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Introduction

H-Decomposition of G : partition of E (G ) into copies of H and

single edges

Always exists

φ(G ,H) = minimum number of parts in an H-decomposition

Packing number: pH(G ) =max # edge-disjoint copies of H

φ(G ,H) = pH(G ) +
(
e(G )− e(H)pH(G )

)
Dor &Tarsi [’97]: NP-hard if H has a component with ≥ 3 edges
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The H-decomposition problem

φ(n,H) = max {φ(G ,H)| v(G ) = n}

Turán Graph Tp(n): p-partite graph on n vertices with

maximum number of edges

Turán number: tp(n) = e(Tp(n))
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The Turán Graph Tp(n)

Tp(n) is p-partite graph on n vertices

Kp+1-free

Maximum number of edges

Kp = Complete graph on p vertices = Clique
Complete Graphs
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Turán Graph T2(n)

T2(n) T5(n) 

|Vi | =
⌊

n
2

⌋
or
⌈

n
2

⌉
triangle-free (K3-free)

maximum number of edges

t2(n) =
⌊

n2

4

⌋
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Turán Graph T4(13)

13 vertices, 4 clusters

|Vi | = 3 or 4

K5-free

maximum number of

edges
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Turán Graph Tp(n)

Vp 

V1 

V2 

V3 

Vp-1 

n vertices, p clusters

|Vi | =
⌊

n
p

⌋
or
⌈

n
p

⌉
Kp+1-free

maximum number of edges

tp(n) =
(
1− 1

p + o(1)
)(n

2

)
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Some results about φ(n,H)

Erdős-Goodman-Pósa [’66]: φ(n,K3) = t2(n);

Bollobás [’76]: φ(n,Kp) = tp−1(n), p ≥ 4;

Pikhurko-S. [’07]: φ(n,H) = tp−1(n) + o(n2), if χ(H) = p ≥ 3;

Özkaya-Pearson [’12]: φ(n,H) = tp−1(n), H edge-critical,

χ(H) = p ≥ 3, n large.
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Monochromatic H-Decompositions of Graphs

G graph of order n with a k-coloring of its edges

Monochromatic H-Decomposition of G : partition of E (G ) into

monochromatic copies of H and single edges

φk(G ,H) = minimum φ, s. t., for every k-edge coloring there

exits a mono H-decomposition with at most φ elements

φk(n,H) = max {φk(G ,H)| v(G ) = n}
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Monochromatic Kr -Decompositions of Graphs

First open instance is H = Kr

Ramsey Number for Kr

Rk(r) = smallest R such that every k-edge coloring of KR contains a

monochromatic Kr

Ramsey Numbers are finite but notoriously difficult to calculate;

R2(3) = 6, Greenwood and Gleason [’55];

R3(3) = 17, Greenwood and Gleason [’55];

R2(4) = 18, Greenwood and Gleason [’55];
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Ramsey Number R2(3) > 5

Consider K5 with the following 2 coloring

No monochromatic K3

R2(3) > 5
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Ramsey Number R2(3) ≤ 6

Take K6 with any 2-coloring

Blue K3

Red K3

Thus R2(3) ≤ 6
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Monochromatic K3-Decompositions of Graphs

Decompose into Monochromatic Triangles

No Mono K3

Blow-up the coloring to T5(n)
No Mono K3, t5(n) edges

φ2(n,K3) ≥ t5(n)
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Monochromatic K3-Decompositions of Graphs

Theorem
Let k ≥ 2, R = Rk(3), then

φk(n,K3) = tR−1(n) + o(n2).

In particular,

φ2(n,K3) = t5(n) + o(n2);

φ3(n,K3) = t16(n) + o(n2).
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Monochromatic Kr -Decompositions of Graphs

Theorem
Let r ≥ 4, k ≥ 2, R = Rk(r) and n suficiently large, then

φk(n,Kr ) = tR−1(n).

In particular, φ2(n,K4) = t17(n).

Moreover, the only graph attaining φk(n,Kr ) is the Turán graph

TR−1(n).
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Proof of the lower bound φk(n,Kr) ≥ tR−1(n)

Recall R = Rk(r);

There exists a k-edge-coloring of KR−1 without a mono Kr ;

Consider TR−1(n) with a "blow-up" of this k-edge-coloring;

TR−1(n) with this k-edge-coloring has no mono Kr ;

φk(n,Kr ) ≥ φk(TR−1(n),Kr ) = tR−1(n).

Monochromatic Clique Decompositions of Graphs Teresa Maria Sousa, UNL



Proof of the lower bound φk(n,Kr) ≥ tR−1(n)

Recall R = Rk(r);

There exists a k-edge-coloring of KR−1 without a mono Kr ;

Consider TR−1(n) with a "blow-up" of this k-edge-coloring;

TR−1(n) with this k-edge-coloring has no mono Kr ;

φk(n,Kr ) ≥ φk(TR−1(n),Kr ) = tR−1(n).

Monochromatic Clique Decompositions of Graphs Teresa Maria Sousa, UNL



Proof of the lower bound φk(n,Kr) ≥ tR−1(n)

Recall R = Rk(r);

There exists a k-edge-coloring of KR−1 without a mono Kr ;

Consider TR−1(n) with a "blow-up" of this k-edge-coloring;

TR−1(n) with this k-edge-coloring has no mono Kr ;

φk(n,Kr ) ≥ φk(TR−1(n),Kr ) = tR−1(n).

Monochromatic Clique Decompositions of Graphs Teresa Maria Sousa, UNL



Proof of the lower bound φk(n,Kr) ≥ tR−1(n)

Recall R = Rk(r);

There exists a k-edge-coloring of KR−1 without a mono Kr ;

Consider TR−1(n) with a "blow-up" of this k-edge-coloring;

TR−1(n) with this k-edge-coloring has no mono Kr ;

φk(n,Kr ) ≥ φk(TR−1(n),Kr ) = tR−1(n).

Monochromatic Clique Decompositions of Graphs Teresa Maria Sousa, UNL



Proof of the lower bound φk(n,Kr) ≥ tR−1(n)

Recall R = Rk(r);

There exists a k-edge-coloring of KR−1 without a mono Kr ;

Consider TR−1(n) with a "blow-up" of this k-edge-coloring;

TR−1(n) with this k-edge-coloring has no mono Kr ;

φk(n,Kr ) ≥ φk(TR−1(n),Kr ) = tR−1(n).

Monochromatic Clique Decompositions of Graphs Teresa Maria Sousa, UNL



Proof of the upper bounds: Tools

Kr -covering of G : set of edges whose removal results in a

Kr -free graph;

τr (G ) = minimum size of a Kr -covering of G .

Kr -packing of G : set of pairwise edge-disjoint Kr ’s;

γr (G ) = maximum size of a Kr -packing of G .
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Proof of the upper bounds: Tools

Conjecture (Tuza ’81)

τ3(G ) ≤ 2γ3(G ).

Theorem (Haxell ’99, best known upperbound)

τ3(G ) ≤
(
3− 3

23

)
γ3(G ).

Theorem (Yuster ’12)

τ3(G ) ≤ 2γ3(G ) + o(n2);

τr (G ) ≤
⌊ r 2

4

⌋
γr (G ) + o(n2); for r ≥ 4 .
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Proof: φk(n,K3) ≤ tR−1(n) + o(n2)

ε > 0, G k-edge-colored graph of order n, n sufficiently large

e(G ) = tR−1(n) + εn2 +m

Case 1: m ≤ 0

Decompose G into edges

Case 2: m > 0

` = max number of edge-disjoint mono K3’s in G

` > m
2 ⇒ φk(G ,K3) ≤ `+ e(G )− 3` ≤ tR−1(n) + εn2 and we

are done.
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Proof: φk(n,K3) ≤ tR−1(n) + o(n2)

suppose ` ≤ m
2

Gi = subgraph on color i

τ3(Gi) ≤ 2γ3(Gi) +
ε
2k n

2, for all i = 1 . . . k , by Yuster

Therefore,
k∑

i=1

τ3(G ) ≤
k∑

i=1

(
2γ3(Gi) +

ε

2k
n2
)

≤ 2`+
ε

2
n2

≤ m +
ε

2
n2
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Proof: φk(n,K3) ≤ tR−1(n) + o(n2)

By deleting at most m + ε
2n

2 edges we obtain G ′ without mono

K3

e(G ′) ≥ tR−1(n) + ε
2n

2 > tR−1(n)

By Turán’s Theorem, G ′ contains a KR and thus a mono Kr

a contradiction and the proof is completed.
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Proof: φk(n,Kr) ≤ tR−1(n)

r ≥ 4, k ≥ 2, R = Rk(r) and G k-edge-colored graph of order n,

e(G ) = tR−1(n) +m

Case 1: m < 0

Decompose G into edges

Case 2: m = 0

G ⊇ mono Kr ⇒ φk(G ,Kr ) ≤ tR−1(n)− e(Kr ) + 1 < tR−1(n)

G + mono Kr ⇒ G + KR , by definition of Ramsey number

G = TR−1(n) by Turán’s Theorem and φk(G ,Kr ) = tR−1(n)
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Proof: φk(n,Kr) ≤ tR−1(n)

Case 3: m > 0

` = max number of edge-disjoint mono Kr ’s in G

Suppose ` > m
(r
2)−1

Then, φk(G ,Kr ) ≤ `+ e(G )−
(r
2

)
` < tR−1(n)

Suffices to show ` > m
(r
2)−1
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Proof: φk(n,Kr) ≤ tR−1(n)

Case (i): m = o(n2)

Theorem (Győri, ’91)
Let e(G ) = tr−1(n) +m where m = o(n2). Then, G contains

m − O(m2/n2) = (1− o(1))m edge-disjoint copies of Kr .

G contains (1− o(1))m edge-disjoint copies of KR

each KR contains a mono Kr

thus, ` > m
(r
2)−1

and we are done
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Proof: φk(n,Kr) ≤ tR−1(n)

Case (ii): m ≥ Cn2, C positive constant

suppose ` < m
(r
2)−1

and let Gi = subgraph on color i

τr (Gi) ≤ br 2/4cγr (Gi) + o(n2), for all i = 1 . . . k , by Yuster

Therefore,
k∑

i=1

τr (G ) ≤
k∑

i=1

(⌊ r 2

4

⌋
γr (G ) + o(n2)

)
≤
⌊ r 2

4

⌋
`+ o(n2)

≤ 4
5
m + o(n2), since r ≥ 4.
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Proof: φk(n,Kr) ≤ tR−1(n)

By deleting ≤ 4
5m + o(n2) from G we obtain G ′ without mono

Kr

e(G ′) ≥ tR−1(n) + 1
5m − o(n2) > tR−1(n)

By Turán’s Theorem, G ′ contains a KR and thus a mono Kr

a contradiction and the proof is completed.
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Exact Results for Mono K3-Decompositions

Theorem
Let R = Rk(3) and n sufficiently large, then

φ2(n,K3) = tR−1(n) = t5(n).

φ3(n,K3) = tR−1(n) = t16(n).

Moreover, the only graph attaining the equality is the Turán graph

TR−1(n).

Proof: More technical, we need to know the structure of the

Ramsey colorings
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Open Problems

Conjecture
Let k ≥ 4, R = Rk(3) and n ≥ R. Then

φk(n,K3) = tR−1(n).

Follows easily from Tuza´s Conjecture.

ThankYou!
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