PL(7,2) and the Golomb-Welch Conjecture

5th Combinatorics Day University of Beira Interior

April 17, 2015 Covilhã

Ana Breda, Catarina Cruz University of Aveiro

- 1. Tilings; n-Crosses and Lee Spheres
 - 1.1. Tilings
 - 1.2. n-Crosses
 - 1.3. Lee-Spheres
- 2. Perfect error correcting Lee codes
 - 2.1. Perfect error correcting Lee codes
- 3. Golomb-Welch Conjecture
- 4. Known results on PL(n,2) codes
- 5. PL(7,2) codes
 - 5.1 $3 \leq |\mathcal{G}_i| \leq 8$
 - 5.2 $3 \le |G_i| \le 7$ 5.3 $4 \le |G_i| \le 7$

Perfect error correcting Lee codes

 Golomb-Welch Conjecture
 Known results on *PL(n,2)* codes
 PL(7,2) codes

Tiling *Rⁿ* by unit cubes

- $\mathcal{T} = \{T_i, i \in I\}, T_i \subset \mathbb{R}^n \text{ tiles } \mathbb{R}^n \text{ if }$
 - $\blacktriangleright \bigcup_{i \in I} T_i = R^n$
 - $\operatorname{int}(T_i) \cap \operatorname{int}(T_j) = \emptyset$ for all $i \neq j$.

1.1. Tilings

- 1.2. n-Crosses
- 1.3. Lee-Spheres

Perfect error correcting Lee codes

 Golomb-Welch Conjecture
 Known results on *PL(n,2)* codes
 PL(7,2) codes

1.1. Tilings1.2. *n*-Crosses1.3. *Lee*-Spheres

Tiling Rⁿ by unit cubes

- $\mathcal{T} = \{T_i, i \in I\}, T_i \subset \mathbb{R}^n \text{ tiles } \mathbb{R}^n \text{ if }$
 - $\blacktriangleright \bigcup_{i \in I} T_i = R^n$
 - $\operatorname{int}(T_i) \cap \operatorname{int}(T_j) = \emptyset$ for all $i \neq j$.

In what follows T_i will denote a unit *n*-cube or a cluster of unit *n*-cubes.

Perfect error correcting Lee codes
 Golomb-Welch Conjecture
 Known results on *PL(n,2)* codes
 PL(7,2) codes

Tiling *Rⁿ* by unit cubes

- $\mathcal{T} = \{T_i, i \in I\}, T_i \subset \mathbb{R}^n \text{ tiles } \mathbb{R}^n \text{ if }$
 - $\blacktriangleright \bigcup_{i \in I} T_i = R^n$
 - $\operatorname{int}(T_i) \cap \operatorname{int}(T_j) = \emptyset$ for all $i \neq j$.

In what follows T_i will denote a unit *n*-cube or a cluster of unit *n*-cubes.

1.1. Tilinas

1.2. n-Crosses

1.3. Lee-Spheres

Two unit *n*-cubes are **twins** if they share a complete n-1 face

Figure: Twins and no twins.

Perfect error correcting Lee codes
 Golomb-Welch Conjecture
 Known results on *PL(n,2)* codes
 PL(7,2) codes

Tiling *Rⁿ* by unit cubes

- $\mathcal{T} = \{T_i, i \in I\}, T_i \subset \mathbb{R}^n \text{ tiles } \mathbb{R}^n \text{ if }$
 - $\blacktriangleright \bigcup_{i \in I} T_i = R^n$
 - $\operatorname{int}(T_i) \cap \operatorname{int}(T_j) = \emptyset$ for all $i \neq j$.

In what follows T_i will denote a unit *n*-cube or a cluster of unit *n*-cubes.

1.1. Tilinas

1.2. n-Crosses

1.3. Lee-Spheres

Two unit *n*-cubes are **twins** if they share a complete n-1 face

Figure: Twins and no twins.

Perfect error correcting Lee codes
 Golomb-Welch Conjecture
 Known results on *PL(n,2)* codes
 PL(7,2) codes

1.1. Tilings 1.2. *n*-Crosses 1.3. *Lee*-Spheres

イロト イポト イヨト イヨト

Lattice Tiling *Rⁿ* by unit cubes

Lattice: L is a lattice in Rⁿ of dimension k if.

$$\mathbf{L} = \{m_1 v_1 + m_2 v_2 + ... + m_k v_k, \ m_i \in \mathbb{Z}, \ i = 1, ..., k\}$$

with $v_1, v_2, ..., v_k$ linearly independent.

 \hookrightarrow group under vector addition such that each of its points is the center of a ball that contains no other points.

Perfect error correcting Lee codes
 Golomb-Welch Conjecture
 Known results on *PL(n,2)* codes
 PL(7,2) codes

1.1. Tilings 1.2. *n*-Crosses 1.3. *Lee*-Spheres

イロト イポト イヨト イヨト

Lattice Tiling *Rⁿ* by unit cubes

Lattice: L is a lattice in Rⁿ of dimension k if.

$$\mathbf{L} = \{m_1 v_1 + m_2 v_2 + ... + m_k v_k, \ m_i \in \mathbb{Z}, \ i = 1, ..., k\}$$

with $v_1, v_2, ..., v_k$ linearly independent.

 \hookrightarrow group under vector addition such that each of its points is the center of a ball that contains no other points.

Being L a lattice in \mathbb{R}^n of **dimension n**, the set $F = \{x_1v_1 + x_2v_2 + ... + x_nv_n, 0 \le x_i \le 1, i = 1, ..., n\}$ is called a **fundamental parallelepiped** of the lattice.

The **volume** of F is independent of the chosen basis and is called the **determinant of L**.

Perfect error correcting Lee codes
 Golomb-Welch Conjecture
 Known results on *PL(n,2)* codes
 PL(7,2) codes

1.1. Tilings
 1.2. n-Crosses
 1.3. Lee-Spheres

Lattice Tiling *Rⁿ* by unit cubes

A Lattice tiling of R^n by unit cubes is a tiling where the centers of the cubes form a lattice.

Minkowski's Conjecture (1896): Each lattice tiling of \mathbb{R}^n by unit cubes contains twins.

Perfect error correcting Lee codes
 Golomb-Welch Conjecture
 Known results on *PL(n,2)* codes
 PL(7,2) codes

1.1. Tilings 1.2. *n*-Crosses 1.3. *Lee*-Spheres

Lattice Tiling *Rⁿ* by unit cubes

A Lattice tiling of R^n by unit cubes is a tiling where the centers of the cubes form a lattice.

Minkowski's Conjecture (1896): Each lattice tiling of R^n by unit cubes contains twins.

... I plan to give a proof of this theorem in a special article in connection with arithmetic investigations on n linear forms ...

Geometrie der Zahlen p.105; 1896

Perfect error correcting Lee codes
 Golomb-Welch Conjecture
 Known results on *PL(n,2)* codes
 PL(7,2) codes

1.1. Tilings 1.2. *n*-Crosses 1.3. *Lee*-Spheres

Lattice Tiling *Rⁿ* by unit cubes

A Lattice tiling of R^n by unit cubes is a tiling where the centers of the cubes form a lattice.

Minkowski's Conjecture (1896): Each lattice tiling of R^n by unit cubes contains twins.

... I plan to give a proof of this theorem in a special article in connection with arithmetic investigations on n linear forms ...

Geometrie der Zahlen p.105; 1896

イロト イポト イヨト イヨト

1907: Minkowski settled the case n = 3 Diophantische Approximationen p.67-74.

Perfect error correcting Lee codes
 Golomb-Welch Conjecture
 Known results on *PL(n,2)* codes
 PL(7,2) codes

1.1. Tilings 1.2. *n*-Crosses 1.3. *Lee*-Spheres

Lattice Tiling *Rⁿ* by unit cubes

Minkowski's Conjecture (1896): Each lattice tiling of R^n by unit cubes contains twins.

1941: Hajós settled the Minkowski's Conjecture proving an equivalent conjecture about finite abelian groups.

Hajós's version of the Minkowski's Conjecture (1896):

let G be a finite abelian group.

If $a_1, a_2, ..., a_n$ are elements of *G* and $r_1, r_2, ..., r_n$ are positive integers such that each element of *G* is uniquely expressed in the form:

イロト イポト イヨト イヨト

 $a_1^{x_1}...a_n^{x_n}, \ 0 \le x_1 \le r_1 - 1, ... \ 0 \le x_n \le r_n - 1,$ then $a_i^{r_i} = e$ for some $i \in \{1, 2, ..., n\}.$

Perfect error correcting Lee codes

 Golomb-Welch Conjecture
 Known results on *PL(n,2)* codes
 PL(7,2) codes

1.1. Tilings
 1.2. n-Crosses
 1.3. Lee-Spheres

Tilings by crosses

n-cross: Cluster consisting of 2n + 1 unit cubes; a central cube where at each facet another unit cube is attached.

Figure: A 2-cross and a 3-cross.

Golomb & Welch (1968): there is a tiling of \mathbb{R}^n by crosses for all $n \ge 2$.

(日) (同) (日) (日) (日)

Tilings; n-Crosses and Lee Spheres
 Perfect error correcting Lee codes

2. Perfect error correcting Lee codes 3. Golomb-Welch Conjecture 4. Known results on *PL*(*n*,2) codes 5. *PL*(7,2) codes
4. 1.1. Tillings 1.2. *n*-Crosses 1.3. Lee-Spheres

Tilings by crosses

n-cross: Cluster consisting of 2n + 1 unit cubes; a central cube where at each facet another unit cube is attached.

Figure: A 2-cross and a 3-cross.

Golomb & Welch (1968): there is a tiling of \mathbb{R}^n by crosses for all $n \ge 2$.

Molnár (1971): The number of non-conguent lattice \mathbb{Z} -tilings of \mathbb{R}^n by crosses equals the number of non-isomorphic abelian groups of order 2n + 1.

1. Tilings: n-Crosses and Lee Spheres 2. Perfect error correcting Lee codes 4. Known results on PL(n,2) codes

3. Golomb-Welch Conjecture

5. PL(7.2) codes

1.1. Tilinas 1.2. n-Crosses 1.3. Lee-Spheres

Tilings by crosses

n-cross: Cluster consisting of 2n+1 unit cubes; a central cube where at each facet another unit cube is attached

Figure: A 2-cross and a 3-cross.

Golomb & Welch (1968): there is a tiling of \mathbb{R}^n by crosses for all n > 2.

Molnár (1971): The number of non-conguent lattice \mathbb{Z} -tilings of \mathbb{R}^n by crosses equals the number of non-isomorphic abelian groups of order 2n+1.

Szabó (1981): If 2n+1 is not a prime, then there exists a \mathbb{Q} -tiling of \mathbb{R}^n by crosses that is neither a \mathbb{Z} -tiling nor a lattice tiling.

Perfect error correcting Lee codes
 Golomb-Welch Conjecture
 Known results on *PL(n,2)* codes
 PL(7,2) codes

1.1. Tilings 1.2. *n*-Crosses 1.3. *Lee*-Spheres

Lee spheres

By a Lee sphere centered at $W = (w_1, ..., w_n) \in \mathbb{Z}^n$ of radius *r*, denoted by S(W, r) we mean the set

 $S(W,r) = \{V = (v_1, ..., v_n) \in \mathbb{Z}^n : \rho_L(V, W) = \sum_{i=1}^n |w_i - v_i| \le r\}.$

Figure: Lee sphere of radius 1 and 2 in \mathbb{Z}^2 and the corresponding unit cube clusters in \mathbb{R}^2 and \mathbb{R}^3 respectively.

5th Combinatorics Day University of Beira Interior [-2pt]

2.1. Perfect error correcting Lee codes

Perfect error correcting Lee codes

Let us consider the metric space (\mathbb{Z}^n, ρ_L) . Any subset \mathcal{M} of \mathbb{Z}^n , $|\mathcal{M}| \ge 2$, is called a code. The elements of \mathbb{Z}^n will be referred as words and in particular, the elements of \mathcal{M} will be called codewords.

A code \mathcal{M} is a *r*-error correcting Lee code if (i) $\forall_{W,V\in\mathcal{M}}, S(W,r)\cap S(V,r) = \emptyset.$

If, in adition,

(ii)
$$\cup_{W\in\mathcal{M}} S(W,r) = \mathbb{Z}^n$$
,

then \mathcal{M} is a perfect *r*-error correcting Lee code of word length *n* over \mathbb{Z} , shortly a PL(n, r) code.

The elements $V \in S(W, r)$, with $W \in \mathcal{M}$ are said to be **covered** by W.

A PL(n, r) code is a tiling of \mathbb{Z}^n by Lee spheres of radius r

inducing a tiling of \mathbb{R}^n by the corresponding cluster of unit cubes.

2.1. Perfect error correcting Lee codes

イロト イポト イヨト イヨト

PL(2,r) codes

For each $r \ge 2$ there is a tiling of \mathbb{R}^2 by clusters of unit 2-cubes associated to

Lee Spheres of radius r.

PL(2, r) codes do exist for any $r \ge 2$.

Figure: Tiling of \mathbb{R}^2 by Lee Spheres of radius 2.

Golomb-Welch Conjecture

Golomb-Welch Conj. (1969): For any $n \ge 3$ there is no tilings of \mathbb{R}^n by clusters of unit cubes associated with Lee spheres of radius $r \ge 2$.

Equivalently, there are no PL(n, r) codes for $n \ge 3$ and $r \ge 2$.

Gravier, Molard, Payan (1998): There are no PL(3, r) codes for any $r \ge 2$.

Spacapan (2007): There are no PL(4, r) codes for any $r \ge 2$.

P. Horak (2009): There are no PL(5, r) codes for any $r \ge 2$;. There are no PL(6, 2) codes. There are no PL(6, r) codes for any $r \ge 2$.

O. Grosek & P. Horak (2014): There are no **lattice** tilings of \mathbb{R}^n for $7 \le n \le 12$ by Lee spheres of radius 2.

What about PL(7,2) codes?

PL(n,2) codes

Let \mathcal{M} be a PL(n,2) code and that $O = (0,0,...,0) \in \mathcal{M}$, which means that:

• all words $V \in \mathbb{Z}^n$ such that $\rho_L(V, O) \leq 2$ are covered by O.

Next level of words to be covered $\Rightarrow \mathcal{V}_3 = \{ V \in \mathbb{Z}^n : \rho_L(O, V) = 3 \}.$

Let $\mathcal{T} = \{ W \in \mathcal{M} \text{ covering the words of } \mathcal{V}_3 \}$. Then, $\mathcal{T} \subset \mathcal{V}_5$,

 $\mathcal{T} = \mathcal{A} \cup \mathcal{B} \cup \mathcal{C} \cup \mathcal{D} \cup \mathcal{E} \cup \mathcal{F} \cup \mathcal{G} \text{ where }$

- $\mathcal{B} = \{ V \in \mathcal{T} : V \text{ is of type}[\pm 4, \pm 1]; \}$
- $C = \{ V \in T : V \text{ is of type}[\pm 3, \pm 2]; \}$
- $\mathcal{D} = \{ V \in \mathcal{T} : V \text{ is of type}[\pm 3, \pm 1^2]; \}$
- $\mathcal{E} = \{ V \in \mathcal{T} : V \text{ is of type}[\pm 2^2, \pm 1]; \}$
- $\mathcal{F} = \{ V \in \mathcal{T} : V \text{ is of type}[\pm 2, \pm 1^3]; \}$

•
$$\mathcal{G} = \{ V \in \mathcal{T} : V \text{ is of type}[\pm 1^5].$$

PL(n,2) codes

Let \mathcal{M} be a PL(n,2) code and that $O = (0,0,...,0) \in \mathcal{M}$, which means that:

• all words $V \in \mathbb{Z}^n$ such that $\mu_L(V, O) \leq 2$ are covered by O.

Next level of words to be covered $\Rightarrow \mathcal{V}_3 = \{ V \in \mathbb{Z}^n : \rho_L(O, V) = 3 \}.$

Let $\mathcal{T} = \{ W \in \mathcal{M} \text{ covering the words } V \text{ of } \mathcal{V}_3 \}.$ Then, $\mathcal{T} \subset \mathcal{V}_5$,

 $\mathcal{T} = \mathcal{A} \cup \mathcal{B} \cup \mathcal{C} \cup \mathcal{D} \cup \mathcal{E} \cup \mathcal{F} \cup \mathcal{G} \text{ where }$

$\blacktriangleright \mathcal{A} = \{ V \in \mathcal{T} : V \text{ is of type } [\pm 5] \};$	\implies	$a= \mathcal{A} $
• $\mathcal{B} = \{ V \in \mathcal{T} : V \text{ is of type}[\pm 4, \pm 1];$	\implies	$\mathbf{b}= \mathcal{B} $
• $\mathcal{C} = \{ V \in \mathcal{T} : V \text{ is of type}[\pm 3, \pm 2];$	\implies	$\mathbf{c} = \mathcal{C} $
• $\mathcal{D} = \{ V \in \mathcal{T} : V \text{ is of type}[\pm 3, \pm 1^2];$	\implies	$\mathbf{d}= \mathcal{D} $
• $\mathcal{E} = \{ V \in \mathcal{T} : V \text{ is of type}[\pm 2^2, \pm 1];$	\implies	$\mathbf{e} = \mathcal{E} $
• $\mathcal{F} = \{ V \in \mathcal{T} : V \text{ is of type}[\pm 2, \pm 1^3];$	\implies	$\mathbf{f} = \mathcal{F} $
• $\mathcal{G} = \{ V \in \mathcal{T} : V \text{ is of type}[\pm 1^5];$	\implies	$\mathbf{g} = \mathcal{G} .$
		(I)

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

• All words $V \in \mathbb{Z}^n$ such that $\mu_L(V, O) \leq 2$ are covered by O.

Next level of words to be covered $\Rightarrow \mathcal{V}_3 = \{ V \in \mathbb{Z}^n : \rho_L(O, V) = 3 \}.$

 $\mathcal{V}_3 = \{ [\pm 3]; [\pm 2, \pm 1]; [\pm 1^3] \}.$

► Each word of type $[\pm 3]$ is covered by one and only one codeword in $\mathcal{A} \cup \mathcal{B} \cup \mathcal{C} \cup \mathcal{D}$ and $|[\pm 3]| = 2n$. Thus,

a+b+c+d=2n

► Each word of type $[\pm 2, \pm 1]$ is covered by one codeword in \mathcal{B} ; 2 codewords in \mathcal{C} ; 2 codewords in \mathcal{D} ; 4 codewords in \mathcal{E} and 3 codewords in \mathcal{F} . Besides, $[[\pm 2, \pm 1]] = 8 \binom{n}{2}$. Thus,

 $b+2c+2d+4e+3f=8\binom{n}{2}$

► Each word of type $[\pm 1^3]$ is covered by one codeword of \mathcal{D} ; one codeword of \mathcal{E} ; 4 codewords of \mathcal{F} and 10 words of \mathcal{G} . Besides, $|[\pm 1^3]| = 8\binom{n}{3}$. Thus, $d + e + 4f + 10g = 8\binom{n}{3}$.

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Set of signed coordinates $I = \{+1, +2, ..., +n, -1, -2, ..., -n\}$

Given $\mathcal{H} \subset \mathbb{Z}^n$ denote by

Relation between the cardinality of each set of codewords and their index subsets can be derived:

► $g = |G| = \frac{1}{5} \sum_{i \in I} |G_i|; |G_i| = \frac{1}{4} \sum_{j \in I \setminus \{i, -i\}} |G_{ij}; |G_{ij}| = \frac{1}{3} \sum_{k \in I \setminus \{i, -i, j, -j\}} |G_{ijk}|.$

Similar equalities for the other subsets of T can be derived.

$$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$$

Proposition:

►
$$|\mathcal{A}_i \cup \mathcal{B}_i^{(4)} \cup \mathcal{C}_i^{(3)} \cup \mathcal{D}_i^{(3)}| = 1$$
, for each $i \in I$;

▶ $|\mathcal{B}_i^{(4)} \cap \mathcal{B}_j^{(1)}| + |\mathcal{C}_i \cap \mathcal{C}_j| + |\mathcal{D}_i^{(3)} \cap \mathcal{D}_j^{(1)}| + |\mathcal{E}_i^{(2)} \cap \mathcal{E}_j| + |\mathcal{F}_i^{(2)} \cap \mathcal{F}_j^{(1)}| = 1$, for each $i, j \in I$, with $|i| \neq |j|$

イロト イポト イヨト イヨト

▶ $|\mathcal{D}_{ijk} \cup \mathcal{E}_{ijk} \cup \mathcal{F}_{ijk} \cup \mathcal{G}_{ijk}| = 1$, for each $i, j, k \in I$, with |i|, |j| and |k| distinct between them.

►
$$\forall_{i \in I}, |\mathcal{B}_i^{(4)} \cup \mathcal{C}_i^{(2)} \cup \mathcal{C}_i^{(3)}| + 2|\mathcal{D}_i^{(3)} \cup \mathcal{E}_i^{(2)}| + 3|\mathcal{F}_i^{(2)}| = 2(n-1)$$
 and
 $|\mathcal{B}_i^{(1)} \cup \mathcal{C}_i^{(2)} \cup \mathcal{C}_i^{(3)} \cup \mathcal{D}_i^{(1)} \cup \mathcal{E}_i^{(2)} \cup \mathcal{F}_i^{(1)}| + 2|\mathcal{E}_i^{(1)}| = 2(n-1).$

$$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$$

Proposition:

$$\blacktriangleright |\mathcal{A}_i \cup \mathcal{B}_i^{(4)} \cup \mathcal{C}_i^{(3)} \cup \mathcal{D}_i^{(3)}| = 1, \text{ for each } i \in I;$$

▶
$$|\mathcal{B}_i^{(4)} \cap \mathcal{B}_j^{(1)}| + |\mathcal{C}_i \cap \mathcal{C}_j| + |\mathcal{D}_i^{(3)} \cap \mathcal{D}_j^{(1)}| + |\mathcal{E}_i^{(2)} \cap \mathcal{E}_j| + |\mathcal{F}_i^{(2)} \cap \mathcal{F}_j^{(1)}| = 1$$
, for each $i, j \in I$, with $|i| \neq |j|$

イロト イポト イヨト イヨト

э

▶ $|\mathcal{D}_{ijk} \cup \mathcal{E}_{ijk} \cup \mathcal{F}_{ijk} \cup \mathcal{G}_{ijk}| = 1$, for each $i, j, k \in I$, with |i|, |j| and |k| distinct between them.

$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$

Proposition:

$$|\mathcal{B}_{i}^{(4)} \cap \mathcal{B}_{j}^{(1)}| + |\mathcal{C}_{i} \cap \mathcal{C}_{j}| + |\mathcal{D}_{i}^{(3)} \cap \mathcal{D}_{j}^{(1)}| + |\mathcal{E}_{i}^{(2)} \cap \mathcal{E}_{j}| + |\mathcal{F}_{i}^{(2)} \cap \mathcal{F}_{j}^{(1)}| = 1$$
, for each $i, j \in I$, with $|i| \neq |j|$

5th Combinatorics Day University of Beira Interior [-2pt] PL(7,2) and the Golomb-Welch Conjecture

$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$

Proposition:

$$|\mathcal{B}_{i}^{(4)} \cap \mathcal{B}_{j}^{(1)}| + |\mathcal{C}_{i} \cap \mathcal{C}_{j}| + |\mathcal{D}_{i}^{(3)} \cap \mathcal{D}_{j}^{(1)}| + |\mathcal{E}_{i}^{(2)} \cap \mathcal{E}_{j}| + |\mathcal{F}_{i}^{(2)} \cap \mathcal{F}_{j}^{(1)}| = 1$$
, for each $i, j \in I$, with $|i| \neq |j|$

Proof: Let *V* be a word of type $[\pm 2, \pm 1]$, satisfying $iv_{|i|}, jv_{|j|} > 0$, $|v_{|i|}| = 2$ and $|v_{|j|}| = 1$.

$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$

Proposition:

 $|\mathcal{B}_{i}^{(4)} \cap \mathcal{B}_{j}^{(1)}| + |\mathcal{C}_{i} \cap \mathcal{C}_{j}| + |\mathcal{D}_{i}^{(3)} \cap \mathcal{D}_{j}^{(1)}| + |\mathcal{E}_{i}^{(2)} \cap \mathcal{E}_{j}| + |\mathcal{F}_{i}^{(2)} \cap \mathcal{F}_{j}^{(1)}| = 1$, for each $i, j \in I$, with $|i| \neq |j|$

Proof: Let *V* be a word of type $[\pm 2, \pm 1]$, satisfying $iv_{[i]}, jv_{[j]} > 0$, $|v_{[i]}| = 2$ and $|v_{[j]}| = 1$. *V* must be covered by a codeword $W \in \mathcal{B} \cup \mathcal{C} \cup \mathcal{D} \cup \mathcal{E} \cup \mathcal{F}$ satisfying one and only one of the following conditions:

$$W \in \mathcal{B}_i^{(4)} \cap \mathcal{B}_j^{(1)} ; W \in \mathcal{C}_i \cap \mathcal{C}_j ; W \in \mathcal{D}_i^{(3)} \cap \mathcal{D}_j^{(1)} ; W \in \mathcal{E}_i^{(2)} \cap \mathcal{E}_j ; W \in \mathcal{F}_i^{(2)} \cap \mathcal{F}_j^{(1)}$$

$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$

Proposition:

 $|\mathcal{B}_{i}^{(4)} \cap \mathcal{B}_{j}^{(1)}| + |\mathcal{C}_{i} \cap \mathcal{C}_{j}| + |\mathcal{D}_{i}^{(3)} \cap \mathcal{D}_{j}^{(1)}| + |\mathcal{E}_{i}^{(2)} \cap \mathcal{E}_{j}| + |\mathcal{F}_{i}^{(2)} \cap \mathcal{F}_{j}^{(1)}| = 1, \text{ for each } i, j \in I, \text{ with } |i| \neq |j|$

Proof: Let *V* be a word of type $[\pm 2, \pm 1]$, satisfying $iv_{[i]}, jv_{[i]} > 0$, $|v_{[i]}| = 2$ and $|v_{[i]}| = 1$. *V* must be covered by a codeword $W \in \mathcal{B} \cup \mathcal{C} \cup \mathcal{D} \cup \mathcal{E} \cup \mathcal{F}$ satisfying one and only one of the following conditions:

$$W \in \mathcal{B}_{i}^{(4)} \cap \mathcal{B}_{j}^{(1)}; W \in \mathcal{C}_{i} \cap \mathcal{C}_{j}; W \in \mathcal{D}_{i}^{(3)} \cap \mathcal{D}_{j}^{(1)}; W \in \mathcal{E}_{i}^{(2)} \cap \mathcal{E}_{j}; W \in \mathcal{F}_{i}^{(2)} \cap \mathcal{F}_{j}^{(1)}; W \in \mathcal{F}_{i}^{(2)}; W \in \mathcal{F}_{i}$$

$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$

Proposition:

 $|\mathcal{B}_{i}^{(4)} \cap \mathcal{B}_{j}^{(1)}| + |\mathcal{C}_{i} \cap \mathcal{C}_{j}| + |\mathcal{D}_{i}^{(3)} \cap \mathcal{D}_{j}^{(1)}| + |\mathcal{E}_{i}^{(2)} \cap \mathcal{E}_{j}| + |\mathcal{F}_{i}^{(2)} \cap \mathcal{F}_{j}^{(1)}| = 1, \text{ for each } i, j \in I, \text{ with } |i| \neq |j|$

Proof: Let *V* be a word of type $[\pm 2, \pm 1]$, satisfying $iv_{[i]}, jv_{[i]} > 0$, $|v_{[i]}| = 2$ and $|v_{[i]}| = 1$. *V* must be covered by a codeword $W \in \mathcal{B} \cup \mathcal{C} \cup \mathcal{D} \cup \mathcal{E} \cup \mathcal{F}$ satisfying one and only one of the following conditions:

$$W \in \mathcal{B}_{i}^{(4)} \cap \mathcal{B}_{j}^{(1)}; W \in \mathcal{C}_{i} \cap \mathcal{C}_{j}; W \in \mathcal{D}_{i}^{(3)} \cap \mathcal{D}_{j}^{(1)}; W \in \mathcal{E}_{i}^{(2)} \cap \mathcal{E}_{j}; W \in \mathcal{F}_{i}^{(2)} \cap \mathcal{F}_{j}^{(1)}; W \in \mathcal{F}_{i}^{(2)}; W \in \mathcal{F}_{i}$$

$$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$$

Proposition:

•
$$|D_i \cup E_i| + 3|F_i| + 6|G_i| = 4\binom{n-1}{2}$$
,

►
$$|\mathcal{D}_{ij} \cup \mathcal{E}_{ij}| + 2|\mathcal{F}_{ij}| + 3|\mathcal{G}_{ij}| = 2(n-2);$$
 $|\mathcal{D}_i \cup \mathcal{E}_i| \le 2n-1$

►
$$|G_i| > \frac{|D_i \cup E_i| + (n-1)(n-6)}{3} - \frac{1}{6}, i \in I;$$

$$|\mathcal{F}_i| \leq \frac{8(n-1)+1}{3} - |\mathcal{D}_i \cup \mathcal{E}_i| - \frac{2}{3}|\mathcal{E}_i|, \ i \in I;$$

• If
$$n \equiv 1 \pmod{3}$$
, then $|G_i| \leq \frac{(n-1)(2n-5)}{6}$ for each $i \in I$.

• If
$$n \equiv 0 \pmod{3}$$
, then $|G_i| \leq \frac{(n-1)(n-3)}{3}$ for each $i \in I$.

ヘロト 人間 トイヨト イヨト

$$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$$

Corollary:

• If
$$n \equiv 0 \pmod{3}$$
, then $g \le \frac{2n(n-1)(n-3)}{15}$;

• If
$$n \equiv 1 \pmod{3}$$
, then $g \le \frac{n(n-1)(2n-5)}{15}$

・ロト ・ 日本 ・ モト ・ モト・

2

 $\begin{array}{ll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ 5.2 & 3 \leq |\mathcal{G}_i| \leq 7 \\ 5.3 & 4 \leq |\mathcal{G}_i| \leq 7 \end{array}$

イロト イポト イヨト イヨト

$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$

• "Good Solutions" of
$$\begin{cases} a+b+c+d = 14 \\ b+2c+2d+4e+3f = 168 \\ d+e+4f+10g = 280. \end{cases}$$

5th Combinatorics Day University of Beira Interior [-2pt] PL(7,2) and the Golomb-Welch Conjecture

 $\begin{array}{lll} 5.1 & 3 \leq |\,\mathcal{G}_i| \leq 8 \\ 5.2 & 3 \leq |\,\mathcal{G}_i| \leq 7 \\ 5.3 & 4 \leq |\,\mathcal{G}_i| \leq 7 \end{array}$

イロト イポト イヨト イヨト

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Proposition:

•
$$|D_i \cup E_i| + 3|F_i| + 6|G_i| = 4\binom{n-1}{2}$$
,

►
$$|\mathcal{D}_{ij} \cup \mathcal{E}_{ij}| + 2|\mathcal{F}_{ij}| + 3|\mathcal{G}_{ij}| = 2(n-2);$$
 $|\mathcal{D}_i \cup \mathcal{E}_i| \le 2n-1$

►
$$|G_i| > \frac{|D_i \cup E_i| + (n-1)(n-6)}{3} - \frac{1}{6}, i \in I;$$

$$|\mathcal{F}_i| \leq \frac{8(n-1)+1}{3} - |\mathcal{D}_i \cup \mathcal{E}_i| - \frac{2}{3}|\mathcal{E}_i|, \ i \in I;$$

• If
$$n \equiv 1 \pmod{3}$$
, then $|G_i| \le \frac{(n-1)(2n-5)}{6}$ for each $i \in I$.

• If
$$n \equiv 1 \pmod{3}$$
, then $g \le \frac{n(n-1)(2n-5)}{15}$

 $\begin{array}{ll} 5.1 & 3 \leq |\,\mathcal{G}_i| \leq 8 \\ 5.2 & 3 \leq |\,\mathcal{G}_i| \leq 7 \\ 5.3 & 4 \leq |\,\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Proposition:

▶
$$|D_i \cup E_i| + 3|F_i| + 6|G_i| = 60$$
,

- $|\mathcal{D}_{ij} \cup \mathcal{E}_{ij}| + 2|\mathcal{F}_{ij}| + 3|\mathcal{G}_{ij}| = 10; |\mathcal{D}_{ij} \cup \mathcal{E}_{ij}| \text{ and } |\mathcal{G}_{ij} \text{ have the same parity,}$ $|\mathcal{D}_{i} \cup \mathcal{E}_{i}| \leq 13$
- ▶ $3 \leq |G_i| \leq 9$ for each $i \in I$.
- $|\mathcal{F}_i| \leq \frac{49}{3} |\mathcal{D}_i \cup \mathcal{E}_i| \frac{2}{3}|\mathcal{E}_i|, \ i \in I;$

▶
$$6 \le g \le 25.$$

▶ $\forall_{i \in I}, |\mathcal{B}_{i}^{(4)} \cup \mathcal{C}_{i}^{(2)} \cup \mathcal{C}_{i}^{(3)}| + 2|\mathcal{D}_{i}^{(3)} \cup \mathcal{E}_{i}^{(2)}| + 3|\mathcal{F}_{i}^{(2)}| = 12 \text{ and}$
 $|\mathcal{B}_{i}^{(1)} \cup \mathcal{C}_{i}^{(2)} \cup \mathcal{C}_{i}^{(3)} \cup \mathcal{D}_{i}^{(1)} \cup \mathcal{E}_{i}^{(2)} \cup \mathcal{F}_{i}^{(1)}| + 2|\mathcal{E}_{i}^{(1)}| = 12.$

 $\begin{array}{lll} \textbf{5.1} & \textbf{3} \leq |\mathcal{G}_i| \leq \textbf{8} \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ \textbf{5.3} & \textbf{4} \leq |\mathcal{G}_i| \leq 7 \end{array}$

$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$

Proposition:

For each $i \in I$, $3 \le |\mathcal{G}_i| \le 8$; $9 \le g \le 22$.

Proof: By contradiction, assume $|G_i| = 9$ for some $i \in I$.

 $\begin{array}{lll} \textbf{5.1} & \textbf{3} \leq |\mathcal{G}_i| \leq \textbf{8} \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ \textbf{5.3} & \textbf{4} \leq |\mathcal{G}_i| \leq 7 \end{array}$

$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$

Proposition:

For each $i \in I$, $3 \le |\mathcal{G}_i| \le 8$; $9 \le g \le 22$.

Proof: By contradiction, assume $|G_i| = 9$ for some $i \in I$.

$$\triangleright |\mathcal{G}_i| = \frac{1}{4} \sum_{j \in I \setminus \{i, -i\}} |\mathcal{G}_{ij}| \implies \sum_{j \in I \setminus \{i, -i\}} |\mathcal{G}_{ij}| = 36.$$

 $\triangleright |\mathcal{G}_{ij}| = 3 \text{ for any } j \in I \setminus \{i, -i\}.$

 $\begin{array}{lll} \textbf{5.1} & \textbf{3} \leq |\mathcal{G}_i| \leq \textbf{8} \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ \textbf{5.3} & \textbf{4} \leq |\mathcal{G}_i| \leq 7 \end{array}$

$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$

Proposition:

For each $i \in I$, $3 \le |\mathcal{G}_i| \le 8$; $9 \le g \le 22$.

Proof: By contradiction, assume $|G_i| = 9$ for some $i \in I$.

$$\triangleright |\mathcal{G}_i| = \frac{1}{4} \sum_{j \in I \setminus \{i, -i\}} |\mathcal{G}_{ij}| \implies \sum_{j \in I \setminus \{i, -i\}} |\mathcal{G}_{ij}| = 36.$$

 $\triangleright |\mathcal{G}_{ij}| = 3 \text{ for any } j \in I \setminus \{i, -i\}.$

 $\text{Let } \textbf{W}_1 \in \textbf{\textit{G}}_{i\alpha\beta\gamma\delta}, \ \alpha,\beta,\gamma,\delta \in I \setminus \{i,-i\} \text{ and } |\alpha|, \, |\beta|, \, |\gamma|, \, |\delta| \text{ pairwise distinct}.$

▷ For any $W \in G_i \setminus \{W_1\}$ there exists, at most, one element $\varepsilon \in \{\alpha, \beta, \gamma, \delta\}$ so that $W \in G_{i\varepsilon}$.

 $\begin{array}{lll} \textbf{5.1} & \textbf{3} \leq |\mathcal{G}_i| \leq \textbf{8} \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ \textbf{5.3} & \textbf{4} \leq |\mathcal{G}_i| \leq 7 \end{array}$

$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$

Proposition:

For each $i \in I$, $3 \le |\mathcal{G}_i| \le 8$; $9 \le g \le 22$.

Proof: By contradiction, assume $|G_i| = 9$ for some $i \in I$.

 $\begin{array}{lll} \textbf{5.1} & \textbf{3} \leq |\mathcal{G}_i| \leq \textbf{8} \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ \textbf{5.3} & \textbf{4} \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Proposition:

For each $i \in I$, $3 \le |\mathcal{G}_i| \le 8$; $9 \le g \le 22$.

Proof: By contradiction, assume $|G_i| = 9$ for some $i \in I$.

▷ For any $W \in G_i \setminus \{W_1\}$ there exists, at most, one element $\varepsilon \in \{\alpha, \beta, \gamma, \delta\}$ so that $W \in G_{i\varepsilon}$.

W_1	i	α	β	γ	δ
W_2	i	α			
W_3	i	α			
W_4	i	β			
W_5	i	β			
W_6	i	γ			
W_7	i	γ			
W_8	i	δ			
W_9	i	δ			

Partial index distribution of the codewords of \mathcal{G}_i

 $\begin{array}{lll} \textbf{5.1} & \textbf{3} \leq |\mathcal{G}_i| \leq \textbf{8} \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ \textbf{5.3} & \textbf{4} \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Proposition:

For each $i \in I$, $3 \le |\mathcal{G}_i| \le 8$; $9 \le g \le 22$.

Proof:

 $\text{Let } \mathcal{J} = \{\alpha, \beta, \gamma, \delta\}, \ \mathcal{J}^- = \{-\alpha, -\beta, -\gamma, -\delta\}, \ \mathcal{K} = I \setminus (\{i, -i\} \cup \mathcal{J} \cup \mathcal{J}^-) = \{x, -x, y, -y\}.$

W_1	i	α	β	γ	δ
W_2	i	α	k_1	k_2	
W_3	i	α	k_3		
W_4	i	β	k_4	k_5	
W_5	i	β	k_6		
W_6	i	γ	k_7	k_8	
W_7	i	γ	k_9		
W_8	i	δ	k_{10}	k_{11}	
W_9	i	δ	k_{12}		

For each $\varepsilon \in \mathcal{I}$ and $W, W' \in \mathcal{G}_{i\varepsilon} \setminus \{W_1\}$,
there are, at least, three distinct elements
$k,k',k''\in {\mathcal K}$ so that
$W \in \mathcal{G}_{i \in kk'}$ and $W' \in \mathcal{G}_{i \in k''}$.

Figure: Partial index distribution of the codewords of G_{i} .

5th Combinatorics Day University of Beira Interior [-2pt]

 $\begin{array}{lll} \textbf{5.1} & \textbf{3} \leq |\mathcal{G}_i| \leq \textbf{8} \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ \textbf{5.3} & \textbf{4} \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Proposition:

For each $i \in I$, $3 \le |\mathcal{G}_i| \le 8$; $9 \le g \le 22$.

Proof:

 $\text{Let } \mathcal{J} = \{\alpha, \beta, \gamma, \delta\}, \ \mathcal{J}^- = \{-\alpha, -\beta, -\gamma, -\delta\}, \ \mathcal{K} = I \setminus (\{i, -i\} \cup \mathcal{J} \cup \mathcal{J}^-) = \{x, -x, y, -y\}.$

W_1	i	α	β	γ	δ
W_2	i	α	k_1	k_2	
W_3	i	α	k_3		
W_4	i	β	k_4	k_5	
W_5	i	β	k_6		
W_6	i	γ	k_7	k_8	
W_7	i	γ	k_9		
W_8	i	δ	k_{10}	k_{11}	
W_9	i	δ	k_{12}		

W_1	i	α	β	γ	δ
W_2	i	α	x	y	j_1
W_3	i	α	-x	j_2	j_3
W_4	i	β	-x	y	j_4
W_5	i	β	k_6		
W_6	i	γ	k_7	k_8	
W_7	i	γ	k_9		
W_8	i	δ	k_{10}	k 11	
W_9	i	δ	k_{12}		

 $j_1, j_2, j_3 \in \mathcal{J}^ j_4 \neq j_1, j_2, j_3.$

Figure: Partial index distribution of the codewords of \mathcal{G}_{t}

5th Combinatorics Day University of Beira Interior [-2pt]

 $\begin{array}{lll} \textbf{5.1} & \textbf{3} \leq |\mathcal{G}_i| \leq \textbf{8} \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ \textbf{5.3} & \textbf{4} \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Proposition:

For each $i \in I$, $3 \le |\mathcal{G}_i| \le 8$; $9 \le g \le 22$.

Proof:

 $\mathsf{Let}\ \mathcal{J} = \{\alpha, \beta, \gamma, \delta\},\ \mathcal{J}^- = \{-\alpha, -\beta, -\gamma, -\delta\},\ \mathcal{K} = I \setminus (\{i, -i\} \cup \mathcal{J} \cup \mathcal{J}^-) = \{x, -x, y, -y\}.$

W_1	i	α	β	γ	δ	$y \neq k_6$
W_2	i	α	x	y	j_1	$j_1, j_2, j_3 \in \mathcal{J}^-$
W_3	i	α	-x	j_2	j_3	$j_4 \neq j_1, j_2, j_3,$ If $y \in \{k_7, k_8, k_{10}, k_{11}\}$
W_4	i	β	-x	y	j_4	, , ,
W_5	i	β	k_6			
W_6	i	γ	k_7	k_8		$W_2 \in \mathcal{G}_{ixy}$ and $W_4 \in \mathcal{G}_{i,-x,y}$
W_7	i	γ	k_9			contradiction
W_8	i	δ	k_{10}	k_{11}		
W_9	i	δ	k_{12}			$y = k_9 \text{ or } y = k_{12}$

Figure: Partial index distribution of the codewords of G_{i} .

5th Combinatorics Day University of Beira Interior [-2pt]

 $\begin{array}{lll} \textbf{5.1} & \textbf{3} \leq |\mathcal{G}_i| \leq \textbf{8} \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ \textbf{5.3} & \textbf{4} \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Proposition:

For each $i \in I$, $3 \le |\mathcal{G}_i| \le 8$; $9 \le g \le 22$.

Proof:

 $\mathsf{Let}\ {} {{\mathcal I}}=\{\alpha,\beta,\gamma,\delta\},\ {{\mathcal J}}^-=\{-\alpha,-\beta,-\gamma,-\delta\},\ {{\mathcal K}}=I\setminus \bigl(\{i,-i\}\cup {\mathcal I}\cup {\mathcal I}^-\bigr)=\{x,-x,y,-y\}.$

W_1	i	α	β	γ	δ
W_2	i	α	x	y	j_1
W_3	i	α	-x	j_2	Ĵ3
W_4	i	β	-x	y	j4
W_5	i	β	k_6		
W_6	i	γ	k_7	k_8	
W_7	i	γ	k_9	j_5	j_6
W_8	i	δ	k_{10}	k 11	
W_9	i	δ	k_{12}		

$$\begin{array}{c} j_1, j_2, j_3 \in \mathcal{J}^-\\ j_4 \neq j_1, j_2, j_3, \\ j_5 = j_2 \text{ and } j_6 = j_3.\\ \text{ contradiction} \end{array}$$

Figure: Partial index distribution of the codewords of \mathcal{G}_{t}

5th Combinatorics Day University of Beira Interior [-2pt]

 $\begin{array}{lll} \textbf{5.1} & \textbf{3} \leq |\mathcal{G}_i| \leq \textbf{8} \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ \textbf{5.3} & \textbf{4} \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Proposition:

For each $i \in I$, $3 \le |\mathcal{G}_i| \le 8$; $9 \le g \le 22$.

Proof:

 $\text{Let } \mathcal{I} = \{\alpha, \beta, \gamma, \delta\}, \ \mathcal{I}^- = \{-\alpha, -\beta, -\gamma, -\delta\}, \ \mathcal{K} = I \setminus (\{i, -i\} \cup \mathcal{I} \cup \mathcal{I}^-) = \{x, -x, y, -y\}.$

W_1	i	α	β	γ	δ	$y = k_9$ or $y = k_{12}$
W_2	i	α	x	y	j_1	$j_1, j_2, j_3 \in \mathcal{J}$ Then $W \in \mathcal{C}$ is indicid
W_3	i	α	-x	j_2	j3	$j_4 \neq j_1, j_2, j_3, $ inen $w_7 \in \mathcal{G}_{i\gamma y j_5 j_6}$ $j_5, j_6 \neq j_1, j_4$
W_4	i	β	-x	y	j_4	$i_5 = i_2$ and $i_6 = i_3$.
W_5	i	β	k_6			contradiction
W_6	i	γ	k_7	k_8		
W_7	i	γ	k_9	j_5	j_6	
W_8	i	δ	k_{10}	k 11		$y = \kappa_{12}$ = contradiction
Wo	i	δ	k19			

Figure: Partial index distribution of the codewords of G_{t} .

5th Combinatorics Day University of Beira Interior [-2pt]

 $\begin{array}{lll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ 5.3 & 4 \leq |\mathcal{G}_i| \leq 7 \end{array}$

$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$

Lemma

 $\forall i \in I, |\mathcal{F}_i^{(2)}| \leq 4. \text{ If } |\mathcal{F}_i^{(2)}| = 4, \text{ then } |\mathcal{F}_i^{(2)} \cap \mathcal{F}_j| = 1 \text{ for all } j \in I \setminus \{i, -i\}$

 $\begin{array}{lll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ 5.3 & 4 \leq |\mathcal{G}_i| \leq 7 \end{array}$

$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$

Lemma

$$\forall i \in I, |\mathcal{F}_i^{(2)}| \leq 4. \text{ If } |\mathcal{F}_i^{(2)}| = 4, \text{ then } |\mathcal{F}_i^{(2)} \cap \mathcal{F}_j| = 1 \text{ for all } j \in I \setminus \{i, -i\}$$

Lemma

$$\begin{aligned} |\mathcal{D}_i| &= 9 = |\mathcal{D}_i^{(1)}|, \ |\mathcal{A}_i| = 1, \ |\mathcal{B}_i \cup \mathcal{C}_i| = |\mathcal{E}_i| = 0 \text{ and } |\mathcal{F}_i| = 7. \\ \text{with } |\mathcal{F}_i^{(2)}| &= 4 \text{ and } |\mathcal{F}_i^{(1)}| = 3. \end{aligned}$$

 $\begin{array}{lll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ 5.3 & 4 \leq |\mathcal{G}_i| \leq 7 \end{array}$

イロト イポト イヨト イヨト

$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$

Conditions satisfied by the index subsets of $\mathcal{A} \cup \mathcal{B} \cup \mathcal{C} \cup \mathcal{D} \cup \mathcal{E} \cup \mathcal{F}$ for a specific value of $|\mathcal{G}_i|$.

Lemma

$$\begin{aligned} |\mathcal{G}_{i}| &= 6 \implies |\mathcal{D}_{i} \cup \mathcal{E}_{i}| = 0, \ |\mathcal{F}_{i}| = 8 \ or; \ |\mathcal{D}_{i} \cup \mathcal{E}_{i}| = 3, \ |\mathcal{F}_{i}| = 7; \ or \\ |\mathcal{D}_{i} \cup \mathcal{E}_{i}| &= 6, \ |\mathcal{F}_{i}| = 6 \ or \ |\mathcal{D}_{i} \cup \mathcal{E}_{i}| = 9, \ |\mathcal{D}_{i}| \geq 6, \ |\mathcal{F}_{i}| = 5 \ or \\ |\mathcal{A}_{i}| &= 1, \ |\mathcal{B}_{i} \cup \mathcal{C}_{i} \cup \mathcal{E}_{i}| = 0, \ |\mathcal{D}_{i}| = |\mathcal{D}_{i}^{(1)}| = 12, \ |\mathcal{F}_{i}| = |\mathcal{F}_{i}^{(2)}| = 4 \end{aligned}$$

$$|\mathcal{G}_{i}| = 7 \implies |\mathcal{D}_{i} \cup \mathcal{E}_{i}| = 3, \ |\mathcal{F}_{i}| = 5 \ or \ |\mathcal{D}_{i} \cup \mathcal{E}_{i}| = 6, \ |\mathcal{F}_{i}| = 4; \ or \\ |\mathcal{D}_{i} \cup \mathcal{E}_{i}| = 9, \ |\mathcal{D}_{i}| \geq 3, \ |\mathcal{F}_{i}| = 63 \ or \\ |\mathcal{D}_{i} \cup \mathcal{E}_{i}| = 12, \ |\mathcal{D}_{i}| \geq 9, \ |\mathcal{F}_{i}| = 2. \end{aligned}$$

 $\begin{array}{lll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ 5.3 & 4 \leq |\mathcal{G}_i| \leq 7 \end{array}$

イロト イポト イヨト イヨト

$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$

Proposition:

For each $i \in I$, $3 \le |\mathcal{G}_i| \le 7$; $9 \le g \le 19$.

Proof: By contradiction assume $\exists_{i \in I} | \mathcal{G}_i | = 8 \Rightarrow \sum_{j \in I \setminus \{i, -i\}} | \mathcal{G}_{ij} | = 32$. Recall that $\forall_{j \in \in I \setminus \{i, -i\}} | \mathcal{G}_{ij} | \leq 3$. Denote by $\mathcal{I} = \{j \in I \setminus \{i, -i\} : | \mathcal{G}_{ij} | = 3\} \iff |\mathcal{I}| \geq 8$), by $\mathcal{L} = \{j \in I \setminus \{i, -i\} : | \mathcal{G}_{ij} | \leq 2\} \iff |\mathcal{L}| \leq 4$) and by $\mathcal{K} = \{j \in I \setminus \{i, -i\} : | \mathcal{G}_{ij} | = 2\}$.

▶ There are, at most, four distinct elements $j \in \mathcal{I}$ such that $-j \in \mathcal{L}$

There are $x, y \in \mathcal{J}$, distinct between them, so that $-x, -y \in \mathcal{J}$; i. e. $|\mathcal{G}_{ix}| = |\mathcal{G}_{i,-x}| = |\mathcal{G}_{iy}| = |\mathcal{G}_{i,-y}| = 3.$

 $\begin{array}{lll} 5.1 & 3 \leq |\mathcal{G}_{f}| \leq 8 \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_{f}| \leq 7 \\ 5.3 & 4 \leq |\mathcal{G}_{f}| \leq 7 \end{array}$

$$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$$

Denote by
$$\mathcal{I} = \{j \in I \setminus \{i, -i\} : |\mathcal{G}_{ij}| = 3\} \iff |\mathcal{I}| \ge 8$$
, by
 $\mathcal{L} = \{j \in I \setminus \{i, -i\} : |\mathcal{G}_{ij}| \le 2\} \iff |\mathcal{L}| \le 4$) and by
 $\mathcal{K} = \{j \in I \setminus \{i, -i\} : |\mathcal{G}_{ij}| = 2\}.$
 $|\mathcal{G}_{ik}| = |\mathcal{G}_{i,-k}| = |\mathcal{G}_{ij}| = |\mathcal{G}_{i,-y}| = 3.$

Step 1: $|\mathcal{I}| = 8$; $|\mathcal{K}| = |\mathcal{L}| = 4$ and the partial index distribution of the codewords $W_1, ..., W_8 \in \mathcal{G}_i$ satisfies:

-					
W_1	i	k_1	x	y	
W_2	i	k_2	x	-y	
W_3	i	k_3	x		
W_4	i	k_4	-x	y	
W_5	i	k_5	-x	-y	where x
W_6	i	k_6	-x		<i>x ≠</i>
W_7	i	k_7	y		
W_8	i	k_8	-y		$k_1,$

where
$$x, -x, y, -y \in \mathcal{J}$$
,
 $x \neq y$ and
 $k_1, \dots, k_8 \in \mathcal{K}$.

5th Combinatorics Day University of Beira Interior [-2pt]

PL(7,2) and the Golomb-Welch Conjecture

 $\begin{array}{lll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ 5.3 & 4 \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$$

Denote by $\mathcal{J} = \{j \in I \setminus \{i, -i\} : |\mathcal{G}_{ij}| = 3\} \iff |\mathcal{I}| \ge 8\}$, and by $\mathcal{K} = \{j \in I \setminus \{i, -i\} : |\mathcal{G}_{ij}| = 2\}.$

$$|G_{ix}| = |G_{i,-x}| = |G_{iy}| = |G_{i,-y}| = 3.$$

Step 2: If $k \in \mathcal{K}$, then $-k \in \mathcal{K}$.

W_1	i	k_1	x	y	α
W_2	i	k_2	x	-y	β
W_3	i	k_3	x	γ	δ
W_4	i	k_2	-x	y	
W_5	i	k_1	-x	-y	
W_6	i	k_3	-x	α	β
W_7	i	k_7	y	β	
W_8	i	k_7	-y	α	

$$\mathcal{K} = \{k_1, k_2, k_3, k_7\}$$

5th Combinatorics Day University of Beira Interior [-2pt]

PL(7,2) and the Golomb-Welch Conjecture

イロト イポト イヨト イヨト

 $\begin{array}{lll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ 5.3 & 4 \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$$

Denote by $\mathcal{J} = \{j \in I \setminus \{i, -i\} : |\mathcal{G}_{ij}| = 3\} \iff |\mathcal{I}| \ge 8\}$, and by $\mathcal{K} = \{j \in I \setminus \{i, -i\} : |\mathcal{G}_{ij}| = 2\}.$

$$|\mathcal{G}_{ix}| = |\mathcal{G}_{i,-x}| = |\mathcal{G}_{iy}| = |\mathcal{G}_{i,-y}| = 3.$$

Step 2: If $k \in \mathcal{K}$, then $-k \in \mathcal{K}$.

W_1	i	k_1	x	y	α
W_2	i	k_2	x	-y	β
W_3	i	k_3	x	γ	δ
W_4	i	k_2	-x	y	γ
W_5	i	k_1	-x	-y	δ
W_6	i	k_3	-x	α	β
W_7	i	k_7	y	β	δ
W_8	i	k_7	-y	α	γ

$$\mathcal{K} = \{k_1, k_2, k_3, k_7\}$$

5th Combinatorics Day University of Beira Interior [-2pt]

PL(7,2) and the Golomb-Welch Conjecture

イロト イポト イヨト イヨト

 $\begin{array}{lll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ 5.3 & 4 \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Denote by $\mathcal{J} = \{j \in I \setminus \{i, -i\} : |\mathcal{G}_{ij}| = 3\} \iff |\mathcal{I}| \ge 8$, and by $\mathcal{K} = \{j \in I \setminus \{i, -i\} : |\mathcal{G}_{ij}| = 2\}.$

Step 3: $|\mathcal{F}_i| = 0$.

Step 4: $\forall_{j \in \mathcal{J}} |\mathcal{D}_{ij} \cup \mathcal{E}_{ij}| = 1$; $\forall_{k \in \mathcal{K}} |\mathcal{D}_{ik} \cup \mathcal{E}_{ik}| = 4$. Besides, if $k \in \mathcal{K}$ there are codewords $V_1, V_2 \in \mathcal{G}_{ik}$ and $U_1, ..., U_4 \in \mathcal{D}_{ik} \cup \mathcal{E}_{ik}$ whose index distribution satisfies:

V_1	i	k	v_1	v_2	v_3
V_2	i	k	v_4	v_5	v_6

$$V_1, V_2 \in \mathcal{G}_{ik}$$

$$\{v_1, ..., v_6\} \subset \mathcal{J}$$

U_1	i	k	u
U_2	i	k	-u
U_3	i	k	j_1
U_4	i	k	j_2

 $U_1, \dots, U_4 \in \mathcal{D}_{ik} \cup \mathcal{E}_{ik}.$ $u, -u \in \mathcal{K} \setminus \{k, -k\}$ $j_1, j_2 \in \mathcal{J}, \ j_1 \neq j_2$

 $\begin{array}{lll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ 5.3 & 4 \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Denote by $\mathcal{J} = \{j \in I \setminus \{i, -i\} : |\mathcal{G}_{ij}| = 3\} \iff |\mathcal{I}| \ge 8$, and by $\mathcal{K} = \{j \in I \setminus \{i, -i\} : |\mathcal{G}_{ij}| = 2\}.$

Step 5: $|\mathcal{G}_i| \neq 8$. Recall [$\pm 2, \pm 1$] are coverd by codewords of $\mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}$.

イロト イポト イヨト イヨト

 $\begin{array}{lll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ 5.3 & 4 \leq |\mathcal{G}_i| \leq 7 \end{array}$

$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$

Step 5: $|G_i| \neq 8$.

	i	k	u	-u	j_1	j_2
U_1	х	х	х			
U_2	х	х		х		
U_3	х	х			х	
U_4	х	х				х
P_1	± 2				±1	
P_2	± 2					±1

Index distribution of $U_1, ..., U_4 \in \mathcal{D}_{ik} \cup \mathcal{E}_{ik}$

and index value distribution of P_1 and P_2

- ▶ P_1 may only be covered by $U_3 \in (\mathcal{B}_i^{(4)} \cap \mathcal{B}_{j_1}^{(1)}) \cup \mathcal{C}_{j_1} \cup (\mathcal{D}_i^{(3)} \cap \mathcal{D}_{j_1}^{(1)}) \cup (\mathcal{E}_i^{(2)} \cap \mathcal{E}_{j_1});$
- ▶ P₂ may only be covered by $U_4 \in (\mathcal{B}_i^{(4)} \cap \mathcal{B}_{j_2}^{(1)}) \cup \mathcal{C}_{j_2} \cup (\mathcal{D}_i^{(3)} \cap \mathcal{D}_{j_2}^{(1)}) \cup (\mathcal{E}_i^{(2)} \cap \mathcal{E}_{j_2})$

 $\begin{array}{lll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ 5.3 & 4 \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Step 5: $|G_i| \neq 8$.

	i	k	u	-u	j_1	j_2
U_1	х	х	х			
U_2	х	х		х		
U_3	х	х			х	
U_4	х	х				х
P_1	± 2				±1	
P_2	± 2					±1

Index distribution of $U_1, ..., U_4 \in \mathcal{D}_{ik} \cup \mathcal{E}_{ik}$

and index value distribution of P_1 and P_2

- ▶ P_1 may only be covered by $U_3 \in (\mathcal{B}_i^{(4)} \cap \mathcal{B}_{j_1}^{(1)}) \cup \mathcal{C}_{ij_1} \cup (\mathcal{D}_i^{(3)} \cap \mathcal{D}_{j_1}^{(1)}) \cup (\mathcal{E}_i^{(2)} \cap \mathcal{E}_{j_1});$
- ▶ P_2 may only be covered by $U_4 \in (\mathcal{B}_i^{(4)} \cap \mathcal{B}_{j_2}^{(1)}) \cup \mathcal{C}_{j_2} \cup (\mathcal{D}_i^{(3)} \cap \mathcal{D}_{j_2}^{(1)}) \cup (\mathcal{E}_i^{(2)} \cap \mathcal{E}_{j_2})$

But $|\mathcal{B}_{i}^{(4)} \cap \mathcal{B}_{j}^{(1)}| + |\mathcal{C}_{i} \cap \mathcal{C}_{j}| + |\mathcal{D}_{i}^{(3)} \cap \mathcal{D}_{j}^{(1)}| + |\mathcal{E}_{i}^{(2)} \cap \mathcal{E}_{j}| + |\mathcal{F}_{i}^{(2)} \cap \mathcal{F}_{j}^{(1)}| = 1$ and $U_{3}, U_{4} \in (\mathcal{D}_{i}^{(3)} \cap \mathcal{D}_{k}^{(1)}) \cup (\mathcal{E}_{i}^{(2)} \cap \mathcal{E}_{k}) \Rightarrow \text{ either } P_{1} \text{ is not covered by } U_{3} \text{ or}$

 P_2 is not covered by U_4 , \Box , $A \equiv A \equiv A$

 $\begin{array}{lll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ 5.3 & 4 \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Step 5: $|G_i| \neq 8$.

► Assuming WLOG P_1 not covered by $U_3 \Rightarrow P_1$ covered by $V \in (\mathcal{B}_i^{(4)} \cap \mathcal{B}_{i_1}^{(1)}) \cup C_{ij_1}$.

 $\begin{array}{lll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ 5.3 & 4 \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Step 5: $|G_i| \neq 8$.

► Assuming WLOG P_1 not covered by $U_3 \Rightarrow P_1$ covered by $V \in (\mathcal{B}_i^{(4)} \cap \mathcal{B}_{j_1}^{(1)}) \cup \mathcal{C}_{ij_1}.$

Both cases $V \in (\mathcal{B}_i^{(4)} \cap \mathcal{B}_{j_1}^{(1)})$ and $V \in \cup \mathcal{C}_{ij_1}$ lead to a contradiction.

 $\begin{array}{lll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ 5.3 & 4 \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Step 5: $|G_i| \neq 8$.

Assuming WLOG P_1 not covered by $U_3 \Rightarrow P_1$ covered by $V \in (\mathcal{B}_i^{(4)} \cap \mathcal{B}_{j_1}^{(1)}) \cup \mathcal{C}_{ij_1}.$

Both cases $V \in (\mathcal{B}_{i}^{(4)} \cap \mathcal{B}_{j_{1}}^{(1)})$ and $V \in \cup \mathcal{C}_{ij_{1}}$ lead to a contradiction.

Result: $\forall_{i \in I} \ 3 \le |\mathcal{G}_i| \le 7, \ 9 \le g \le 19.$

 $\begin{array}{lll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ 5.3 & 4 \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Proposition:

Let $\mathcal{I} = \{i \in I : |\mathcal{G}_i| = p \land |\mathcal{F}_i| = q\}.$

- $p = 3 \Rightarrow q = 13$ and $|\mathcal{I}| \le 5$;
- $p = 4 \Rightarrow q = 10 \text{ and } |\mathcal{I}| \leq 3;$
- ▶ $p = 5 \Rightarrow (q = 10 \text{ and } |\mathcal{I}| \le 4) \text{ or } (q = 7 \text{ and } |\mathcal{I}| \le 2);$
- ▶ $p = 6 \Rightarrow (q = 8 \text{ and } |\mathcal{I}| \le 3) \text{ or } (q = 7 \text{ and } |\mathcal{I}| \le 8) \text{ or } (q = 5 \text{ and } |\mathcal{I}| \le 5);$
- ▶ $p = 7 \Rightarrow (q = 5 \text{ and } |\mathcal{I}| \le 5) \text{ or } (q = 2 \text{ and } |\mathcal{I}| \le 2).$

 $\begin{array}{lll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ \textbf{5.2} & \textbf{3} \leq |\mathcal{G}_i| \leq 7 \\ 5.3 & 4 \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Proposition:

Let $\mathcal{I} = \{i \in I : |\mathcal{G}_i| = p \land |\mathcal{F}_i| = q\}.$

- $p = 3 \Rightarrow q = 13 \text{ and } |\mathcal{I}| \le 5;$
- $p = 4 \Rightarrow q = 10 \text{ and } |\mathcal{I}| \leq 3;$
- $p = 5 \Rightarrow (q = 10 \text{ and } |\mathcal{I}| \le 4) \text{ or } (q = 7 \text{ and } |\mathcal{I}| \le 2);$
- ▶ $p = 6 \Rightarrow (q = 8 \text{ and } |\mathcal{I}| \le 3) \text{ or } (q = 7 \text{ and } |\mathcal{I}| \le 8) \text{ or } (q = 5 \text{ and } |\mathcal{I}| \le 5);$
- ▶ $p = 7 \Rightarrow (q = 5 \text{ and } |\mathcal{I}| \le 5) \text{ or } (q = 2 \text{ and } |\mathcal{I}| \le 2).$

Corollary:

 $g \neq$ 9 and $g \neq$ 10.

 $\begin{array}{lll} 5.1 & 3 \leq \left|\mathcal{G}_{i}\right| \leq 8 \\ \textbf{5.2} & \textbf{3} \leq \left|\mathcal{G}_{i}\right| \leq 7 \\ 5.3 & 4 \leq \left|\mathcal{G}_{i}\right| \leq 7 \end{array}$

▶ < **≣** ▶

$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$

Proposition:

Let
$$\mathcal{J} = \{i \in I : |G_i| = p \land |\mathcal{F}_i| = q\}.$$

 $p = 3 \Rightarrow q = 13 \text{ and } |\mathcal{I}| \le 5;$
 $p = 4 \Rightarrow q = 10 \text{ and } |\mathcal{I}| \le 3;$
 $p = 5 \Rightarrow (q = 10 \text{ and } |\mathcal{I}| \le 4) \text{ or } (q = 7 \text{ and } |\mathcal{I}| \le 2);$
 $p = 6 \Rightarrow (q = 8 \text{ and } |\mathcal{I}| \le 3) \text{ or } (q = 7 \text{ and } |\mathcal{I}| \le 8) \text{ or } (q = 5 \text{ and } |\mathcal{I}| \le 5);$
 $p = 7 \Rightarrow (q = 5 \text{ and } |\mathcal{I}| \le 5) \text{ or } (q = 2 \text{ and } |\mathcal{I}| \le 2).$

Corollary:

 $g \neq$ 9 and $g \neq$ 10.

$$g = 9 = \frac{1}{5} \sum_{i \in I} |\mathcal{G}_i| \Rightarrow \sum_{i \in I} |\mathcal{G}_i| = 45 = 11 \times 3 + 3 \times 4 \Rightarrow |\mathcal{I}| \ge 11 \text{ (contradiction).}$$

$$g = 10 \Rightarrow \sum_{i \in I} |\mathcal{G}_i| = 50 = 6 \times 3 + 8 \times 4 \Rightarrow |\mathcal{I}| \ge 6 \text{ (contradiction).}$$

5th Combinatorics Day University of Beira Interior [-2pt] PL(7,2) and the Golomb-Welch Conjecture

 $\begin{array}{ll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ 5.2 & 3 \leq |\mathcal{G}_i| \leq 7 \\ \textbf{5.3} & \textbf{4} \leq |\mathcal{G}_i| \leq 7 \end{array}$

$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$

Proposition:

For each $i \in I |G_i| \neq 3$. More precisely, $\forall_{i \in I} |4 \le |G_i| \le 7$, $12 \le g \le 19$.

Proof: By contradiction assume $\exists_{i \in I} |G_i| = 3 \Rightarrow \sum_{j \in I \setminus \{i, -i\}} |G_{ij}| = 12.$

 $\textbf{Step 1: } |\mathcal{G}_i| = \textbf{3} \Rightarrow |\mathcal{D}_i| = \textbf{3}, |\mathcal{E}_i| = \textbf{0}, |\mathcal{F}_i| = \textbf{13} \textbf{ and } |\mathcal{I} = \{i \in I : |\mathcal{G}_i| = \textbf{3} \land |\mathcal{F}_i| = \textbf{13}\}| \le \textbf{5}.$

$$\begin{split} \text{Step 2:} & |\mathcal{G}_i| = 3 \ \Rightarrow \ \exists_{\alpha,\beta,\gamma \in I \setminus \{i,-i\}} \ |\mathcal{F}_{i\alpha}| = |\mathcal{F}_{i\beta}| = |\mathcal{F}_{i\gamma}| = 5, \, \alpha,\beta,\gamma \, \text{distinct between them}; \\ & \forall_{\omega \in I \setminus \{i,-i,\alpha,\beta,\gamma\}} \ |\mathcal{F}_{i\omega}| \leq 3. \end{split}$$

 $\exists_{U_1,U_2,U_3,U_4} \in \mathcal{F}_i$ satisfying

U_l	i	α	ß	ΧJ	
U_2	i	α	Y	X2	
U_3	i	β	Y	X3	
U_4	ż	<i>y</i> 1	Y2	<i>Y</i> 5	$ x_1, x_2, x_3, y_1, y_2, y_3 \in \mathcal{I} \setminus \{i, -i, \alpha, \beta, \gamma\}$

 $\begin{array}{lll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ 5.2 & 3 \leq |\mathcal{G}_i| \leq 7 \\ \textbf{5.3} & \textbf{4} \leq |\mathcal{G}_i| \leq 7 \end{array}$

イロト イポト イヨト イヨト

$\begin{aligned} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{aligned}$

Proposition:

For each $i \in I |G_i| \neq 3$. More precisely, $\forall_{i \in I} |4 \leq |G_i| \leq 7, |12 \leq g \leq 19$.

Step 3:

$$|\mathcal{F}_{i\alpha}| = |\mathcal{F}_{i\beta}| = |\mathcal{F}_{i\gamma}| = 5 \implies |\mathcal{G}_{i\alpha}| = |\mathcal{G}_{i\beta}| = |\mathcal{G}_{i\gamma}| = 0.$$

$$\exists_{\delta,\epsilon,\theta\in I\setminus\{i,-i,\alpha,\beta,\gamma\}} |\mathcal{G}_{i\delta}| = |\mathcal{G}_{i\epsilon}| = |\mathcal{G}_{i\theta}| = 2$$
and $\forall_{\omega\in I\setminus\{i,-i,\alpha,\beta,\gamma,\delta,\epsilon,\theta\}} |\mathcal{G}_{i\omega}| = 1$
The 3 codewords $W_1, W_2, W_3 \in \mathcal{G}_i$ satisfy:

W_{I}	i	8	8	Z_I	Z_2	$\delta, \varepsilon, \theta, z_1, z_2, \dots z_6 \in \mathcal{I} \setminus \{i, -i, \alpha, \beta, \gamma\}$
W_2	i	δ	θ	Z_3	Z4	distinct between them
W_3	i	ε	θ	Z_5	Z_6	uistinci ociween them

5.1	$3 \leq$	$ G_i $	≤ 8
5.2	$3 \leq$	Gi	≤ 7
5.3	$4 \leq$	Gi	≤ 7

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Proposition:

For each $i \in I \ |G_i| \neq 3$. More precisely, $\forall_{i \in I} \ 4 \le |G_i| \le 7$, $12 \le g \le 19$.

Step 4: Characterization of the index distributions of $G_i \cup F_i$ having into account their interaction.

Each one of these cases are subdivided in several other according with the available possibilities to fill the unknown coordinates. $< \square \succ < \square \succ < \square \succ < ⊇ \succ < ⊇ \succ < ⊇ \leftarrow = \square = 2$

5th Combinatorics Day University of Beira Interior [-2pt]

 $\begin{array}{ll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ 5.2 & 3 \leq |\mathcal{G}_i| \leq 7 \\ \textbf{5.3} & \textbf{4} \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Proposition:

For each $i \in I |G_i| \neq 3$. More precisely, $\forall_{i \in I} |4 \le |G_i| \le 7$, $12 \le g \le 19$.

Step 4: Characterization of the index distributions of $G_i \cup F_i$ having into account their interaction.

(日) (同) (日) (日) (日)

 $\begin{array}{lll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ 5.2 & 3 \leq |\mathcal{G}_i| \leq 7 \\ \textbf{5.3} & \textbf{4} \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Proposition:

For each $i \in I \ |G_i| \neq 3$. More precisely, $\forall_{i \in I} \ 4 \leq |G_i| \leq 7, \ 12 \leq g \leq 19$.

Step 4: Characterization of the index distributions of $G_i \cup F_i$ having into account their interaction.

 $|\mathcal{G}_{im}| = 2 = |\mathcal{F}_{im}| \text{ and } 3 \le |\mathcal{G}_m| \le 7 \iff |\mathcal{G}_m \setminus \mathcal{G}_i| \ge 1$

5th Combinatorics Day University of Beira Interior [-2pt]

5.1	$3 \leq$	$ G_i $	≤ 8
5.2	$3 \leq$	Gi	≤ 7
5.3	$4 \leq$	Gi	≤ 7

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Proposition:

- For each $i \in I |G_i| \neq 3$. More precisely, $\forall_{i \in I} | 4 \leq |G_i| \leq 7, |12 \leq g \leq 19$.
- $W_1 \in \mathcal{G}_{i,-k,m,l,n}, \qquad W_3 \in \mathcal{G}_{i,m,-j,-n,-o}, \qquad U_5 \in \mathcal{F}_{i,j,m,-l} \quad \text{and} \qquad U_8 \in \mathcal{F}_{ikmo}$

 $\mathcal{P} \text{ of } \mathcal{I} \setminus \{i,m,-m\}; \quad \left| \mathcal{P}_1 = \{-k,l,n\}; \right. \\ \left. \mathcal{P}_2 = \{-j,-n,-o\}; \right. \\ \left. \mathcal{P}_3 = \{j,-l\}; \right. \\ \left. \mathcal{P}_4 = \{k,o\}; \right. \\ \left. \mathcal{P}_5 = \{-i\} \right. \\ \left. \mathcal{P}_5 = \{-i$

	1				-12	0]	13			-	-j	0
	2				-12	-1		14				-0	k
	3			-k	-0	j		15				-j	-1
	4				-0	-1		16			12	-0	-1
Possibilities for $W \in \mathcal{G}_m \setminus \mathcal{G}_i$	5				0	j		17				k	Ĵ
	6		- 25		-1	k		18				k	-1
	7	m	-1		-j	0		19	m	-7		0	Ĵ
	8				-12	k		20				0	-1
	9			1	-0	k		21			-j	k	-1
	10				-12	j		22				k	j
	11				-0	j		23			-12	k	-1
	12				0	j		24				0	j
								25				0	-1
								26			-0	k	j

PL(7,2) and the Golomb-Welch Conjecture

 $\begin{array}{ll} 5.1 & 3 \leq |\mathcal{G}_i| \leq 8 \\ 5.2 & 3 \leq |\mathcal{G}_i| \leq 7 \\ \textbf{5.3} & \textbf{4} \leq |\mathcal{G}_i| \leq 7 \end{array}$

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Proposition:

For each $i \in I |G_i| \neq 3$. More precisely, $\forall_{i \in I} | 4 \le |G_i| \le 7, |12 \le g \le 19$.

Step 5: Identification of a partition of the index set relevant to the index distributions of $G_i \cup F_i$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

5.1	$3 \leq$	$ G_i $	≤ 8
5.2	$3 \leq$	Gi	≤ 7
5.3	$4 \leq$	Gi	≤ 7

$$\begin{split} \mathcal{A} &:= [\pm 5]; \mathcal{B} := [\pm 4, \pm 1]; \mathcal{C} := [\pm 3, \pm 2]; \mathcal{D} := [\pm 3, \pm 1^2]; \\ \mathcal{E} &:= [\pm 2^2, \pm 1]; \ \mathcal{F} := [\pm 2, \pm 1^3]; \ \mathcal{G} := [\pm 1^5] \end{split}$$

Proposition:

 $\textit{For each } i \in I \ |\mathcal{G}_i| \neq \texttt{3. More precisely, } \ \forall_{i \in I} \ \texttt{4} \leq |\mathcal{G}_i| \leq \texttt{7}, \ \texttt{12} \leq g \leq \texttt{19}.$

Step 6: New results about the index distributions of $\mathcal{G} \cup \mathcal{F}$ han ving into account the known distributions.

▶ $3 \le |\mathcal{G}_m| \le 6;$ ▶ if $|\mathcal{G}_m| = 3$, then $|\mathcal{F}_m| = 13$ with $|\mathcal{F}_m^{(2)}| = 4;$ ▶ if $|\mathcal{G}_m| = 4$ and $|\mathcal{F}_m| = 10$, then $|\mathcal{F}_m^{(2)}| = 4;$ ▶ if $|\mathcal{G}_m| = 5$ and $|\mathcal{F}_m| = 7$, then $|\mathcal{F}_m^{(2)}| = 4;$ ▶ if $|\mathcal{G}_m| = 6$ and $|\mathcal{F}_m| = 4$, then $|\mathcal{F}_m^{(2)}| = 4;$ ▶ If $|\mathcal{F}_m^{(2)}| = 4$, then $\mathcal{F}_m^{(2)} = \{U_8, M, M', M''\}$, where $U_8 \in \mathcal{F}_{i,k,m,-n}$ and M, M', M'' satisfy one of the following conditions:

M	m, j,	-k, -l
M	m, -0, l, -j	m, -0, n, -j
$M^{''}$	m, -ż, n, o	m, -i, l, o

M		mjlo	
M'	m, -0, -k, -l	m, -0, n, -j	m, -0, n,
M^{**}	m, -1, n, -1	m, -t, -k, -l	m, -t, -k,

М	mjno		
M	m, -0, -k, -l	m, -0, 1, -1	
M"	m, -i, J, -j	m, -i, -k, -l	

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

5th Combinatorics Day University of Beira Interior [-2pt]

5.3	$4 \leq$	Ĝi	≤7
5.2	$3 \leq$	Gi	< 7
5.1	$3 \leq$	$ G_i $	≤ 8

イロト イポト イヨト イヨト

PL(7,2) and the Golomb-Welch Conjecture

Thank You

5th Combinatorics Day University of Beira Interior [-2pt] PL(7,2) and the Golomb-Welch Conjecture