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Notation and preliminaries

Notation and Preliminaries

I G - undirected simple graph.

I V (G) is the set of vertices and E(G) the set of edges.
I The subgraph of G induced by the vertex subset S, G[S],

is such that its vertex set is S and

E(G[S]) = {uv : u, v ∈ S ∧ uv ∈ E(G)}

.
I A(G) is the adjacency matrix of the graph G.
I D(G) is the n× n diagonal matrix of the vertex degrees of

G.
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Notation and preliminaries

I L(G) = D(G)− A(G) and Q(G) = D(G) + A(G) are the
Laplacian and signless Laplacian matrix of G, respectively.

I the eigenvalues of L (G) (Q (G)) are denoted in non
increasing order µ1(G) ≥ · · · ≥ µn(G) = 0
(q1(G) ≥ · · · ≥ qn(G)).

I As all these matrices are real and symmetric their
eigenvalues are real (nonnegative in case of Laplacian and
signless Laplacian matrices).

I The second smallest eigenvalue of L(G) is called the
algebraic connectivity of G.
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Some Definitions

Definitions

Independent subset, co-neighbors, cluster

I a vertex subset is called independent if its elements are
pairwise non-adjacent.

I two vertices in V (G) are co-neighbor vertices if they share
the same neighbors.

I if S ⊂ V (G) is a set of pairwise co-neighbor vertices of a
graph G, then S is independent.

I According to Merris [4], a cluster of order k of G is a set S
of k pairwise co-neighbor vertices.

I the degree of a cluster is the cardinality of the shared set
of neighbors (i.e. the common degree of each vertex in the
cluster).

I an l-cluster is a cluster of degree l .
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Motivation

I. Faria, in [3], introduced the following result about Laplacian
and signless Laplacian eigenvalues of graphs with leaves.

Theorem [3]
Let p and q be the number of leaves of G and the number of
neighbors associated to these leaves, respectively. Then 1 is a
Laplacian (signless Laplacian) eigenvalue of G with multiplicity
at least p− q ≥ 0.
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Motivation

Specific Notation
The previous result is generalized for graphs G with an l-cluster
(l > 1) of order k > 1.

I Consider a cluster of order k , S ⊂ V (G),

Gk

is the supergraph obtained from G, adding t edges
between distinct pairs of vertices in S, where
1 ≤ t ≤ k(k−1)

2 .
I This operation is denoted by

Gk = G + Gk ,

where Gk is the subgraph of Gk induced by S, that is,
Gk = Gk [S].

I V (Gk ) = V (G) and E(Gk ) = E(G) ∪ E(Gk ).
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Motivation

An example
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G4 = G4[S]

Figure: A graph G with a 2-cluster of order 4, S = {6,7,8,9} and the
graphs G4 = G + G4, such that G4 = G4[S].
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Motivation

Main Results

I For a graph G of order n, with k pairwise co-neighbors the
number of shared neighbors is a Laplacian and a signless
Laplacian eigenvalue of G with multiplicity at least k − 1.

I determination of Laplacian and signless Laplacian
eigenvalues of Gk (for which the induced subgraph Gk
must be p-regular in the signless Laplacian case).
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Motivation

I assuming that S is an l-cluster of order k , and

β 6= 0

(β 6= 2p) is a Laplacian (signless Laplacian) eigenvalue of
Gk , it is deduced that l + β is a Laplacian (signless
Laplacian) eigenvalue of Gk .

I Furthermore, in the Laplacian spectrum case, we may
conclude that at least

n− k + 1

Laplacian eigenvalues of G are also eigenvalues of Gk .

Notation and preliminaries Some Definitions Motivation The Laplacian Case The Signless Laplacian Case
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Motivation

Theorem [1]
Let G be a graph with an l-cluster S of order k . Then l is a
Laplacian and a signless Laplacian eigenvalue of G with
multiplicity at least k − 1.
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Motivation

An Application: Kr ,s

Let Kr ,s a complete bipartite graph. It follows that each color
class of vertices is a vertex subset of pairwise co-neighbors.

Therefore, despite the Laplacian spectrum of Kr ,s be well
known, we may conclude that

I r is a Laplacian eigenvalue with multiplicity at least s− 1
I s is a Laplacian eigenvalue with multiplicity at least r − 1.

Notation and preliminaries Some Definitions Motivation The Laplacian Case The Signless Laplacian Case
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Motivation

Therefore, taking into account that

I the trace of the Laplacian matrix is 2rs,
I the Laplacian matrix has 0 as eigenvalue,
I the Laplacian and signless Laplacian matrices have the

same spectrum,
then the unknown eigenvalue is r + s. Thus

σL(Kr ,s) = σQ(Kr ,s) = {0, r [s−1], s[r−1], r + s}.
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The Laplacian Case

Laplacian Eigenvalues of Gk

We present the theorem that shows how the Laplacian
eigenvalues of Gk are modified in function of Gk .

Theorem [1]
Let G be a graph with an l-cluster S of order k . Assume that Gk
is a connected graph such that V (Gk ) = S, Gk = G + Gk and

Λ = {l + β : β ∈ σL (Gk ) \ {0}}

is a multiset. Then σL(Gk ) overlaps σL(G) in n− k + 1 places
and the elements of Λ are the remaining eigenvalues in σL(Gk ).

Notation and preliminaries Some Definitions Motivation The Laplacian Case The Signless Laplacian Case
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The Laplacian Case

Some Consequences

Taking into account that a graph G is called Laplacian integral if
its Laplacian eigenvalues are all integers, it is immediate to
conclude:

Corollary [1]
Let G be a graph with a cluster S of order k , and Gk a
connected graph such that V (Gk ) = S. If G and Gk are
Laplacian integral graphs, then Gk = G + Gk is also Laplacian
integral.

Notation and preliminaries Some Definitions Motivation The Laplacian Case The Signless Laplacian Case
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The Laplacian Case

More Consequences

Consequences related with the
I algebraic connectivity

I the largest Laplacian eigenvalue
I the Laplacian spread

of some families of graphs.

Definition
The Laplacian spread of a graph is the difference between the
largest Laplacian eigenvalue and the algebraic connectivity.

Notation and preliminaries Some Definitions Motivation The Laplacian Case The Signless Laplacian Case
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The Laplacian Case

Let G = Kr ,s on r + s vertices and a connected graph Gr , such
that

V (Gr ) = S,

(an s-cluster of order r in G), then we may conclude the
following result.

Theorem [1]
If r ≤ s, G = Kr ,s and Gr is a connected graph defined on the
vertex subset of r pairwise co-neighbors of G, then the graphs
G and Gr = G + Gr have

I the same largest Laplacian eigenvalue r + s,

I the same algebraic connectivity r ,
I and the same Laplacian spread s.

Notation and preliminaries Some Definitions Motivation The Laplacian Case The Signless Laplacian Case
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The Signless Laplacian Case

Signless Laplacian Eigenvalues of Gk

The concept of main (non-main) eigenvalue.

I This concept was introduced in [2] and has been largely
used in the context of adjacency matrices.

I A good survey on this topic was published in [5].
I Herein, we extend this concept also to signless Laplacian

matrices.

Given a graph G, an eigenvalue λ ∈ σQ(G) is non-main if the
corresponding eigenspace is orthogonal to the all one vector.
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Theorem [1]
Let G be a graph with an l-cluster S = {vi}k

i=1 of order k . If Gk
is a graph such that V (Gk ) = S and Gk = G + Gk , then
σQ(Gk ) includes the multiset

{l + β : β ∈ σQ (Gk ) and it is non-main} .

Furthermore, any main eigenvalue γ of Q(Gk ), with multiplicity
m > 1, produces an eigenvalue l + γ of Q(Gk ), with multiplicity
at least m− 1.
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As immediate consequence of previous theorem, we have the
following corollary.

Corollary [1]
If Gk is a p-regular graph defined on an l-cluster of order k of a
graph G, and Gk = G + Gk , then σQ(Gk ) includes the multiset

{l + β : β ∈ σQ (Gk ) \ {2p}} .

Note that if Gk is p-regular 2p is an eigenvalue of Q(Gk ) with
the all one vector as a corresponding eigenvector. Therefore
the only main eigenvalue is 2p.
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Teorema [1]
Consider the complete bipartite graph G = Kr ,s, with vertex set
{vi}r+s

i=1 and Gr a p−regular graph defined on the s-cluster of
order r , {v1, . . . , vr} of G. If Gr = G + Gr , then

{r [s−1]} ⊂ σQ(G) ∩ σQ(Gr )

and the remainder signless Laplacian eigenvalues of Gr are
the elements of the multiset

{s + γ : γ ∈ σQ (Gr ) \ {2p}}∪

 r + s + 2p±
√
(r + s + 2p)2 − 8pr

2

 .
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Conclusions and Open Problems

I We can conclude that the "overlapping" of the signless
laplacian spectrum of G and Gk does not hold as in the
laplacian case.

I Study cases for which the "overlapping" of the spectra can
hold.

I In the signless laplacian case consider an arbitrary graph
Gk instead of a p-regular graph.
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