Monochromatic Clique Decompositions of Graphs

Teresa Sousa

Universidade Nova de Lisboa

Lisboa, 2 March 2013

Joint work with Henry Liu, UNL.

• *H*-Decomposition of *G*: partition of *E*(*G*) into copies of *H* and single edges

- *H*-Decomposition of *G*: partition of *E*(*G*) into copies of *H* and single edges
- Always exists

- *H*-Decomposition of *G*: partition of *E*(*G*) into copies of *H* and single edges
- Always exists
- $\phi(G, H)$ = minimum number of parts in an *H*-decomposition

- *H*-Decomposition of *G*: partition of *E*(*G*) into copies of *H* and single edges
- Always exists
- $\phi(G, H)$ = minimum number of parts in an H-decomposition
- Packing number: $p_H(G) = \max \# \text{ edge-disjoint copies of } H$

- *H*-Decomposition of *G*: partition of *E*(*G*) into copies of *H* and single edges
- Always exists
- $\phi(G, H)$ = minimum number of parts in an *H*-decomposition
- Packing number: $p_H(G) = \max \# \text{ edge-disjoint copies of } H$

$$\phi(G,H) = p_H(G) + (e(G) - e(H)p_H(G))$$

- *H*-Decomposition of *G*: partition of *E*(*G*) into copies of *H* and single edges
- Always exists
- $\phi(G, H)$ = minimum number of parts in an *H*-decomposition
- Packing number: $p_H(G) = \max \# \text{ edge-disjoint copies of } H$

$$\phi(G,H) = p_H(G) + (e(G) - e(H)p_H(G))$$

• Dor & Tarsi ['97]: NP-hard if H has a component with \geq 3 edges

The H-decomposition problem

$$\phi(n, H) = \max \{\phi(G, H) | v(G) = n\}$$

$$\phi(n,H) = \max \{\phi(G,H) | v(G) = n\}$$

 Turán Graph T_p(n): p-partite graph on n vertices with maximum number of edges

$$\phi(n,H) = \max \{\phi(G,H) | v(G) = n\}$$

 Turán Graph T_p(n): p-partite graph on n vertices with maximum number of edges

• Turán number:
$$t_p(n) = e(T_p(n))$$

The Turán Graph $T_p(n)$

- $T_p(n)$ is *p*-partite graph on *n* vertices
- K_{p+1} -free
- Maximum number of edges

The Turán Graph $T_p(n)$

- $T_p(n)$ is *p*-partite graph on *n* vertices
- K_{p+1} -free
- Maximum number of edges

 K_p = Complete graph on p vertices = Clique

Turán Graph *T*₂(*n*)

- $|V_i| = \lfloor \frac{n}{2} \rfloor$ or $\lceil \frac{n}{2} \rceil$
- triangle-free (K₃-free)
- maximum number of edges

•
$$t_2(n) = \left\lfloor \frac{n^2}{4} \right\rfloor$$

Turán Graph $T_4(13)$

Turán Graph $T_4(13)$

- 13 vertices, 4 clusters
- $|V_i| = 3 \text{ or } 4$
- K₅-free
- maximum number of edges

Turán Graph $\overline{T_p(n)}$

• *n* vertices, *p* clusters

Turán Graph $\overline{T_p(n)}$

• *n* vertices, *p* clusters

•
$$|V_i| = \lfloor \frac{n}{p} \rfloor$$
 or $\lfloor \frac{n}{p} \rfloor$

- *n* vertices, *p* clusters
- $|V_i| = \lfloor \frac{n}{p} \rfloor$ or $\lceil \frac{n}{p} \rceil$
- K_{p+1} -free

- *n* vertices, *p* clusters
- $|V_i| = \lfloor \frac{n}{p} \rfloor$ or $\lceil \frac{n}{p} \rceil$
- K_{p+1} -free
- maximum number of edges

- *n* vertices, *p* clusters
- $|V_i| = \lfloor \frac{n}{p} \rfloor$ or $\lceil \frac{n}{p} \rceil$
- K_{p+1} -free
- maximum number of edges

•
$$t_p(n) = (1 - \frac{1}{p} + o(1)) \binom{n}{2}$$

• Erdős-Goodman-Pósa ['66]: $\phi(n, K_3) = t_2(n);$

Monochromatic Clique Decompositions of Graphs

Teresa Maria Sousa, UNL

- Erdős-Goodman-Pósa ['66]: $\phi(n, K_3) = t_2(n);$
- Bollobás ['76]: $\phi(n, K_p) = t_{p-1}(n), p \ge 4;$

- Erdős-Goodman-Pósa ['66]: $\phi(n, K_3) = t_2(n);$
- Bollobás ['76]: $\phi(n, K_p) = t_{p-1}(n), p \ge 4;$
- Pikhurko-S. ['07]: $\phi(n, H) = t_{p-1}(n) + o(n^2)$, if $\chi(H) = p \ge 3$;

- Erdős-Goodman-Pósa ['66]: $\phi(n, K_3) = t_2(n);$
- Bollobás ['76]: $\phi(n, K_p) = t_{p-1}(n), p \ge 4;$
- Pikhurko-S. ['07]: $\phi(n, H) = t_{p-1}(n) + o(n^2)$, if $\chi(H) = p \ge 3$;
- Özkaya-Pearson ['12]: φ(n, H) = t_{p-1}(n), H edge-critical, χ(H) = p ≥ 3, n large.

• G graph of order n with a k-coloring of its edges

- G graph of order n with a k-coloring of its edges
- Monochromatic *H*-Decomposition of *G*: partition of *E*(*G*) into monochromatic copies of *H* and single edges

- G graph of order n with a k-coloring of its edges
- Monochromatic *H*-Decomposition of *G*: partition of *E*(*G*) into monochromatic copies of *H* and single edges
- φ_k(G, H) = minimum φ, s. t., for every k-edge coloring there exits a mono H-decomposition with at most φ elements

- G graph of order n with a k-coloring of its edges
- Monochromatic *H*-Decomposition of *G*: partition of *E*(*G*) into monochromatic copies of *H* and single edges
- φ_k(G, H) = minimum φ, s. t., for every k-edge coloring there exits a mono H-decomposition with at most φ elements

$$\phi_k(n,H) = \max \left\{ \phi_k(G,H) | v(G) = n \right\}$$

First open instance is $H = K_r$

First open instance is $H = K_r$

Ramsey Number for K_r

 $R_k(r) =$ smallest R such that every k-edge coloring of K_R contains a monochromatic K_r

First open instance is $H = K_r$

Ramsey Number for K_r

 $R_k(r)$ = smallest R such that every k-edge coloring of K_R contains a monochromatic K_r

- Ramsey Numbers are finite but notoriously difficult to calculate;
 - $R_2(3) = 6$, Greenwood and Gleason ['55];
 - $R_3(3) = 17$, Greenwood and Gleason ['55];
 - $R_2(4) = 18$, Greenwood and Gleason ['55];

Ramsey Number $R_2(3) > 5$

Consider K_5 with the following 2 coloring

Ramsey Number $R_2(3) > 5$

Consider K_5 with the following 2 coloring

Ramsey Number $R_2(3) > 5$

Consider K_5 with the following 2 coloring

No monochromatic K_3 $R_2(3) > 5$
Take K_6 with any 2-coloring

Take K_6 with any 2-coloring

Take K_6 with any 2-coloring

Blue K_3

Take K_6 with any 2-coloring

Blue K_3

Red K_3

Take K_6 with any 2-coloring

Blue K_3

Red K_3

Thus $R_2(3) \leq 6$

Decompose into Monochromatic Triangles

Decompose into Monochromatic Triangles

No Mono K_3 Blow-up the coloring to $T_5(n)$

Decompose into Monochromatic Triangles

No Mono K_3 Blow-up the coloring to $T_5(n)$

Decompose into Monochromatic Triangles

No Mono K_3 Blow-up the coloring to $T_5(n)$

No Mono K_3 , $t_5(n)$ edges

Decompose into Monochromatic Triangles

No Mono K_3 Blow-up the coloring to $T_5(n)$

No Mono K_3 , $t_5(n)$ edges $\phi_2(n, K_3) \ge t_5(n)$

Theorem

Let $k \geq 2$, $R = R_k(3)$, then

$$\phi_k(n, K_3) = t_{R-1}(n) + o(n^2).$$

In particular,

$$\phi_2(n, K_3) = t_5(n) + o(n^2);$$

 $\phi_3(n, K_3) = t_{16}(n) + o(n^2).$

Theorem

Let $r \ge 4$, $k \ge 2$, $R = R_k(r)$ and n suficiently large, then

$$\phi_k(n,K_r)=t_{R-1}(n).$$

In particular, $\phi_2(n, K_4) = t_{17}(n)$.

Moreover, the only graph attaining $\phi_k(n, K_r)$ is the Turán graph $T_{R-1}(n)$.

• Recall $R = R_k(r)$;

- Recall $R = R_k(r)$;
- There exists a k-edge-coloring of K_{R-1} without a mono K_r ;

- Recall $R = R_k(r)$;
- There exists a k-edge-coloring of K_{R-1} without a mono K_r ;
- Consider $T_{R-1}(n)$ with a "blow-up" of this k-edge-coloring;

- Recall $R = R_k(r)$;
- There exists a k-edge-coloring of K_{R-1} without a mono K_r ;
- Consider $T_{R-1}(n)$ with a "blow-up" of this k-edge-coloring;
- $T_{R-1}(n)$ with this k-edge-coloring has no mono K_r ;

- Recall $R = R_k(r)$;
- There exists a k-edge-coloring of K_{R-1} without a mono K_r ;
- Consider $T_{R-1}(n)$ with a "blow-up" of this k-edge-coloring;
- $T_{R-1}(n)$ with this k-edge-coloring has no mono K_r ;
- $\phi_k(n, K_r) \ge \phi_k(T_{R-1}(n), K_r) = t_{R-1}(n).$

- K_r-covering of G: set of edges whose removal results in a K_r-free graph;
- $\tau_r(G)$ = minimum size of a K_r -covering of G.

- K_r-covering of G: set of edges whose removal results in a K_r-free graph;
- $\tau_r(G)$ = minimum size of a K_r -covering of G.

K_r-packing of G: set of pairwise edge-disjoint K_r's;
γ_r(G) = maximum size of a K_r-packing of G.

Conjecture (Tuza '81)

```
\tau_3(G) \leq 2\gamma_3(G).
```

Conjecture (Tuza '81)

$$\tau_3(G) \leq 2\gamma_3(G).$$

Theorem (Haxell '99, best known upperbound)

$$au_3(\mathcal{G}) \leq \left(3 - \frac{3}{23}\right)\gamma_3(\mathcal{G}).$$

Conjecture (Tuza '81)

$$\tau_3(G) \leq 2\gamma_3(G).$$

Theorem (Haxell '99, best known upperbound)

$$au_3(G) \leq \left(3 - \frac{3}{23}\right)\gamma_3(G).$$

Theorem (Yuster '12)

$$egin{aligned} & au_3(G) \leq 2\gamma_3(G) + o(n^2); \ & au_r(G) \leq \Big\lfloor rac{r^2}{4} \Big
floor \gamma_r(G) + o(n^2); & ext{for } r \geq 4 \end{aligned}$$

•
$$e(G) = t_{R-1}(n) + \varepsilon n^2 + m$$

•
$$e(G) = t_{R-1}(n) + \varepsilon n^2 + m$$

- Case 1: $m \leq 0$
 - Decompose *G* into edges

•
$$e(G) = t_{R-1}(n) + \varepsilon n^2 + m$$

- Case 1: m ≤ 0
 - Decompose G into edges
- Case 2: *m* > 0
 - $\ell = \max$ number of edge-disjoint mono K_3 's in G

•
$$e(G) = t_{R-1}(n) + \varepsilon n^2 + m$$

- Case 1: $m \leq 0$
 - Decompose G into edges
- Case 2: m > 0
 - $\ell = \max$ number of edge-disjoint mono K_3 's in G
 - $\ell > \frac{m}{2} \Rightarrow \phi_k(G, K_3) \le \ell + e(G) 3\ell \le t_{R-1}(n) + \varepsilon n^2$ and we are done.

• suppose $\ell \leq \frac{m}{2}$

- suppose $\ell \leq \frac{m}{2}$
- G_i = subgraph on color *i*

- suppose $\ell \leq \frac{m}{2}$
- G_i = subgraph on color *i*
- $\tau_3(G_i) \leq 2\gamma_3(G_i) + \frac{\varepsilon}{2k}n^2$, for all $i = 1 \dots k$, by Yuster

- suppose $\ell \leq \frac{m}{2}$
- G_i = subgraph on color *i*
- $\tau_3(G_i) \leq 2\gamma_3(G_i) + \frac{\varepsilon}{2k}n^2$, for all $i = 1 \dots k$, by Yuster
- Therefore,

$$\sum_{i=1}^{k} \tau_{3}(G) \leq \sum_{i=1}^{k} \left(2\gamma_{3}(G_{i}) + \frac{\varepsilon}{2k}n^{2} \right)$$
$$\leq 2\ell + \frac{\varepsilon}{2}n^{2}$$
$$\leq m + \frac{\varepsilon}{2}n^{2}$$

• By deleting at most $m + \frac{\varepsilon}{2}n^2$ edges we obtain G' without mono K_3

• By deleting at most $m + \frac{\varepsilon}{2}n^2$ edges we obtain G' without mono K_3

•
$$e(G') \ge t_{R-1}(n) + \frac{\varepsilon}{2}n^2 > t_{R-1}(n)$$

• By deleting at most $m + \frac{\varepsilon}{2}n^2$ edges we obtain G' without mono \mathcal{K}_3

•
$$e(G') \geq t_{R-1}(n) + \frac{\varepsilon}{2}n^2 > t_{R-1}(n)$$

• By Turán's Theorem, G' contains a K_R and thus a mono K_r

• By deleting at most $m + \frac{\varepsilon}{2}n^2$ edges we obtain G' without mono K_3

•
$$e(G') \geq t_{R-1}(n) + \frac{\varepsilon}{2}n^2 > t_{R-1}(n)$$

- By Turán's Theorem, G' contains a K_R and thus a mono K_r
- a contradiction and the proof is completed.

Proof: $\phi_k(n, K_r) \leq t_{R-1}(n)$
• $r \ge 4$, $k \ge 2$, $R = R_k(r)$ and G k-edge-colored graph of order n,

- $r \ge 4$, $k \ge 2$, $R = R_k(r)$ and G k-edge-colored graph of order n,
- $e(G) = t_{R-1}(n) + m$

- $r \geq 4$, $k \geq 2$, $R = R_k(r)$ and G k-edge-colored graph of order n,
- $e(G) = t_{R-1}(n) + m$
- Case 1: *m* < 0
 - Decompose G into edges

- $r \geq 4$, $k \geq 2$, $R = R_k(r)$ and G k-edge-colored graph of order n,
- $e(G) = t_{R-1}(n) + m$
- Case 1: *m* < 0
 - Decompose G into edges
- Case 2: *m* = 0

- $r \ge 4$, $k \ge 2$, $R = R_k(r)$ and G k-edge-colored graph of order n,
- $e(G) = t_{R-1}(n) + m$
- Case 1: *m* < 0
 - Decompose G into edges
- Case 2: *m* = 0
 - $G \supseteq \text{mono } K_r \Rightarrow \phi_k(G, K_r) \le t_{R-1}(n) e(K_r) + 1 < t_{R-1}(n)$

- $r \ge 4$, $k \ge 2$, $R = R_k(r)$ and G k-edge-colored graph of order n,
- $e(G) = t_{R-1}(n) + m$
- Case 1: *m* < 0
 - Decompose G into edges
- Case 2: *m* = 0
 - $G \supseteq \text{mono } K_r \Rightarrow \phi_k(G, K_r) \le t_{R-1}(n) e(K_r) + 1 < t_{R-1}(n)$
 - $G \not\supseteq mono K_r \Rightarrow G \not\supseteq K_R$, by definition of Ramsey number

- $r \geq 4$, $k \geq 2$, $R = R_k(r)$ and G k-edge-colored graph of order n,
- $e(G) = t_{R-1}(n) + m$
- Case 1: *m* < 0
 - Decompose G into edges
- Case 2: *m* = 0
 - $G \supseteq \text{mono } K_r \Rightarrow \phi_k(G, K_r) \le t_{R-1}(n) e(K_r) + 1 < t_{R-1}(n)$
 - $G \not\supseteq mono K_r \Rightarrow G \not\supseteq K_R$, by definition of Ramsey number
 - $G = T_{R-1}(n)$ by Turán's Theorem and $\phi_k(G, K_r) = t_{R-1}(n)$

Case 3: m > 0

• ℓ = max number of edge-disjoint mono K_r 's in G

Case 3: m > 0

- ℓ = max number of edge-disjoint mono K_r 's in G
- Suppose $\ell > \frac{m}{\binom{r}{2}-1}$

Case 3: m > 0

• $\ell = \max$ number of edge-disjoint mono K_r 's in G

• Suppose
$$\ell > \frac{m}{\binom{r}{2}-1}$$

• Then, $\phi_k(G, K_r) \leq \ell + e(G) - \binom{r}{2}\ell < t_{R-1}(n)$

Case 3: m > 0

- $\ell = \max$ number of edge-disjoint mono K_r 's in G
- Suppose $\ell > \frac{m}{\binom{r}{2}-1}$
- Then, $\phi_k(G, K_r) \leq \ell + e(G) \binom{r}{2}\ell < t_{R-1}(n)$
- Suffices to show $\ell > \frac{m}{\binom{r}{2}-1}$

Case (i):
$$m = o(n^2)$$

Case (i):
$$m = o(n^2)$$

Theorem (Győri, '91)

Let $e(G) = t_{r-1}(n) + m$ where $m = o(n^2)$. Then, G contains $m - O(m^2/n^2) = (1 - o(1))m$ edge-disjoint copies of K_r .

Case (i):
$$m = o(n^2)$$

Theorem (Győri, '91)

Let $e(G) = t_{r-1}(n) + m$ where $m = o(n^2)$. Then, G contains $m - O(m^2/n^2) = (1 - o(1))m$ edge-disjoint copies of K_r .

• G contains (1 - o(1))m edge-disjoint copies of K_R

Case (i):
$$m = o(n^2)$$

Theorem (Győri, '91)

Let $e(G) = t_{r-1}(n) + m$ where $m = o(n^2)$. Then, G contains $m - O(m^2/n^2) = (1 - o(1))m$ edge-disjoint copies of K_r .

- G contains (1 o(1))m edge-disjoint copies of K_R
- each K_R contains a mono K_r

Case (i):
$$m = o(n^2)$$

Theorem (Győri, '91)

Let $e(G) = t_{r-1}(n) + m$ where $m = o(n^2)$. Then, G contains $m - O(m^2/n^2) = (1 - o(1))m$ edge-disjoint copies of K_r .

- G contains (1 o(1))m edge-disjoint copies of K_R
- each K_R contains a mono K_r

• thus,
$$\ell > \frac{m}{\binom{r}{2}-1}$$
 and we are done

Case (ii): $m \ge Cn^2$, C positive constant

Proof: $\phi_k(n, \overline{K_r}) \leq t_{R-1}(n)$

Case (ii): $m \ge Cn^2$, C positive constant

• suppose $\ell < \frac{m}{\binom{r}{2}-1}$ and let G_i = subgraph on color i

Case (ii): $m \ge Cn^2$, C positive constant

- suppose $\ell < \frac{m}{\binom{r}{2}-1}$ and let G_i = subgraph on color i
- $\tau_r(G_i) \leq \lfloor r^2/4 \rfloor \gamma_r(G_i) + o(n^2)$, for all $i = 1 \dots k$, by Yuster

Case (ii): $m \ge Cn^2$, C positive constant

- suppose $\ell < \frac{m}{\binom{r}{2}-1}$ and let G_i = subgraph on color i
- $au_r(G_i) \leq \lfloor r^2/4 \rfloor \gamma_r(G_i) + o(n^2)$, for all $i = 1 \dots k$, by Yuster
- Therefore,

$$\sum_{i=1}^{k} \tau_r(G) \le \sum_{i=1}^{k} \left(\left\lfloor \frac{r^2}{4} \right\rfloor \gamma_r(G) + o(n^2) \right)$$
$$\le \left\lfloor \frac{r^2}{4} \right\rfloor \ell + o(n^2)$$
$$\le \frac{4}{5}m + o(n^2), \text{ since } r \ge 4.$$

•
$$e(G') \ge t_{R-1}(n) + \frac{1}{5}m - o(n^2) > t_{R-1}(n)$$

•
$$e(G') \ge t_{R-1}(n) + \frac{1}{5}m - o(n^2) > t_{R-1}(n)$$

• By Turán's Theorem, G' contains a K_R and thus a mono K_r

•
$$e(G') \ge t_{R-1}(n) + \frac{1}{5}m - o(n^2) > t_{R-1}(n)$$

- By Turán's Theorem, G' contains a K_R and thus a mono K_r
- a contradiction and the proof is completed.

Exact Results for Mono K_3 -Decompositions

Exact Results for Mono K_3 -Decompositions

Theorem

Let $R = R_k(3)$ and n sufficiently large, then

$$\phi_2(n, K_3) = t_{R-1}(n) = t_5(n).$$

$$\phi_3(n, K_3) = t_{R-1}(n) = t_{16}(n).$$

Moreover, the only graph attaining the equality is the Turán graph $T_{R-1}(n)$.

Exact Results for Mono K_3 -Decompositions

Theorem

Let $R = R_k(3)$ and n sufficiently large, then

$$\phi_2(n, K_3) = t_{R-1}(n) = t_5(n).$$

$$\phi_3(n, K_3) = t_{R-1}(n) = t_{16}(n).$$

Moreover, the only graph attaining the equality is the Turán graph $T_{R-1}(n)$.

Proof: More technical, we need to know the structure of the Ramsey colorings

Conjecture

Let $k \ge 4$, $R = R_k(3)$ and $n \ge R$. Then

 $\phi_k(n, K_3) = t_{R-1}(n).$

Conjecture

Let $k \ge 4$, $R = R_k(3)$ and $n \ge R$. Then

$$\phi_k(n, K_3) = t_{R-1}(n).$$

• Follows easily from Tuza's Conjecture.

Conjecture

Let $k \ge 4$, $R = R_k(3)$ and $n \ge R$. Then

$$\phi_k(n, K_3) = t_{R-1}(n).$$

• Follows easily from Tuza's Conjecture.

ThankYou!