Laplacian and signless Laplacian spectra of graphs having vertex subsets with common neighborhood properties

E. A. Martins CIDMA-DMat / Aveiro University, Portugal (joint with N. Abreu, D. M. Cardoso, M. Robbiano and B-San Martin)

4th Combinatorics Day 14 – 05 – 2014

Notation and preliminaries

Some Definitions

Motivation

-Notation and preliminaries

Notation and Preliminaries

► G - undirected simple graph.

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

-Notation and preliminaries

Notation and Preliminaries

- ► G undirected simple graph.
- V(G) is the set of vertices and E(G) the set of edges.

-Notation and preliminaries

Notation and Preliminaries

- ► G undirected simple graph.
- V(G) is the set of vertices and E(G) the set of edges.
- ► The subgraph of G induced by the vertex subset S, G[S], is such that its vertex set is S and

 $\textit{\textit{E}}(\textit{\textit{G}}[\textit{\textit{S}}]) = \{\textit{uv}:\textit{u},\textit{v} \in \textit{\textit{S}} \land \textit{uv} \in \textit{\textit{E}}(\textit{\textit{G}})\}$

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

-Notation and preliminaries

Notation and Preliminaries

- ► G undirected simple graph.
- V(G) is the set of vertices and E(G) the set of edges.
- ► The subgraph of G induced by the vertex subset S, G[S], is such that its vertex set is S and

 $\boldsymbol{E}(\boldsymbol{G}[\boldsymbol{S}]) = \{\boldsymbol{u}\boldsymbol{v}: \boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{S} \land \boldsymbol{u}\boldsymbol{v} \in \boldsymbol{E}(\boldsymbol{G})\}$

• A(G) is the adjacency matrix of the graph G.

Notation and preliminaries

Some Definitions

Motivation

-Notation and preliminaries

Notation and Preliminaries

- ► G undirected simple graph.
- V(G) is the set of vertices and E(G) the set of edges.
- ► The subgraph of G induced by the vertex subset S, G[S], is such that its vertex set is S and

 $\boldsymbol{E}(\boldsymbol{G}[\boldsymbol{S}]) = \{\boldsymbol{u}\boldsymbol{v}: \boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{S} \land \boldsymbol{u}\boldsymbol{v} \in \boldsymbol{E}(\boldsymbol{G})\}$

- A(G) is the adjacency matrix of the graph G.
- D(G) is the n × n diagonal matrix of the vertex degrees of G.

Notation and preliminaries

Some Definitions

Motivation

► L(G) = D(G) - A(G) and Q(G) = D(G) + A(G) are the Laplacian and signless Laplacian matrix of G, respectively.

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

- ► L(G) = D(G) A(G) and Q(G) = D(G) + A(G) are the Laplacian and signless Laplacian matrix of G, respectively.
- the eigenvalues of L(G) (Q(G)) are denoted in non increasing order µ₁(G) ≥ · · · ≥ µn(G) = 0 (q₁(G) ≥ · · · ≥ qn(G)).

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

- ► L(G) = D(G) A(G) and Q(G) = D(G) + A(G) are the Laplacian and signless Laplacian matrix of G, respectively.
- b the eigenvalues of L(G) (Q(G)) are denoted in non increasing order µ₁(G) ≥ ··· ≥ µn(G) = 0 (q₁(G) ≥ ··· ≥ qn(G)).
- As all these matrices are real and symmetric their eigenvalues are real (nonnegative in case of Laplacian and signless Laplacian matrices).

Notation and preliminaries Some Definitions Motivation

- ► L(G) = D(G) A(G) and Q(G) = D(G) + A(G) are the Laplacian and signless Laplacian matrix of G, respectively.
- b the eigenvalues of L(G) (Q(G)) are denoted in non increasing order µ₁(G) ≥ ··· ≥ µn(G) = 0 (q₁(G) ≥ ··· ≥ qn(G)).
- As all these matrices are real and symmetric their eigenvalues are real (nonnegative in case of Laplacian and signless Laplacian matrices).
- The second smallest eigenvalue of L(G) is called the algebraic connectivity of G.

Notation and preliminaries

Some Definitions

Motivation

Definitions

Independent subset, co-neighbors, cluster

 a vertex subset is called independent if its elements are pairwise non-adjacent.

Definitions

Independent subset, co-neighbors, cluster

- a vertex subset is called independent if its elements are pairwise non-adjacent.
- two vertices in V(G) are co-neighbor vertices if they share the same neighbors.

Definitions

Independent subset, co-neighbors, cluster

- a vertex subset is called independent if its elements are pairwise non-adjacent.
- two vertices in V(G) are co-neighbor vertices if they share the same neighbors.
- If S ⊂ V(G) is a set of pairwise co-neighbor vertices of a graph G, then S is independent.

Notation and preliminaries

Some Definitions

Motivation

Definitions

Independent subset, co-neighbors, cluster

- a vertex subset is called independent if its elements are pairwise non-adjacent.
- two vertices in V(G) are co-neighbor vertices if they share the same neighbors.
- If S ⊂ V(G) is a set of pairwise co-neighbor vertices of a graph G, then S is independent.
- According to Merris [4], a cluster of order k of G is a set S of k pairwise co-neighbor vertices.

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

Definitions

Independent subset, co-neighbors, cluster

- a vertex subset is called independent if its elements are pairwise non-adjacent.
- two vertices in V(G) are co-neighbor vertices if they share the same neighbors.
- If S ⊂ V(G) is a set of pairwise co-neighbor vertices of a graph G, then S is independent.
- According to Merris [4], a cluster of order k of G is a set S of k pairwise co-neighbor vertices.
- the degree of a cluster is the cardinality of the shared set of neighbors (i.e. the common degree of each vertex in the cluster).

Definitions

Independent subset, co-neighbors, cluster

- a vertex subset is called independent if its elements are pairwise non-adjacent.
- two vertices in V(G) are co-neighbor vertices if they share the same neighbors.
- If S ⊂ V(G) is a set of pairwise co-neighbor vertices of a graph G, then S is independent.
- According to Merris [4], a cluster of order k of G is a set S of k pairwise co-neighbor vertices.
- the degree of a cluster is the cardinality of the shared set of neighbors (i.e. the common degree of each vertex in the cluster).
- ► an /-cluster is a cluster of degree /. Notation and preliminaries Some Definitions Motivation The Laplacian Case

Motivation

I. Faria, in [3], introduced the following result about Laplacian and signless Laplacian eigenvalues of graphs with leaves.

Theorem [3]

Let *p* and *q* be the number of leaves of *G* and the number of neighbors associated to these leaves, respectively. Then 1 is a Laplacian (signless Laplacian) eigenvalue of *G* with multiplicity at least $p - q \ge 0$.

Notation and preliminaries Some Definitions

ns Motivation

Specific Notation

The previous result is generalized for graphs *G* with an *l*-cluster (l > 1) of order k > 1.

Specific Notation

The previous result is generalized for graphs *G* with an *l*-cluster (l > 1) of order k > 1.

• Consider a cluster of order $k, S \subset V(G)$,

G^k

is the supergraph obtained from *G*, adding *t* edges between distinct pairs of vertices in *S*, where $1 \le t \le \frac{k(k-1)}{2}$.

Specific Notation

The previous result is generalized for graphs *G* with an *l*-cluster (l > 1) of order k > 1.

• Consider a cluster of order $k, S \subset V(G)$,

G^k

is the supergraph obtained from *G*, adding *t* edges between distinct pairs of vertices in *S*, where $1 \le t \le \frac{k(k-1)}{2}$.

This operation is denoted by

 $G^k = G + G_k,$

where G_k is the subgraph of G^k induced by S, that is, $G_k = G^k[S]$.

Specific Notation

The previous result is generalized for graphs *G* with an *l*-cluster (l > 1) of order k > 1.

• Consider a cluster of order $k, S \subset V(G)$,

G^k

is the supergraph obtained from *G*, adding *t* edges between distinct pairs of vertices in *S*, where $1 \le t \le \frac{k(k-1)}{2}$.

This operation is denoted by

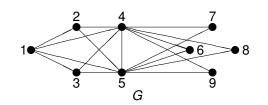
$$G^k = G + G_k$$
,

where G_k is the subgraph of G^k induced by S, that is, $G_k = G^k[S]$.

► $V(G^k) = V(G)$ and $E(G^k) = E(G) \cup E(G_k)$.

Notation and preliminaries

An example



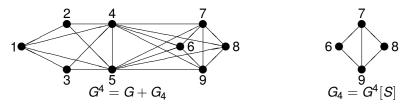


Figure: A graph *G* with a 2-cluster of order 4, $S = \{6, 7, 8, 9\}$ and the graphs $G^4 = G + G_4$, such that $G_4 = G^4[S]$.

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

Main Results

For a graph G of order n, with k pairwise co-neighbors the number of shared neighbors is a Laplacian and a signless Laplacian eigenvalue of G with multiplicity at least k - 1.

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

Main Results

- ► For a graph G of order n, with k pairwise co-neighbors the number of shared neighbors is a Laplacian and a signless Laplacian eigenvalue of G with multiplicity at least k - 1.
- determination of Laplacian and signless Laplacian eigenvalues of G^k (for which the induced subgraph G_k must be p-regular in the signless Laplacian case).

Notation and preliminaries

Some Definitions

Motivation

assuming that S is an I-cluster of order k, and

 $\beta \neq \mathbf{0}$

 $(\beta \neq 2p)$ is a Laplacian (signless Laplacian) eigenvalue of G_k , it is deduced that $I + \beta$ is a Laplacian (signless Laplacian) eigenvalue of G^k .

assuming that S is an I-cluster of order k, and

$\beta \neq \mathbf{0}$

 $(\beta \neq 2p)$ is a Laplacian (signless Laplacian) eigenvalue of G_k , it is deduced that $l + \beta$ is a Laplacian (signless Laplacian) eigenvalue of G^k .

 Furthermore, in the Laplacian spectrum case, we may conclude that at least

n - k + 1

Laplacian eigenvalues of G are also eigenvalues of G^k .

Theorem [1]

Let *G* be a graph with an *I*-cluster *S* of order *k*. Then *I* is a Laplacian and a signless Laplacian eigenvalue of *G* with multiplicity at least k - 1.

Notation and preliminaries

Some Definitions

Motivation

An Application: K_{r,s}

Let $K_{r,s}$ a complete bipartite graph. It follows that each color class of vertices is a vertex subset of pairwise co-neighbors.

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

An Application: K_{r,s}

Let $K_{r,s}$ a complete bipartite graph. It follows that each color class of vertices is a vertex subset of pairwise co-neighbors. Therefore, despite the Laplacian spectrum of $K_{r,s}$ be well known, we may conclude that

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

An Application: K_{r,s}

Let $K_{r,s}$ a complete bipartite graph. It follows that each color class of vertices is a vertex subset of pairwise co-neighbors. Therefore, despite the Laplacian spectrum of $K_{r,s}$ be well known, we may conclude that

r is a Laplacian eigenvalue with multiplicity at least s - 1

Notation and preliminaries Some Definitions Motivation

An Application: K_{r,s}

Let $K_{r,s}$ a complete bipartite graph. It follows that each color class of vertices is a vertex subset of pairwise co-neighbors. Therefore, despite the Laplacian spectrum of $K_{r,s}$ be well known, we may conclude that

- r is a Laplacian eigenvalue with multiplicity at least s 1
- **s** is a Laplacian eigenvalue with multiplicity at least r 1.

Notation and preliminaries

Some Definitions

Motivation

Therefore, taking into account that

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

Therefore, taking into account that

the trace of the Laplacian matrix is 2rs,

Therefore, taking into account that

- the trace of the Laplacian matrix is 2rs,
- the Laplacian matrix has 0 as eigenvalue,

Therefore, taking into account that

- the trace of the Laplacian matrix is 2rs,
- the Laplacian matrix has 0 as eigenvalue,
- the Laplacian and signless Laplacian matrices have the same spectrum,

Therefore, taking into account that

- the trace of the Laplacian matrix is 2rs,
- the Laplacian matrix has 0 as eigenvalue,
- the Laplacian and signless Laplacian matrices have the same spectrum,

then the unknown eigenvalue is r + s. Thus

 $\sigma_L(K_{r,s}) = \sigma_Q(K_{r,s}) = \{0, r^{[s-1]}, s^{[r-1]}, r+s\}.$

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

Laplacian Eigenvalues of G^k

We present the theorem that shows how the Laplacian eigenvalues of G^k are modified in function of G_k .

Theorem [1]

Let *G* be a graph with an *I*-cluster *S* of order *k*. Assume that G_k is a connected graph such that $V(G_k) = S$, $G^k = G + G_k$ and

 $\Lambda = \{ I + \beta : \beta \in \sigma_L(G_k) \setminus \{0\} \}$

is a multiset. Then $\sigma_L(G^k)$ overlaps $\sigma_L(G)$ in n - k + 1 places and the elements of Λ are the remaining eigenvalues in $\sigma_L(G^k)$.

Some Consequences

Taking into account that a graph G is called Laplacian integral if its Laplacian eigenvalues are all integers, it is immediate to conclude:

Corollary [1]

Let *G* be a graph with a cluster *S* of order *k*, and *G_k* a connected graph such that $V(G_k) = S$. If *G* and *G_k* are Laplacian integral graphs, then $G^k = G + G_k$ is also Laplacian integral.

More Consequences

Consequences related with the

algebraic connectivity

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

More Consequences

Consequences related with the

- algebraic connectivity
- the largest Laplacian eigenvalue

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

The Laplacian Case

More Consequences

Consequences related with the

- algebraic connectivity
- the largest Laplacian eigenvalue
- the Laplacian spread

Notation and preliminaries

The Laplacian Case

More Consequences

Consequences related with the

- algebraic connectivity
- the largest Laplacian eigenvalue
- the Laplacian spread

of some families of graphs.

Definition

The Laplacian spread of a graph is the difference between the largest Laplacian eigenvalue and the algebraic connectivity.

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

Let $G = K_{r,s}$ on r + s vertices and a connected graph G_r , such that

 $V(G_r) = S$,

(an s-cluster of order r in G), then we may conclude the following result.

Theorem [1]

If $r \le s$, $G = K_{r,s}$ and G_r is a connected graph defined on the vertex subset of r pairwise co-neighbors of G, then the graphs G and $G^r = G + G_r$ have

• the same largest Laplacian eigenvalue r + s,

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

Let $G = K_{r,s}$ on r + s vertices and a connected graph G_r , such that

 $V(G_r) = S$,

(an s-cluster of order r in G), then we may conclude the following result.

Theorem [1]

If $r \le s$, $G = K_{r,s}$ and G_r is a connected graph defined on the vertex subset of r pairwise co-neighbors of G, then the graphs G and $G^r = G + G_r$ have

- the same largest Laplacian eigenvalue r + s,
- the same algebraic connectivity r,

Let $G = K_{r,s}$ on r + s vertices and a connected graph G_r , such that

 $V(G_r) = S$,

(an s-cluster of order r in G), then we may conclude the following result.

Theorem [1]

If $r \le s$, $G = K_{r,s}$ and G_r is a connected graph defined on the vertex subset of r pairwise co-neighbors of G, then the graphs G and $G^r = G + G_r$ have

- the same largest Laplacian eigenvalue r + s,
- the same algebraic connectivity r,
- and the same Laplacian spread s.

└─ The Signless Laplacian Case

Signless Laplacian Eigenvalues of G^k

The concept of main (non-main) eigenvalue.

This concept was introduced in [2] and has been largely used in the context of adjacency matrices.

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

The Signless Laplacian Case

Signless Laplacian Eigenvalues of G^k

The concept of main (non-main) eigenvalue.

- This concept was introduced in [2] and has been largely used in the context of adjacency matrices.
- A good survey on this topic was published in [5].

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

The Signless Laplacian Case

Signless Laplacian Eigenvalues of G^k

The concept of main (non-main) eigenvalue.

- This concept was introduced in [2] and has been largely used in the context of adjacency matrices.
- A good survey on this topic was published in [5].
- Herein, we extend this concept also to signless Laplacian matrices.

Given a graph *G*, an eigenvalue $\lambda \in \sigma_Q(G)$ is *non-main* if the corresponding eigenspace is orthogonal to the all one vector.

The Signless Laplacian Case

Theorem [1]

Let *G* be a graph with an *I*-cluster $S = \{v_i\}_{i=1}^k$ of order *k*. If G_k is a graph such that $V(G_k) = S$ and $G^k = G + G_k$, then $\sigma_Q(G^k)$ includes the multiset

 $\{I + \beta : \beta \in \sigma_Q(G_k) \text{ and it is non-main}\}.$

Furthermore, any main eigenvalue γ of $Q(G_k)$, with multiplicity m > 1, produces an eigenvalue $l + \gamma$ of $Q(G^k)$, with multiplicity at least m - 1.

The Signless Laplacian Case

As immediate consequence of previous theorem, we have the following corollary.

Corollary [1]

If G_k is a *p*-regular graph defined on an *I*-cluster of order *k* of a graph *G*, and $G^k = G + G_k$, then $\sigma_Q(G^k)$ includes the multiset

 $\left\{ I+\beta:\beta\in\sigma_{Q}\left(G_{k}\right) \setminus\left\{ 2p\right\} \right\} .$

Note that if G_k is *p*-regular 2*p* is an eigenvalue of $Q(G_k)$ with the all one vector as a corresponding eigenvector. Therefore the only main eigenvalue is 2*p*.

The Signless Laplacian Case

Teorema [1]

Consider the complete bipartite graph $G = K_{r,s}$, with vertex set $\{v_i\}_{i=1}^{r+s}$ and G_r a *p*-regular graph defined on the *s*-cluster of order *r*, $\{v_1, \ldots, v_r\}$ of *G*. If $G^r = G + G_r$, then

 $\{r^{[s-1]}\} \subset \sigma_Q(G) \cap \sigma_Q(G^r)$

and the remainder signless Laplacian eigenvalues of G^r are the elements of the multiset

$$\left\{\boldsymbol{s}+\boldsymbol{\gamma}:\boldsymbol{\gamma}\in\sigma_{Q}\left(\boldsymbol{G}_{r}\right)\setminus\left\{\boldsymbol{2p}\right\}\right\}\cup\left\{\frac{\boldsymbol{r}+\boldsymbol{s}+\boldsymbol{2p}\pm\sqrt{\left(\boldsymbol{r}+\boldsymbol{s}+\boldsymbol{2p}\right)^{2}-\boldsymbol{8pr}}}{2}\right\}$$

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

- The Signless Laplacian Case

Conclusions and Open Problems

We can conclude that the "overlapping" of the signless laplacian spectrum of G and G^k does not hold as in the laplacian case.

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

└─ The Signless Laplacian Case

Conclusions and Open Problems

- We can conclude that the "overlapping" of the signless laplacian spectrum of G and G^k does not hold as in the laplacian case.
- Study cases for which the "overlapping" of the spectra can hold.

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

└─ The Signless Laplacian Case

Conclusions and Open Problems

- We can conclude that the "overlapping" of the signless laplacian spectrum of G and G^k does not hold as in the laplacian case.
- Study cases for which the "overlapping" of the spectra can hold.
- In the signless laplacian case consider an arbitrary graph G_k instead of a p-regular graph.

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case

The Signless Laplacian Case

Bibliography

- N.M.M. Abreu, Domingos M. Cardoso, E. A. Martins, M.Robbiano, B. San Martín, On the Laplacian and signless Laplacian spectrum of a graph with *k* pairwise co-neighbor vertices, Linear Algebra Appl. 437 (2012): 2308-2316.
- D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs
 –Theory and Application, Academic Press, New York, 1980.
- I. Faria, Permanental roots and the star degree of a graph, Lin. Algebra Appl. 64 (1985): 255–265.
- R. Merris, Laplacian matrices of a graph: A survey, Lin. Algebra Appl. 197&198 (1994): 143–176.
- P. Rowlinson, The main eigenvalues of a graph: a survey, Appl. Anal. Discrete Math. 1 (2007): 445–471.

Notation and preliminaries

This conference was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology ("FCT-Fundação para a Ciência e a Tecnologia"), within project PEst-OE/MAT/UI4106/2014.

Notation and preliminaries

Some Definitions

Motivation

The Laplacian Case