The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References

Topological indices: the modified Schultz index

Paula Rama⁽¹⁾

Joint work with Paula Carvalho⁽¹⁾

⁽¹⁾CIDMA - DMat, Universidade de Aveiro

The 3rd Combinatorics Day - Lisboa, March 2, 2013

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
Outline				

- Introduction
- The modified Schultz index
- Graph operations
 - Cartesian product Complete product Lexicographic product Subdivision
- Bounds on the modified Schultz index
 - Unicyclic graphs
 - Bicyclic graphs
 - Tricyclic graphs with three cycles

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
Introduction				

Chemical Graph Theory

interdisciplinary science that applies Graph Theory to the study of molecular structures. The molecules or chemical compounds are modeled by an undirected graph - the **molecular graph**:

vertices \longrightarrow atoms or group of atoms

edges \longrightarrow chemical bonds between atoms or group of atoms

Figure: Structural formula and (hydrogen-supressed) molecular graphs of naphtalene, $C_{10}H_8$.

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
Topological indices				

A **topological index** is a numerical parameter mathematically derived from the graph structure. It is a graph invariant thus it does not depend on the labeling or pictorial representation of the graph.

The topological indices of molecular graphs are widely used for establishing correlations between the structure of a molecular compound and its physico-chemical properties or biological activity (e.g., pharmacology).

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
The Wiener index				

The Wiener index of a graph G = (V, E)

$$W(G) = \sum_{\{u,v\} \subset V} dist(u,v)$$

is the oldest topological index and its mathematical properties and chemical applications have been extensively studied.

The Wiener index was introduced by the chemist Harold Wiener (1947) for explaining the correlations between the boiling points of paraffins and the structure of their molecules:

$$t \approx aW + bp + c$$
,

where t is the boiling point, W is the Wiener index, p is the polarity number and a, b and c are constants related to the isomeric group.

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
	000000	00	0000000	

Other topological indices:

hyper-Wiener (Randić, 1993)	$WW(G) = \sum_{\{u,v\}\subset V} (d(u,v) + d^2(u,v))$
edge-Wiener	$W_e(G) = \sum_{\{a, f\} \in F} d(e, f)$, where $e = e_1 e_2$,
(Dankelmann et al., 2009)	$f = f_1 f_2, d(e, f) = \min_{1 \le i, j \le 2} d(e_i, f_j)$
1st Zagreb (Gutman et al., 1972)	$Z_1(G) = \sum_{u \in V} d^2(u)$
2nd Zagreb (Gutman et al., 1972)	$Z_2(G) = \sum_{uv \in E} d(u)d(v)$
Randić (Randić, 1975)	$R(G) = \sum_{uv \in E} (d(u)d(v))^{-1/2}$
Schultz (Schultz, 1989)	$S(G) = \sum_{\{u,v\} \subset V} (d(u) + d(v))d(u,v)$
modified Schultz (Gutman, 1994)	$S^*(G) = \sum_{\{u,v\} \subset V} d(u)d(v)d(u,v)$
Szeged (Gutman, 1994b)	$Sz(G) = \sum_{e=uv \in F} n_u(e)n_v(e)$, where
	$n_u(e) = \{w \in V : d(w, u) < d(w, v)\} $
Hosoya (Hosoya, 1971)	$Z(G) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} m(G, k), \text{ where } m(G, k) \text{ is the no.}$
	of k-matchings

Notation: d(u, v) := dist(u, v) and d(u) is the degree of vertex u.

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
The modified Schu	ltz index			

The Schultz index,

$$S(G) = \sum_{\{u,v\} \subset V} (d(u) + d(v)) dist(u,v)$$

was introduced by H. P. Schultz (1989).

For trees, the Schultz index is closely related to the Wiener index: if T is a tree on *n* vertices then (Klein et al., 1992)

$$S(T) = 4W(T) - n(n-1).$$

Motivated by the results on the Schultz index, Gutman (1994) introduced the **modified Schultz index**,

$$S^*(T) = \sum_{\{u,v\}\subset V} d(u)d(v)dist(u,v),$$

(also known as Gutman index) and presented an analogous relation with the Wiener index, in the case of trees (Gutman, 1994):

$$S^{*}(T) = 4W(T) - (n-1)(2n-1).$$

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
The modified Schul	tz index			

From the above definitions it is immediate that

If δ(G) and Δ(G) are the minimum and maximum degree, respectively, of the vertices of G, then

 $2\delta(G)W(G) \leq S(G) \leq 2\Delta(G)W(G)$

and

$$\delta^2(G)W(G) \leq S^*(G) \leq \Delta^2(G)W(G).$$

If G is p-regular then

$$S(G) = 2pW(G)$$
 and $S^*(G) = p^2W(G)$.

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
The modified Sch	ıltz index			

The modified Schultz index of some graphs:

•
$$S^*(C_n) = S(C_n) = 4W(C_n) = \begin{cases} \frac{n^3}{2}, & \text{if } n \text{ is even,} \\ \frac{n^3-n}{2}, & \text{if } n \text{ is odd.} \end{cases}$$

2
$$S^*(K_n) = (n-1)^2 \binom{n}{2}$$
.

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
Cartesian Product				
Graph Operations				

Definition

The **cartesian product** $G_1 \times G_2$ of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, with $V_1 \cap V_2 = \emptyset$, is the graph with vertex set $V_1 \times V_2$ and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ being adjacent whenever $(u_1 = v_1 \text{ and } u_2 v_2 \in E_2)$ or $(u_1v_1 \in E_1 \text{ and } u_2 = v_2)$.

Proposition

Let $G_i = (V_i, E_i)$ be a graph of order n_i and dimension m_i , i = 1, 2. The modified Schultz index of the cartesian product $G_1 \times G_2$ is given by

$$S^{*}(G_{1} \times G_{2}) = \frac{1}{2}n_{1}(n_{1} + 1)S^{*}(G_{2}) + \frac{1}{2}n_{2}(n_{2} + 1)S^{*}(G_{1}) \\ + 2m_{2}n_{2}S(G_{1}) + 2m_{1}n_{1}S(G_{2}) \\ + (Z_{1}(G_{2}) + Z_{2}(G_{2}))W(G_{1}) \\ + (Z_{1}(G_{1}) + Z_{2}(G_{1}))W(G_{2}).$$

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
Cartesian Product				
Example				

The molecular graph of a C_4 -nanotube is the cartesian product $P_m \times C_n$. For m = n (n odd) we have

Figure: C_4 -nanotube $G = P_5 x C_5$ with $S^*(G) = 8150$

$$S^{*}(P_{m} \times C_{n}) = \frac{1}{2}n(n+1)(S^{*}(P_{n}) + S^{*}(C_{n})) + 2n^{2}S(P_{n}) + 2n(n-1)S(C_{n}) + (Z_{1}(C_{n}) + Z_{2}(C_{n}))W(P_{n}) + (Z_{1}(P_{n}) + Z_{2}(P_{n}))W(C_{n}) = \frac{n(n-1)}{12}(35n^{3} + 22n^{2} - 4n - 15),$$

since

$$\begin{array}{ll} W(C_n) = \frac{n^3 - n}{2} \, (n \text{ odd}), & z_1(C_n) = 4n = z_2(C_n), \\ W(P_n) = \frac{n(n^2 - 1)}{6}, & z_1(P_n) = 4n - 6, \\ S(P_n) = \frac{n(n - 1)(2n - 1)}{3}, & S^*(P_n) = \frac{(n - 1)(2n^2 - 4n + 3)}{3}. \end{array}$$

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
Complete product				

Definition

The **complete product** $G_1 \nabla G_2$ of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, with $V_1 \cap V_2 = \emptyset$, is the graph obtained from G_1 and G_2 by joining every vertex of G_1 with every vertex of G_2 .

Proposition

Let $G_i = (V_i, E_i)$ be a graph of order n_i and dimension m_i , i = 1, 2. The modified Schultz index of the complete product $G = G_1 \nabla G_2$ is given by

$$S^{*}(G) = 4(m_{1}^{2} + m_{2}^{2}) + 4m_{1}m_{2} + 3(n_{1}n_{2})^{2} - n_{1}n_{2}(n_{1} + n_{2}) + (6n_{1} - 4 - n_{2})n_{2}m_{1} + (6n_{2} - 4 - n_{1})n_{1}m_{2} - (n_{2} + 1)Z_{1}(G_{1}) - (n_{1} + 1)Z_{1}(G_{2}) - Z_{2}(G_{1}) - Z_{2}(G_{2}).$$

The modified Schultz index	Graph operations	Bounds on <i>S</i> *(<i>G</i>)	Tricyclic graphs with 3 cycles	References
Lexicographic product				

Definition

The **lexicographic product** (or **composition**) $G = G_1 \circ G_2$ of the graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ ($V_1 \cap V_2 = \emptyset$) is the graph with vertex set $V_1 \times V_2$ and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ being adjacent whenever $(u_1v_1 \in E_1)$ or $(u_1 = v_1$ and $u_2v_2 \in E_2)$.

Let
$$(u_1, u_2), (v_1, v_2) \in V(G)$$
 and $u \in V_1$.

- Degree: $d_G(u_1, u_2) = d_{G_1}(u_1)n_2 + d_{G_2}(u_2)$.
- Distances:

$$dist_{G}((u, u_{2}), (u, v_{2})) = \begin{cases} 2 & \text{if } u_{2}v_{2} \in E_{2} \\ 1 & \text{if } u_{2}v_{2} \notin E_{2}. \end{cases}$$

In all other cases, $dist_{G}((u_{1}, u_{2}), (v_{1}, v_{2})) = dist_{G_{1}}(u_{1}, v_{1}).$

The modified Schultz index	Graph operations	Bounds on S [*] (G)	Tricyclic graphs with 3 cycles	References
Subdivision				

Let $G_i = (V_i, E_i)$ be a graph of order n_i and dimension m_i , i = 1, 2. The modified Schultz index of the lexicographic product $G_1 \circ G_2$ is given by

$$S^*(G_1 \circ G_2) = (n_1 - 1)Z_2(G_2) + \frac{n_2^3}{2}(n_2 - 1)Z_1(G_1) - \frac{1}{2}n_1Z_1(G_2) +4(n_2 - 1)n_2m_1m_2 + 2n_1m_2^2 + \frac{n_2^3}{4}(n_2 + 3)S^*(G_1) +n_2(n_2 + 1)m_2S(G_1) + W(G_1)(m_2^2 + \frac{1}{2}(m_2^2 + \frac{1}{2}Z_1(G_2)).$$

The modified Schultz index	Graph operations ○○○○○●	Bounds on S [*] (G)	Tricyclic graphs with 3 cycles	References
Subdivision				

Definition

The **subdivision graph** G' of a graph G = (V, E) is obtained from G by inserting a new vertex of degree 2 in each edge of G.

Proposition

Let G = (V, E) be a connected graph of order *n* and dimension *m*. The modified Schultz index of the subdivision graph G' of *G* is given by

$$\begin{array}{lll} S^{*}(G') & = & 2S^{*}(G) + 4\sum_{e \in E, u \in V} d_{G}(u)D(u,e) \\ & + & 4m^{2} + 8W(L(G)), \end{array}$$

where L(G) is the line graph of G and for $e = xy \in E$ and $u \in V$, $D(u, e) = \min\{d_G(u, x), d_G(u, y)\}.$

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References

Bounds on the modified Schultz index

Proposition (Andova et al., 2011)

If G is a connected graph with n vertices then

$$S^*(G) \ge 2n^2 - 5n + 3.$$

The equality holds if and only if *G* is the star S_n . In addition, if *T* is a tree (Andova et al., 2011),

$$2n^2-5n+3=S^*(S_n)\leq S^*(T)\leq S^*(P_n)=\frac{1}{3}(2n^3-6n^2+7n-3).$$

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
Unicyclic graphs				

Let G = (V, E) be a unicyclic graph (that is a connected graph with |V| = |E|) of order *n*.

● For *n* ≥ 3,

$$S^*(G) \ge 2n^2 + n - 9.$$
 (1)

• (Feng and Liu, 2011) For $n \ge 5$,

$$S^*(G) \leq \frac{2}{3}n^3 - \frac{29}{3}n + 23.$$
 (2)

The equality holds on (1) if and only if $G \simeq U_1$, and on (2) if and only if $G \simeq U_2$.

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
Bicyclic graphs				

Let G = (V, E) be a bicyclic graph (that is a connected graph with |E| = |V| + 1) of order *n*. For $n \ge 5$ (Chen and Liu, 2010),

$$S^*(G) \ge 2n^2 + 7n - 13$$
 (3)

and for $n \ge 6$ (Feng and Liu, 2011),

$$S^*(G) \le \frac{2}{3}n^3 + 2n^2 - \frac{53}{3}n + 27.$$
 (4)

Equality holds on (3) if and only if $G \simeq B_1$, and on (4) if and only if $G \simeq B_2$.

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
Decreasing transfor	mations			

 G_2

Transformation 1:

Proposition (Chen and Liu, 2010)

Let G_1 and G_2 be vertex disjoint connected graphs, $u \in V_1$, $v \in V_2$ and G is the graph obtained by connecting G_1 and G_2 with a bridge uv. Let G' be the graph obtained by coalescence of u and v in a new vertex u' and by adding a new pendant edge u'v'. Then

$$S^*(G') < S^*(G)$$

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References

Decreasing transformations

Transformation 2:

Proposition (Chen and Liu, 2010)

Let *H* be a connected graph, $u, v \in V(H)$ and $u_1, \dots, u_s, v_1, \dots, v_t \notin V(H)$. Let $G = H + \{uu_1, \dots, uu_s\} + \{vv_1, \dots, vv_t\},$ $G' = H + \{uu_1, \dots, uu_s\} + \{uv_1, \dots, uv_t\}$ and $G'' = H + \{vu_1, \dots, vu_s\} + \{vv_1, \dots, vv_t\}$. Then

 $S^*(G) > \min \{S^*(G'), S^*(G'')\}.$

Tricyclic graphs

A connected graph *G* of order *n* and dimension *m* is a tricyclic graph if m = n + 2. It is known that a tricyclic graph has 3, 4, 6 or 7 cycles (see, for example, (Geng and Li, 2012)).

Figure: Bases of tricyclic graphs with 3 cycles

Using transformations 1 and 2 we reduce our search of a lower bound for the modified Schultz index of tricyclic graphs of order *n* with 3 cycles, to the study of graphs with bases T_1 and T_2 , with *t* $(0 \le t \le n-7)$ pendant edges attached to one vertex.

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
Tricyclic graphs with 3 cycles				

Notations:

The search for the tricyclic graphs with three cycles with least modified Schultz index:

- We determine the tricyclic graph with n ≥ 7 vertices and three cycles of lengths p, q, r (p + q + r ≤ n − 2) with least modified Schultz index.
- ② Using a decreasing transformation, we determine the tricyclic graphs with n ≥ vertices and three cycles with least modified Schultz index.

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
Tricyclic graphs with 3 cycles				

Let
$$H = (V, E)$$
 be a $C_p u C_q u C_r$ graph. Let $v \in V \setminus \{u\}$,
 $G = H + \{vv_1, \dots, vv_t\}$ and $G' = H + \{uv_1, \dots, uv_t\}$. Then

 $S^*(G') < S^*(G).$

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
Tricyclic graphs with 3 cycles				
Proposition				
Let $H = (V, V)$ Let $G = H + V$	$E) be a C_{p} u C_{q} \\ \{wv_1, \cdots, wv_t\}$	vC_r graph ($u \neq v$ $F, G' = H + \{uv_1\}$	$(v) ext{ and } w \in V(\mathcal{C}_p) \setminus \{u_{r}, \cdots, uv_t\} ext{ and }$	<i>ı</i> }.

$$G'' = H + \{vv_1, \cdots, vv_t\}$$
. Then

- $S^*(G') < S^*(G)$.
- 2 $S^*(G'') < S^*(G')$ if and only if p < r.

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
Tricyclic graphs with 3 cycles				

Let H = (V, E) be a $C_p u C_q v C_r$ graph $(u \neq v)$ and H' = (V, E') be a $C_p u C_q u C_r$ graph, $G = H + \{uv_1, \cdots, uv_t\}$ and $G' = H' + \{uv_1, \cdots, uv_t\}$. Then $S^*(G') < S^*(G)$.

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References	
Tricyclic graphs with 3 cycles					
A decreasing transformation					

Let
$$H = (V, E)$$
 be a $C_p u C_q u C_r$ graph, $v \in V(C_p) \setminus \{u\}$,
 $N_{C_p}(v) = \{u, w\}$, $H' = (V, E')$ a $C_{p'} u C_q u C_r$ graph such that
 $V(C'_p) = V(C_p) \setminus \{v\}$ and $E(C'_p) = (E(C_p) \setminus \{uv, vw\}) \cup \{uw\}$. Let
 $G = H + \{uv_1, \cdots, uv_t\}$ and $G' = H' + \{uv, uv_1, \cdots, uv_t\}$. Then
 $S^*(G') < S^*(G)$.

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
Tricyclic graphs with 3 cycles				

Theorem

If *G* is tricyclic graph with 3 cycles and $n \ge 7$ vertices then

$$S^*(G) \geq 2n^2 + 9n - 5$$

with equality if and only if $G \simeq S_n(3,3,3)$.

Figure: Tricyclic graph $S_n(3,3,3)$

The modified Schultz index	Graph operations	Bounds on $S^*(G)$	Tricyclic graphs with 3 cycles	References
References				

- V. Andova, D. Dimitrov, J. Fink, R. Škrekovski. Bounds on Gutman index. Preprint series, IMFM, ISSN 2232-2094, vol. 49, no. 1154 (2011) 11pp.
- S. Chen, W. Liu, Extremal Modified Schultz Index of Bicyclic graphs. Match Commun. Math. Comput. Chem. 64 (2010) 767-782.
- L. Feng, W. Liu. The maximal Gutman index of bicyclic graphs. Match Commun. Math. Comput. Chem. 66 (2011) 699-708.
- X. Geng, S. Li. On the spectral radius of tricyclic graphs with a maximum matching. *Linear Algebra Appl.* 436 (2012) 4043-4051.
- I. Gutman, Selected properties of the Schultz molecular topological index. J. Chem. Inf. Comput. Sci. 34 (1994) 1087-1089.
- Gutman, I., Trinajstic, N. Graph Theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* 17 (1972) 535-538.
- D. J. Klein, Z. Mihalić, D.Plavšić, N. Trinajstić. Molecular topological index: A relation with the Wiener index. J. Chem. Inf. Comput. Sci. 32 (1992) 304-305.
- H. P. Schultz, Topological organic chemistry. 1.Graph Theory and topological indices of alkanes. J. Chem. Inf. Comput. Sci. 29 (1989) 227-228.
- H. Wiener, Structural determination of paraffin boiling points *J. Amer. Chem. Soc.* 69 (1947): 17-20.