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Outline

This talk is on joint work with Luca Moci, arXiv:1209.6571.

I Matroids
I Matroids over a ring
I Subtorus arrangements produce matroids over Z
I Tropical geometry produces matroids over a valuation ring
I Duality and the Tutte invariant
I Speculations
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Matroids

Matroids Whitney & others, ∼’35 distil combinatorics from linear algebra.

An early perspective: axiomatize how (abstract) points can be
contained in lines, planes, . . .

The pictures below are projective:

OK Bad: {P, Q, R} and
{P, Q, S} collinear ⇒

all four collinear.

OK, despite Pappus!
(nonrealizable)
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Matroids

Matroids Whitney & others, ∼’35 distil combinatorics from linear algebra.

Many superficially unrelated definitions. (Birkhoff: “cryptomorphism”.)

Definition
A matroid M on the finite ground set E assigns to each subset A ⊆ E
a rank rk(A) ∈ Z≥0, such that: [. . . ]

Main example: realizable matroids
Let v1, . . . , vn be vectors in a vector space V .

rk(A) := dim span{vi : i ∈ A}
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Matroids: definition

Definition
A matroid M on the finite ground set E assigns to each subset A ⊆ E
a rank rk(A) ∈ Z≥0, such that:
(0) rk(∅) = 0
(1) rk(A) ≤ rk(A ∪ {b}) ≤ rk(A) + 1 ∀A 63 b
(2) rk(A) + rk(A ∪ {b, c}) ≤ rk(A ∪ {b}) + rk(A ∪ {c}) ∀A 63 b, c

Main example: realizable matroids
Let v1, . . . , vn be vectors in a vector space V .

rk(A) := dim span{vi : i ∈ A}
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Matroids: examples

Definition
A matroid M on the finite ground set E assigns to each subset A ⊆ E
a rank rk(A) ∈ Z≥0, such that:
(0) rk(∅) = 0
(1) rk(A) ≤ rk(A ∪ {b}) ≤ rk(A) + 1 ∀A 63 b
(2) rk(A) + rk(A ∪ {b, c}) ≤ rk(A ∪ {b}) + rk(A ∪ {c}) ∀A 63 b, c

Example: a realizable matroid in full

v1

v2

v3

A ∅ 1 2 12 3 13 23 123
rk(A) 0 1 1 1 1 2 2 2
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Enriched variants of matroids

You might want to capture more than just the linear dependences:

Oriented matroids come from real vector configurations, and
remember signs (e.g. in circuits). [Bland-las Vergnas]

Complex matroids come from complex configurations, and remember
phases. [Anderson-Delucchi]

Valuated matroids come from configs over a field with valuation, and
remember valuations. [Dress-Wenzel]

Arithmetic matroids come from configurations over Z, and remember
indices of sublattices. [D’Adderio-Moci]

Matroids over rings encompass these latter two.

(Compare matroids with coefficients [Dress].)
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Matroids over rings

Let R be a commutative ring.

Let v1, . . . , vn be a configuration of vectors in an R-module N.
We would like a system of axioms for the quotients N/〈vi : i ∈ A〉.

Realizable example

v1 = (−2, 1) v2 = (1, 1) v3 = (4, 2) A ∅ 1 2 12
M(A) Z2 Z Z Z/3

A 3 13 23 123
M(A) Z⊕ Z/2 Z/8 Z/2 1
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Matroids over rings: definition

Let v1, . . . , vn be a configuration of vectors in an R-module N.
We would like a system of axioms for the quotients N/〈vi : i ∈ A〉.

Main definition [F-Moci]

A matroid over R on the finite ground set E assigns to each subset
A ⊆ E a f.g. R module M(A) up to ∼=, such that

for all A ⊆ E and b, c 6∈ A, there are elements

x = x(b, c), y = y(b, c) ∈ M(A)

with
M(A) = M(A), M(A ∪ {b}) ∼= M(A)/〈x〉,

M(A ∪ {c}) ∼= M(A)/〈y〉, M(A ∪ {b, c}) ∼= M(A)/〈x , y〉.

The maps between the modules M(A) are not data!
This allows nonrealizability.

Alex Fink Matroids over rings 9 / 24



Matroids over rings: definition

Let v1, . . . , vn be a configuration of vectors in an R-module N.
We would like a system of axioms for the quotients N/〈vi : i ∈ A〉.

Main definition [F-Moci]

A matroid over R on the finite ground set E assigns to each subset
A ⊆ E a f.g. R module M(A) up to ∼=, such that

for all A ⊆ E and b, c 6∈ A, there are elements

x = x(b, c), y = y(b, c) ∈ M(A)

with
M(A) = M(A), M(A ∪ {b}) ∼= M(A)/〈x〉,

M(A ∪ {c}) ∼= M(A)/〈y〉, M(A ∪ {b, c}) ∼= M(A)/〈x , y〉.

The maps between the modules M(A) are not data!
This allows nonrealizability.

Alex Fink Matroids over rings 9 / 24



Matroids over rings: definition

Let v1, . . . , vn be a configuration of vectors in an R-module N.
We would like a system of axioms for the quotients N/〈vi : i ∈ A〉.

Main definition [F-Moci]

A matroid over R on the finite ground set E assigns to each subset
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(1) For all A 63 b, there is a surjection M(A) � M(A ∪ {b}) with
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M(A)

y
//

��

M(A ∪ {b})

��
M(A ∪ {c}) // M(A ∪ {b, c})

(i.e. the square
commutes and
ker↘ = ker ↓+ ker→)
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This allows nonrealizability.
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Matroids are matroids over fields

Theorem 1 (F-Moci)

Matroids over a field k are equivalent to matroids∗.

∗if M(E ) = ∅.

A f.g. k-module is determined by its dimension ∈ Z.

If v1, . . . , vn are vectors in kr ,
the dimension of kr/〈vi : i ∈ N〉 is r − rk(A), the corank of A.

Example

v1

v2

v3 A ∅ 1 2 12 3 13 23 123
M(A) R2 R R R R 0 0 0

Note: The definition of matroids over k is blind to which field k is.
For realizability the choice matters.
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Application 1: hyperplane arrangement comb. & top.

Let H = {H1, . . . , Hn} be hyperplanes in a
vector space W , dim W = r .

H has a matroid: rk(A) = codim
⋂

i∈A Hi .

This is also the matroid of any dual vector
configuration: (vi ∈ W ∨) such that

H1

H2H3

Hi = {x : 〈x , vi 〉 = 0}.

From the characteristic polynomial of H, we get a lot of topology:

χH(q) =
∑
A⊆E

(−1)|A| qr−rk(A)

I
∑
k

dim Hk(WC \
⋃
H)qk = (−q)rχH(−1/q).

I WR \
⋃
H has (−1)rχH(−1) components. Etc.

Alex Fink Matroids over rings 11 / 24



Application 1: hyperplane arrangement comb. & top.

Let H = {H1, . . . , Hn} be hyperplanes in a
vector space W , dim W = r .

H has a matroid: rk(A) = codim
⋂

i∈A Hi .

This is also the matroid of any dual vector
configuration: (vi ∈ W ∨) such that

H1

H2H3

Hi = {x : 〈x , vi 〉 = 0}.

From the characteristic polynomial of H, we get a lot of topology:

χH(q) =
∑
A⊆E

(−1)|A| qr−rk(A)

I
∑
k

dim Hk(WC \
⋃
H)qk = (−q)rχH(−1/q).

I WR \
⋃
H has (−1)rχH(−1) components. Etc.

Alex Fink Matroids over rings 11 / 24



Subtorus arrangements

Now let H = {H1, . . . , Hn} be codimension one
tori in an r -dimensional torus T .
[De Concini-Procesi ’10]

Subtori are dual to characters ui ∈ Char(T ):

Hi = {x : ui (x) = 1}.

There is again a characteristic polynomial:

χH(q) =
∑
A⊆E

(−1)|A| m(A) qr−rk(A).

Here
rk(A) = codim

⋂
i∈A Hi = dim span{ui : i ∈ A}

m(A) = # components
⋂

i∈A Hi = [R{ui } ∩ Char(T ) : Z{ui }]
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The characteristic polynomial, again

In terms of the characteristic polynomial

χH(q) =
∑
A⊆E

(−1)|A| m(A) qr−rk(A),

I The complex cohomology of a toric arrangement is given by∑
k

dim Hk(T \
⋃
H)qk = (−q)rχH(−(q + 1)/q).

I T \
⋃
H has (−1)rχH(0) components over the reals.

Etc.
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Arithmetic matroids

Definition ([Moci-D’Adderio])

An arithmetic matroid is a pair (M, m), where M is a matroid and
m : 2E → Z>0 a multiplicity function, such that
[complicated axioms]

We have a configuration ui ∈ Char(T ) ∼= Zr , and:

Theorem 2 (F-Moci)

Arithmetic matroids are matroids over Z.

. . . almost. Arithmetic matroids forget the torsion structure:

Zr/〈uA〉 = Zr−d ⊕ F =⇒ (M(A), m(A)) = (d , |F |)

where F is finite.
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Other appearances of matroids over Z

In topology:
I Homology groups in quotients of spheres by finite groups

[Hughes-Swartz].
I Maybe flows on simplicial complexes [Chmutov et al]?
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Application 2: tropical geometry

This lies among many algebro-geometric applications of matroids:
moduli of hyp arrs [Hacking-Keel-Tevelev], compactifying fine Schubert
cells [Lafforgue], classes of T -orbits on Grassmannians [F-Speyer], . . .

Tropical geometry studies combinatorial “shadows” of algebraic
varieties.

Two conics over C meet in
four points [Bézout]

as do two tropical conics.
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Tropicalization

An algebraic variety X ⊆ (k×)n has a tropicalization Trop X ⊆ Rn.

Easy case: If (k, ν) has nontrivial valuation ν : k× → R, and k = k,
then Trop X = ν(X ), coordinatewise.

A linear space L ⊆ kn meets the torus in the hyperplane arrangement
complement

L ∩ (k×)n ⊆ (k×)n.

If ν is trivial, then Trop L is the fan whose cones are spanned by
chains of flats of M.

Theorem (Speyer, ’04)

There is a bijection

{tropical linear spaces that are fans}←→ {matroids}
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General tropical linear spaces

Proposition (Speyer, ’04)

{tropical linear spaces}←→ {regular subdivisions
of matroid polytopes

}

Definition; proposition (Dress-Wenzel, ’91)

A valuated matroid is a pair (M, m), where M is a matroid and
m : 2E → R a value function, such that [axioms]. There is a bijection

{tropical linear spaces}←→ {valuated matroids}

The main axiom is a tropical Plücker relation for a Grassmannian: in

{m(Abc) + m(Ade), m(Abd) + m(Ace), m(Acd) + m(Abe)},

the minimum is attained twice or more.
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Matroids over valuation rings

Let (R, ν) be a valuation ring.

Theorem 3 (F-Moci)

A matroid over R gives a valuated matroid, i.e. a tropical linear space.

The values of m are the lengths over R/m of the modules M(A) with
|A| = d .

But there’s lots more data than that.
E.g. the whole list of lengths gives a point on the tropical full flag
variety (for which [Haque]).

Alex Fink Matroids over rings 19 / 24



Matroids over valuation rings

Let (R, ν) be a valuation ring.

Theorem 3 (F-Moci)

A matroid over R gives a valuated matroid, i.e. a tropical linear space.

The values of m are the lengths over R/m of the modules M(A) with
|A| = d .

But there’s lots more data than that.
E.g. the whole list of lengths gives a point on the tropical full flag
variety (for which [Haque]).

Alex Fink Matroids over rings 19 / 24



Structure theory

We can tensor matroids, e.g. localize them:

{matroids over R}
—⊗RS

−−−−−→ {matroids over S}

Strategy

To understand matroids over a ring R (e.g. Z):
1. What can their localizations be like? (⇒ valuation ring case)
2. When does a family of localizations come from a global matroid?

In the Dedekind case, the only interesting obstruction to step 2. is
controlled by Pic(R).
(Thus no obstruction over a PID, like Z.)
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Duality

Dual matroids arise from dual planar graphs, perpendicular subspaces,
Gale dual vector configurations . . .

The dual M∗ of a matroid M is given by

corkM∗(E \ A) = corkM(A) − r + |A|.

Let R be one of the following:
I a Prüfer domain, i.e. all localizations are 1-dim’l valuation rings

(includes Dedekind domains);
I a local Noetherian ring.

Theorem (F-Moci)

Matroids over R have well-defined duals.

The construction is by dualizing a resolution of ker(M(∅)→ M(A)).

In the Dedekind case, M∗(E \ A) ∼= Ext1(M(A), R)

up to projective modules of rank difference −r + |A|.
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The Tutte polynomial (after [Brylawski])

The deletion M \ i is the restriction of M to sets A 63 i , and
the contraction M/i is the restriction of M to sets A 3 i .

Define the Tutte-Grothendieck ring to be the free group on
{TM : M a matroid} modulo relations

TM = TM\i + TM/i ,

and product TMTM ′ = TM⊕M ′ .

TM is the Tutte polynomial of M, with many important evaluations
(e.g. characteristic poly, chromatic poly).

Theorem (Crapo, Brylawski)

The Tutte-Grothendieck ring is Z[x − 1, y − 1], with

TM =
∑
A⊆E

(x − 1)corankM(A) (y − 1)corankM∗ (E\A)
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The Tutte polynomial for matroids over R

Let R be a Dedekind domain.

Let Z[R-Mod] be the monoid ring of fin. gen. R-modules up to ∼=
under direct sum. uNuN ′

= uN⊕N ′

Theorem (F-Moci)

The Tutte-Grothendieck ring of matroids over R injects into
Z[R-Mod]⊗ Z[R-Mod], with

class of M =
∑
A⊆E

XM(A) Y M∗(E\A)

It’s a proper injection since M(A) and M∗(E \ A) have the same
torsion part.

Some specializations:
I The characteristic polynomial of a subtorus arrangement
I The Tutte quasipolynomial of [Brändén-Moci]
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Future work

I Other axiom systems: polytopes, bases, circuits, . . . ?
I Are duals always well-defined?
I Which rings have good characterizations of realizability?
I What’s the extra data over a DVR?

(maybe: convex hulls in buildings [Joswig-Sturmfels-Yu])
I Implications for algebraic matroids?

Thank you!
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A bit more on DVRs

There is a bijection between Example

finitely generated modules over a DVR Nλ = R ⊕ R/m3 ⊕ R/m

& partitions allowing infinite parts. λ =

Theorem (Hall, . . . )

The number of exact sequences

0→ Nλ → Nν → Nµ → 0

up to ∼= of sequences is the LR coeff cν
λµ (or its infinite-rows analog).

So, quotients by one element give the Pieri rule.

Lemma, en route to Theorem 3
M is a 1-element matroid over R ⇐⇒
M(∅) has at most one box more in each column than M(1).
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