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Outline

This talk is on joint work with Luca Moci, arXiv:1209.6571.

Matroids

Matroids over a ring

Subtorus arrangements produce matroids over Z

Tropical geometry produces matroids over a valuation ring

Duality and the Tutte invariant

vV v vV v VvY

Speculations
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Matroids

Matroids Whitney & others, ~'35 distil combinatorics from linear algebra.

An early perspective: axiomatize how (abstract) points can be
contained in lines, planes, ...

The pictures below are projective:

OK Bad: {P, Q, R} and OK, despite Pappus!
{P,Q, S} collinear = (nonrealizable)
all four collinear.
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Matroids

Matroids Whitney & others, ~'35 distil combinatorics from linear algebra.
Many superficially unrelated definitions. (Birkhoff: “cryptomorphism”.)
Definition

A matroid M on the finite ground set E assigns to each subset A C E
a rank rk(A) € Z>g, such that: [...]

Main example: realizable matroids

Let vq,..., v, be vectors in a vector space V.

rk(A) := dimspan{v; : i € A}
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Matroids: definition

Definition

A matroid M on the finite ground set E assigns to each subset A C E
a rank rk(A) € Z>g, such that:

(0) k(@) =0

(1) rk(A) <rk(AU{b}) <1k(A)+1 VYA Z b

(2) rk(A) +rk(AU{b, c}) < rk(AU{b}) + rk(AU{c}) VYAZ b, c )

Main example: realizable matroids

Let vi,..., v, be vectors in a vector space V.

rk(A) := dimspan{v; : i € A}

Alex Fink Matroids over rings 5 /24



Matroids: examples

Definition

A matroid M on the finite ground set E assigns to each subset A C E
a rank rk(A) € Z>g, such that:

(0) rk(@) =0

(1) rk(A) <rk(AU{b}) <rk(A)+1 VYAZ b

(2) rk(A) +rk(AU{b, c}) < rk(AU{b}) 4+ rk(AU{c}) VYAZ b, c )

Example: a realizable matroid in full

V2

A g 1 2 12 3 13 23 123
‘7”‘ rk(A) 011 1 1 2 2 2
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Enriched variants of matroids

You might want to capture more than just the linear dependences:
Oriented matroids come from real vector configurations, and
remember signs (e.g. in circuits). [Bland-las Vergnas]

Complex matroids come from complex configurations, and remember
phases. [Anderson-Delucchi]

Valuated matroids come from configs over a field with valuation, and
remember valuations. [Dress-Wenzel]

Arithmetic matroids come from configurations over Z, and remember
indices of sublattices. [D’Adderio-Moci
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Enriched variants of matroids

You might want to capture more than just the linear dependences:

Valuated matroids come from configs over a field with valuation, and
remember valuations. [Dress-Wenzel]

Arithmetic matroids come from configurations over Z, and remember
indices of sublattices. [D’Adderio-Moci

Matroids over rings encompass these latter two.

(Compare matroids with coefficients [Dress].)
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Matroids over rings

Let R be a commutative ring.

Let vq,..., v, be a configuration of vectors in an R-module N.
We would like a system of axioms for the quotients N/(v; : i € A).

Realizable example

A 0 1 2 12
M(A) Z? Z 7 7/3
A 3 13 23 123

MA) ZoZ/2 Z/8 Z/2 1
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Matroids over rings: definition

Let vq,..., v, be a configuration of vectors in an R-module N.
We would like a system of axioms for the quotients N/(v; : i € A).

Main definition [F-Moci]
A matroid over R on the finite ground set E assigns to each subset
AC E af.g. R module M(A) up to =, such that
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Matroids over rings: definition

Let vq,..., v, be a configuration of vectors in an R-module N.
We would like a system of axioms for the quotients N/(v; : i € A).

Main definition [F-Moci]

A matroid over R on the finite ground set E assigns to each subset
AC E af.g. R module M(A) up to =, such that

for all AC E and b, c € A, there are elements
x =x(b,c), y=yl(b,c)e M(A)

with
M(AU{b}) = M(A)/(x),

M(AU{c}) = M(A)/(y),  M(AU{b,c}) = M(A)/(x,y).

The maps between the modules M(A) are not datal
This allows nonrealizability.

Alex Fink Matroids over rings

9/ 24



Matroids over rings: definition

Let vq,..., Vv, be a configuration of vectors in an R-module N.
We would like a system of axioms for the quotients N/{v; : i € A).

Main definition [F-Moci]

A matroid over R on the finite ground set E assigns to each subset

AC E af.g. R module M(A) up to =, such that

(1) For all A Z b, there is a surjection M(A) - M(A U {b}) with
cyclic kernel.

(2) For all A Z b, c, there are four such maps forming a pushout

(i.e. the square

M(A) M(A U {b}) commutes and
l B l ker \, = ker | + ker —)

M(AU{c}) —= M(AU{b, c})

The maps between the modules M(A) are not datal

This allows nonrealizability.
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Matroids are matroids over fields

Theorem 1 (F-Moci)

Matroids over a field k are equivalent to matroids*. J

“if M(E) = 0).
A f.g. k-module is determined by its dimension € Z.

If vi,..., v, are vectors in k",
the dimension of k" /(v; : i € N) is r —rk(A), the corank of A.

Example
V
v |4 12 13 23 123

A 1 @ 3
\ MA R2 R R R R 0 0 0
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Matroids are matroids over fields

Theorem 1 (F-Moci)
Matroids over a field k are equivalent to matroids*. J

“if M(E) = 0.
A f.g. k-module is determined by its dimension € Z.
If vi,..., v, are vectors in k",

the dimension of k" /(v; : i € N) is r —rk(A), the corank of A.

Example

12 13 23 123

A 1 2 3
MA R> R R R R 0 0 O

Note: The definition of matroids over k is blind to which field k is.
For realizability the choice matters.

Alex Fink Matroids over rings 10 / 24



Application 1: hyperplane arrangement comb. & top.

. H. H.
Let H = {H1,..., H,} be hyperplanes in a ’ ’
vector space W, dimW =r.
H has a matroid: rk(A) = codim (;c4 H;. 7
1

This is also the matroid of any dual vector
configuration: (v; € W) such that

H; ={x: (x,v;) = 0}.
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Application 1: hyperplane arrangement comb. & top.

. H. H.
Let H = {H1,..., H,} be hyperplanes in a ’ ’
vector space W, dimW =r.
H has a matroid: rk(A) = codim (;c4 H;. 7
1

This is also the matroid of any dual vector
configuration: (v; € W) such that

H; ={x: (x,v;) = 0}.

From the characteristic polynomial of H, we get a lot of topology:

xr(q) = Z (—1)MAl gr—k(A)

ACE
- 3 dim HA(We \ [ JH)g* = (~a) x(~1/a).
k
» Wr\UH has (—1)"x»(—1) components. Etc.

Alex Fink Matroids over rings 11 / 24



Subtorus arrangements

Now let H = {Hs, ..., H,} be codimension one
tori in an r-dimensional torus T.

[De Concini-Procesi '10]

Subtori are dual to characters u; € Char(T):

H; = {x:uj(x) =1}
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Subtorus arrangements

Now let H = {Hs, ..., H,} be codimension one
tori in an r-dimensional torus T.

[De Concini-Procesi '10]

Subtori are dual to characters u; € Char(T):

H; = {x:uj(x) =1}

There is again a characteristic polynomial:

xn(@) = 3 (1) m(A) g4,
ACE

Here
tk(A) = codim ;4 Hi = dimspan{u; : i € A}
m(A) = # components (). Hi = [R{u;} N Char(T) : Z{u;}]
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The characteristic polynomial, again

In terms of the characteristic polynomial

xn(q) = Z (—1)A m(A) g™ A
ACE

» The complex cohomology of a toric arrangement is given by

Y dimH(T\[JH)¢" = (=a) xs(—(q +1)/q).
k

» T\UH has (—1)"x#(0) components over the reals.
Etc.
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Arithmetic matroids

Definition ([Moci-D’'Adderio])

An arithmetic matroid is a pair (M, m), where M is a matroid and
m: 2F — Z—g a multiplicity function, such that
[complicated axioms]
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Arithmetic matroids

Definition ([Moci-D'Adderio])

An arithmetic matroid is a pair (M, m), where M is a matroid and
m: 2F — Z—g a multiplicity function, such that
[complicated axioms]

We have a configuration u; € Char(T) = Z', and:

Theorem 2 (F-Moci)

Arithmetic matroids are matroids over Z.

. almost. Arithmetic matroids forget the torsion structure:
Z/ua) =2 F = (M(A),m(A) = (d,|F]

where F is finite.
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Other appearances of matroids over Z

In topology:

» Homology groups in quotients of spheres by finite groups
[Hughes-Swartz].

» Maybe flows on simplicial complexes [Chmutov et al]?
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Application 2: tropical geometry

This lies among many algebro-geometric applications of matroids:

moduli of hyp arrs [Hacking-Keel-Tevelev], compactifying fine Schubert
cells [Lafforgue], classes of T-orbits on Grassmannians [F-Spevyer], ...
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Application 2: tropical geometry

This lies among many algebro-geometric applications of matroids:

moduli of hyp arrs [Hacking-Keel-Tevelev], compactifying fine Schubert
cells [Lafforgue], classes of T-orbits on Grassmannians [F-Spevyer], ...

Tropical geometry studies combinatorial “shadows” of algebraic

varieties.

f——

s

Two conics over C meet in as do two tropical conics.
four points [Bézout]
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Tropicalization

An algebraic variety X C (k*)" has a tropicalization Trop X C R".

Easy case: If (k,v) has nontrivial valuation v : k* — R, and k =k,
then Trop X = v(X), coordinatewise.
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Tropicalization

An algebraic variety X C (k*)" has a tropicalization Trop X C R".

Easy case: If (k,v) has nontrivial valuation v : k* — R, and k =k,
then Trop X = v(X), coordinatewise.

A linear space L C k" meets the torus in the hyperplane arrangement

complement
Lo (k*)"C (k)"
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Tropicalization

An algebraic variety X C (k*)" has a tropicalization Trop X C R".

Easy case: If (k,v) has nontrivial valuation v: kX = R, and k =k,
then Trop X = v(X), coordinatewise.

A linear space L C k" meets the torus in the hyperplane arrangement

complement
Lo (k*)"C (k)"

If v is trivial, then Trop L is the fan whose cones are spanned by
chains of flats of M.

Theorem (Speyer, '04)

There is a bijection

{tropical linear spaces that are fans} «—— {matroids}
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General tropical linear spaces

Proposition (Speyer, '04)

{tropical linear spaces} «+— {regular IRATEEE }

of matroid polytopes
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General tropical linear spaces

Proposition (Speyer, '04)

regular subdivisions }

o q
{tropical linear spaces} +— {o f matroid polytopes

Definition; proposition (Dress-Wenzel, '91)

A valuated matroid is a pair (M, m), where M is a matroid and
m:2E — R a value function, such that [axioms]. There is a bijection

{tropical linear spaces} «— {valuated matroids}

The main axiom is a tropical Pliicker relation for a Grassmannian: in
{m(Abc) + m(Ade), m(Abd) + m(Ace), m(Acd) + m(Abe)},
the minimum is attained twice or more.

Alex Fink Matroids over rings 18 / 24



Matroids over valuation rings

Let (R,Vv) be a valuation ring.

Theorem 3 (F-Moci)
A matroid over R gives a valuated matroid, i.e. a tropical linear space.

The values of m are the lengths over R/m of the modules M(A) with
Al =d.
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Matroids over valuation rings

Let (R,Vv) be a valuation ring.

Theorem 3 (F-Moci)

A matroid over R gives a valuated matroid, i.e. a tropical linear space.

The values of m are the lengths over R/m of the modules M(A) with
Al =d.

But there's lots more data than that.

E.g. the whole list of lengths gives a point on the tropical full flag
variety (for which [Haque]).
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We can tensor matroids, e.g. localize them:

. — YR
{matroids over R} ——

{matroids over S}

To understand matroids over a ring R (
What can their

Z):
be like? (

valuation ring case)
When does a family of localizations come from a

matroid?
In the Dedekind case, the only interesting obstruction to step
controlled by Pic(R).

is

«O>» «Fr «E>» «E>» Q>

(Thus no obstruction over a PID, like Z.)



Structure theory

We can tensor matroids, e.g. localize them:

. ®rRS )
{matroids over R} ———— {matroids over S}

Strategy
To understand matroids over a ring R (e.g. Z):
1. What can their localizations be like? (= valuation ring case)

2. When does a family of localizations come from a global matroid?

In the Dedekind case, the only interesting obstruction to step 2. is
controlled by Pic(R).

(Thus no obstruction over a PID, like Z.)
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Duality

Dual matroids arise from dual planar graphs, perpendicular subspaces,
Gale dual vector configurations . ..

The dual M* of a matroid M is given by
corkpy<(E \ A) = corkp(A) — r + |A|.
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Duality

Dual matroids arise from dual planar graphs, perpendicular subspaces,
Gale dual vector configurations . ..

The dual M* of a matroid M is given by
corkpy<(E \ A) = corkp(A) — r + |A|.

Let R be one of the following:

» a Priifer domain, i.e. all localizations are 1-dim’l valuation rings
(includes Dedekind domains);

> a local Noetherian ring.

Theorem (F-Moci)
Matroids over R have well-defined duals. J
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Duality

Dual matroids arise from dual planar graphs, perpendicular subspaces,
Gale dual vector configurations . ..

The dual M* of a matroid M is given by
corkpy<(E \ A) = corkp(A) — r + |A|.

Let R be one of the following:

» a Priifer domain, i.e. all localizations are 1-dim’l valuation rings
(includes Dedekind domains);

> a local Noetherian ring.
Theorem (F-Moci)

Matroids over R have well-defined duals.

The construction is by dualizing a resolution of ker(M(0) — M(A)).

In the Dedekind case, M*(E \ A) = Ext!(M(A), R)
up to projective modules of rank difference —r + |A|.
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The Tutte polynomial (after [Brylawski])

The deletion M\ i is the restriction of M to sets A Z i, and
the contraction M/i is the restriction of M to sets A > J.
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The Tutte polynomial (after [Brylawski])

The deletion M\ i is the restriction of M to sets A Z i, and
the contraction M/i is the restriction of M to sets A > J.

Define the Tutte-Grothendieck ring to be the free group on
{Tp : M a matroid} modulo relations

Tv = Twni + Tmyi,

and product Ty Ty = Tpaom:-

Ty is the Tutte polynomial of M, with many important evaluations
(e.g. characteristic poly, chromatic poly).

Alex Fink Matroids over rings 22 /24



The Tutte polynomial (after [Brylawski])

The deletion M\ i is the restriction of M to sets A Z i, and
the contraction M/i is the restriction of M to sets A > J.

Define the Tutte-Grothendieck ring to be the free group on
{Tp : M a matroid} modulo relations

Tv = Twni + Tmyi,
and product Ty Ty = Tpaom:-

Ty is the Tutte polynomial of M, with many important evaluations
(e.g. characteristic poly, chromatic poly).

Theorem (Crapo, Brylawski)
The Tutte-Grothendieck ring is Z[x — 1,y — 1], with

Ty = Z (x — l)corankM(A] (y . l)corankM* (E\A)
ACE
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The Tutte polynomial for matroids over R

Let R be a Dedekind domain.
Let Z[R-Mod] be the monoid ring of fin. gen. R-modules up to =
under direct sum. uNyN' = yNen’

Theorem (F-Moci)

The Tutte-Grothendieck ring of matroids over R injects into
Z[R-Mod| ® Z[R-Mod|, with

class of M = Z XM(A) yyM*(E\A)
ACE

It's a proper injection since M(A) and M*(E \ A) have the same
torsion part.

Some specializations:
» The characteristic polynomial of a subtorus arrangement
» The Tutte quasipolynomial of [Brandén-Moci]
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Future work

Other axiom systems: polytopes, bases, circuits, ...7
Are duals always well-defined?
Which rings have good characterizations of realizability?

What's the extra data over a DVR?
(maybe: convex hulls in buildings [Joswig-Sturmfels-Yu])

vV v . v.Y

v

Implications for algebraic matroids?
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Future work

» Other axiom systems: polytopes, bases, circuits, ...7
> Are duals always well-defined?
» Which rings have good characterizations of realizability?
» What's the extra data over a DVR?

(maybe: convex hulls in buildings [Joswig-Sturmfels-Yu])
» Implications for algebraic matroids?

Thank you!
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A bit more on DVRs

There is a bijection between Example

finitely generated modules over a DVR Ny =R @ R/m3 @ R/m
[TTITT:--
0

& partitions allowing infinite parts. A=

Theorem (Hall, ...)

The number of exact sequences
0= Nx— Ny —=N,—0

up to = of sequences is the LR coeff Cant (or its infinite-rows analog).

So, quotients by one element give the Pieri rule.

Lemma, en route to Theorem 3

M is a 1-element matroid over R &
M(D) has at most one box more in each column than M(1).
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