized
binomial theorem. Recall that for any value x , including the
indeterminate in C[x ], we can define the generalized binomial

coefficient with a whole number k as
(x
k

)
= x(x−1)(x−2)···(x−k+1)

k! .

The binomial theorem for indeterminate powers, plus some algebra,
gets us as far as:



Proof sketch for main theorem

∞∏

j=0

(1− qj)
b−1

=
∞∑

n=0

qn

n!

∑

t

bt ·
︷ ︸︸ ︷
(−1)tn!

∑

λ`n
λ=1e1 2e2 ...

(∑ 1

s1 . . . st

)

where the last sum runs over unordered t-tuples of distinct
elements chosen from the multiset {1, 2, . . . , e1, 1, 2, . . . , e2, . . . }.
(We regard different instances of 1, etc., as distinct.)

In finding the residue class of the overbraced number number mod
5, a key observation is that if the power of 5 that divides n!
(= (5k + 4)!) is not fully canceled by elements of the product
s1 . . . st , that term will be 0 mod 5. It is possible for this to occur
only if e1 ≥ 5k , and among the si are 5, 10, 15, . . . , 5k chosen from
{1, 2, . . . , e1, (. . . )}.



Proof sketch for main theorem

So e1 must be ”big.” That is, no matter how big k gets, the only
partitions λ that contribute to the sum mod 5 are:

15k+4 , 15k+221 , 15k+131 , 15k41 , 15k22 .

From the five multisets associated to these partitions we choose t
elements in all ways to construct the coefficient of bt .

By the previous argument, k of our choices are already ”spoken
for” if we wish to count the nonzero contributions: s1 = 5, s2 = 10,
. . . , sk = 5k. If t = k + m, we have m possible choices remaining.



Proof sketch for main theorem

It turns out (for details, see the preprint) that terms can be
grouped with many choices occurring in groups that are multiples
of size 5. We find that the coefficient on bt in p5k+4(b),
t = k + m, m > 0, is

(−1)m+1
4∑

c=1

ac fk(m − c)

where a1 = 2, a2 = 1, a3 = 3, and a4 = 4, the m − c records how
many si come from the first k sets of {1, 2, 3, 4} in
{1, . . . , e1, . . . }, and the fk are defined for any prime p by:

fk(m) :=
∑

r1+···+rp−1=m

(
k

r1

)
· · · · ·

(
k

rp−1

)
1r12r2 . . . (p − 1)rp−1 .



Proof sketch for main theorem

The evaluation of this sum is easy in the arithmetic progressions
that interest us:

Lemma

For p a prime, fk((p − 1)s + c) :=

∑

r1+···+rp−1=(p−1)s+c

(
k

r1

)
· · · · ·

(
k

rp−1

)
1r12r2 . . . (p − 1)rp−1

≡
{

(−1)s
(k
s

)
mod p c = 0

0 mod p otherwise.

The proof is simply to observe that the middle term is the
coefficient of q(p−1)s+c in the product

(1 + q)k(1 + 2q)k . . . (1 + (p − 1)q)k ≡ (1− qp−1)k mod p .



Proof sketch for main theorem

This proves the theorem. For p = 5, only every fourth underlying
sum fk(4s + 0) is nonzero, so every other term is (−1)m+1ac times
this value. This is either (2,−1, 3,−4) or (−2, 1,−3, 4) times the
underlying

(k
s

)
. Thus, terms are equidistributed in the nonzero

residue classes, in rotations of (2, 4, 3, 1).

The symmetries of binomial coefficients explain the triangle we
showed earlier: this is Pascal’s triangle, multiplied by 2 and an
alternating sign, reduced mod 5.

�



Brief tangent: an identity from the coefficients

(−1t)
[
bt
]∑

λ`n

∏

hij∈λ

(
1− b

h2
ij

)
=

∑

λ`n
λ=1e1 2e2 ...

(∑ 1

s1 . . . st

)

where the right hand side can be thought of as the sum of the t-th
elementary symmetric functions in the elements of each multiset.
These elements are a proper subset of the hooklengths themselves.

λ = 14203241 . . .
The red elements are the values
that appear in the multiset.

The identity cannot be refined to the single-partition level; can it
be refined otherwise?



Other primes

Equidistribution does not happen for other primes p in the residue
class p − 1 (at least not up to p < 800):

p6(b) = 7920− 18144b + 14674b2− 5205b3 + 805b4− 51b5 + b6

≡ (3, 0, 2, 3, 0, 5, 1) mod 7 .

The main reason is that the ac are not as neatly distributed,
especially including the fact that a0 is not usually 0. However,
observe mod 7:

p41(b) ≡ (0, 0, 0, 0, 3, 0, 2, 3, 0, 5,0, 0, 4, 6, 0, 3,4, 0, 6, 2, 0, 1,, . . . , 6)



Other primes

p41(b) ≡ (0, 0, 0, 0, 3, 0, 2, 3, 0, 5,0, 0, 4, 6, 0, 3,4, 0, 6, 2, 0, 1,, . . . , 6)
We still get equidistribution in one of every p2 or p3 progressions,
because the binomial coefficients themselves rotate through the
residue classes mod p. In particular,

Lemma

For p a prime, 0 ≤ s ≤ pj + p − 2, s = gp + h, 0 ≤ h < p,

(−1)s
(

pj + p − 2

s

)
≡ (h + 1)

(
(−1)g

(
j

g

))
mod p .

Thus the interiors of the intervals (p − 1)s + c rotate through the
multiples h + 1 mod p, and the ends overlap but still rotate –
usually properly, with one exception.



Other primes

The sequence of reduced coefficients in p(pj+p−2)p+p−1(b) are thus:

1 ≤ c < p − 1 : {(−1)c+1ac(−1)s
(

pj + p − 2

s

)
}

which are segments of length p that are either all 0s, or
permutations of {1, . . . , p − 1} followed by a 0, and for the ends,

{−a0(−1)s
(

pj + p − 2

s

)
− ap−1(−1)s−1

(
pj + p − 2

s − 1

)
}

for 0 ≤ s ≤ pj + p − 1, s = gp + h, 0 ≤ h < p, which reduces to

{(−1)x
(

j

x

)
(−a0 + y(−a0 − ap−1)) : 0 ≤ x ≤ j , 0 ≤ y ≤ p − 1}.



Other primes

{(−1)x
(

j

x

)
(−a0 + y(−a0 − ap−1)) : 0 ≤ x ≤ j , 0 ≤ y ≤ p − 1}

But a0 is the number of partitions of p − 1, and ap−1 ≡ −1 mod
p. As long as the number of partitions of p − 1 is 6≡ 1 mod p, we
have that {(−1)x

( j
x

)
(−a0 + y(−a0 − ap−1))} runs over all residue

classes mod p as y runs over 0 ≤ y ≤ p − 1.

Even if the number of partitions of p − 1 is ≡ 1 mod p (it happens
for the first time at p = 71), we can apply the lemma again to
(−1)x

( j
x

)
to see that the sequence still equally populates the

residue classes when j ≡ −2 mod p, which is the arithmetic
progression −p2 − p − 1 mod p3.



Other primes

So we have an infinite family of equidistributions mod every prime
p, either in a progression mod p2, or at worst mod p3!

Theorem

For p prime, j ≥ 0, if the number of partitions of p − 1 is not
congruent to 1 mod p, the coefficients of pp2k−p−1(b)
equinumerously populate the nonzero residue classes mod p for all
j , and if it is, the populations are still equinumerous for
pp3k−p2−p−1(b).



Recent work

I first presented this work at the INTEGERS Conference at the
University of West Georgia, this September. A member of the
audience suggested that I look at the roots of these polynomials,
conjecturing that the only integer roots would be very small.

I’d like to talk briefly about this and some other observations and
open questions. Most of this work is experimental and speculative
at the moment, and any interest would be happily received.



Recent work
Factorizations

Let us start by factoring some of the pn(b):

p1(b) = −(b − 1)

p2(b) = (b − 1)(b − 4)

p3(b) = −(b − 1)(b − 2)(b − 9)

p4(b) = (b − 1)(b − 2)(b − 4)(b − 15)

p5(b) = −(b − 1)(b − 4)(b − 7)(b2 − 23b + 30)

p9(b) = −(b − 1)(b − 2)(b − 4)(b − 5)(b − 15)(b − 27)

(b3 − 63b2 + 614b − 674)

p45(b) = −(b − 1)(b − 2)(b − 9)(595 . . . 000− · · ·+ b42)



Recent work
Factorizations

The conjectures that arise are:

Conjecture

◦ All pn(b) factor as a squarefree product of several b − j and one
large irreducible factor.
◦ The only j for which b − j appear are 1, 2, 3, 4, 5, 7, 9, 11, 15,
and 27.

The second clause is false: j = 16 arises at n = 53. But it is not
very false, as we’ll see momentarily.
We can also ask where a given factor of b − j arises.



Recent work
Factorizations

To say that b − j is a factor of pn(b) is to say that the coefficient
of qn in

∏
(1− qk)j−1 is 0. Thus, we are asking about the

appearance of zero coefficients in powers of the eta function.

∏
(1− qk)0 = 1 ⇒ b − 1|pn(b) ∀n > 0

∏
(1− qk)1 =

∞∑

n=−∞
(−1)nq

3n2+n
2 ⇒ b − 2|pn(b)n 6= 3m2 ±m

2

∏
(1− qk)3 =

∞∑

n=0

(−1)n(2n + 1)q
n2+n

2 ⇒ b − 4|pn(b)n 6= m2 + m

2



Recent work
Factorizations

The remaining cases j = 3, 5, 7, 9, 11, 15, 27 are exactly those
powers of the η function that Serre showed to be lacunary, i.e. the
arithmetic density of their nonzero coefficients is zero. That means
these b− j appear frequently and infinitely often as n gets large. Of
course, this does not tell us precisely where these factors appear.

Ken Ono showed Serre’s conjecture that all other (positive) powers
are not lacunary, so in a sense any other simple factors will appear
rarely. It might be the case that b − 16 appears only a finite
number of times, if there exists an N beyond which the coefficient
of qn in

∏
(1− qk)15 is always nonzero.



Recent work
Factorizations

To show that some linear factor never appears would be to show
that

∏
(1− qk)j−1 has no nonzero coefficients, which is a much

stronger question: for instance, Lehmer’s conjecture on
Ramanujan’s τ -function asserts that b − 25 never appears.

Note that the two claims are equivalent! So if we could show that
a given factor never appears by combinatorial analysis of the
expansion on slide 11, we would have shown that all coefficients in
the desired power were nonzero, a very pleasing result.

Wide open is the question of why it seems that, beyond the linear
factors, only a single irreducible factor appears. Why should it be
the case that there is not, say, a couple of quadratics and another
large factor? Why should each factor appear only once?



Recent work
Factorizations

Another way of looking at these polynomials is to factor them mod
q for q prime, i.e. reduce their coefficients mod q and factor them
over the field Zq.

In this case, a most fascinating thing happens: the factorization
mod q of any pnq+c(b) is just the factorization of p(n−1)q+c times
bq − b = b(b − 1) . . . (b − (q − 1)). So mod q, you only need
factor p0 through pq−1 to know all factorizations.



Recent work
Factorizations

Factorizations mod 5:

p1(b) 4(4 + b)

p2(b) (1 + b)(4 + b)

p3(b) 4(1 + b)(3 + b)(4 + b)

p4(b) b(1 + b)(3 + b)(4 + b)

p5(b) 4b(1 + b)(2 + b)(3 + b)(4 + b)

p46(b) b9(1 + b)9(2 + b)9(3 + b)9(4 + b)10

p47(b) 4b9(1 + b)10(2 + b)9(3 + b)9(4 + b)10

p48(b) b9(1 + b)10(2 + b)9(3 + b)10(4 + b)10

p49(b) 4b10(1 + b)10(2 + b)9(3 + b)10(4 + b)10

p50(b) b10(1 + b)10(2 + b)10(3 + b)10(4 + b)10



Recent work
Factorizations

Things are not quite as neat for other primes. For example,
higher-degree factors may arise. Factorizations mod 3 and 7:

p1(b) 2(2 + b) 6(6 + b)

p2(b) (2 + b)2 (3 + b)(6 + b)

p3(b) 2b(1 + b)(2 + b) 6(5 + b)2(6 + b)

p4(b) b(1 + b)(2 + b)2 (3 + b)(5 + b)(6 + b)2

p5(b) 2b(1 + b)(2 + b)3 6b(3 + b)(6 + b)(2 + 5b + b2)

p6(b) b2(1 + b)2(2 + b)2 (3 + b)(5 + b)(6 + b)(4 + 5b2 + b3)

p7(b) 2b2(1 + b)2(2 + b)3 6b(1 + b)(2 + b) . . . (6 + b)



Recent work
Parities

The factorization mod 2 is as regular as you would expect:
alternating b and (1 + b), the only two possible factors.

p1(b) (1 + b)

p2(b) b(1 + b)

p3(b) b(1 + b)2

p4(b) b2(1 + b)2

p5(b) b2(1 + b)3

p6(b) b3(1 + b)3

This brings us to the problem of the parity of the partition
function, a traditional Very Hard Question.



Recent work
Parities

The coefficient of qn in
∏ 1

(1−qk )2 is
∑n

i=0 p(n − i)p(i). This is

also the evaluation of 1
n!pn(b) at b = −1. Note that the constant

term of pn(b) is exactly p(n)n!, and subtract this from both sides.
We get

p(n) +
n−1∑

i=1

p(n − i)p(i) =
1

n!

n∑

i=1

∣∣[bt
]

pn(b)
∣∣ .

If n is odd, the left-hand side has the parity of p(n), and if even, it
has the parity of p(n) + p(n2 )2. Could we use this expression and
facts on the frequency of multiplicities in all partitions of n to be
able to say something about the parity of p(n)?



Recent work
Parities

This triangle gives the 2-valuation of each of the coefficients in the
first few pn(b) for n odd. The 0s are all predicted by the earlier
theory, so our interest is in the nonzero terms.

Inspection suggests that there are significant regularities that
might be tamed. For instance, the first diagonal below the 0s reads
1,1,3,3,1,1,2,5,1,1,. . . , and terms going backward from there
steadily (if not quite monotonically) increase.



Other open questions

It seems like a bit of a ”lucky accident” that the values ac
distributed so neatly for p = 5 that we had equidistribution mod p.
No other prime checked experimentally has equidistribution in the
arithmetic progression p − 1 mod p. Does it ever happen again? If
so, how can we efficiently find it? If not, how would you prove it?

An intermediate step that might be useful in those questions would
be to develop a short recipe for calculating the ac , instead of going
through and working out groupings and remainders by hand. A
formula with a number of terms linear in p would be nice.



Other open questions

Is there a combinatorial object that can be neatly described which
the coefficients themselves (or their absolute values) count?

Perhaps such a description would be useful in producing identities
for the coefficients of pn(b), or for associated objects such as
multipartitions.



Other open questions

What can we say about progressions with composite moduli other
than prime powers?



Other open questions

Finally, regarding the asymptotics, a normalized plot of the logs of
the absolute values of the coefficients appears to approach a very
well-behaved curve, with the maximum staying extremely close to
the beginning.

It seems clear that the coefficients of the pn are alternating
unimodular, and my current interest is in showing that they satisfy
a sufficiently restrictive growth condition that (−1)npn(b) can
generate {1, b, b2, b3, . . . } with positive integer coefficients.

If any questions about these polynomials interest you, I’d be happy
to take a look at them!
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