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Tiling Rn by unit cubes

T = {Ti , i ∈ I}, Ti ⊂ Rn tiles Rn if

I
⋃

i∈I Ti = Rn

I int(Ti)
⋂

int(Tj) = /0 for all i 6= j .

In what follows Ti will denote a unit n-cube or a cluster of unit n-cubes.

Two unit n-cubes are twins if they share a complete n−1 face

Figure: Twins and no twins.
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Lattice Tiling Rn by unit cubes

Lattice: L is a lattice in Rn of dimension k if.

L = {m1v1 +m2v2 + ...+mk vk , mi ∈ Z, i = 1, ..,k}
with v1,v2, ...,vk linearly independent.

↪→ group under vector addition such that each of its points is the
center of a ball that contains no other points.

Being L a lattice in Rn of dimension n, the set
F = {x1v1 + x2v2 + ...+ xnvn, 0≤ xi ≤ 1, i = 1, ..,n}

is called a fundamental parallelepiped of the lattice.

The volume of F is independent of the chosen basis and is called the
determinant of L.
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Lattice Tiling Rn by unit cubes

A Lattice tiling of Rn by unit cubes is a tiling where the centers of the cubes form a
lattice.

Minkowski’s Conjecture (1896): Each lattice tiling of Rn by unit cubes contains
twins.

... I plan to give a proof of this theorem in a special article in connection
with arithmetic investigations on n linear forms ...

Geometrie der Zahlen p.105; 1896

1907: Minkowski settled the case n = 3 Diophantische Approximationen p.67-74.
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Lattice Tiling Rn by unit cubes

Minkowski’s Conjecture (1896): Each lattice tiling of Rn by unit cubes contains
twins.

1941: Hajós settled the Minkowski’s Conjecture proving an equivalent conjecture
about finite abelian groups.

Hajós’s version of the Minkowski’s Conjecture (1896):
let G be a finite abelian group.

If a1,a2, ...,an are elements of G and r1, r2, ..., rn are positive integers such that each
element of G is uniquely expressed in the form:

ax1
1 ...axn

n , 0≤ x1 ≤ r1−1, ... 0≤ xn ≤ rn−1,

then ari
i = e for some i ∈ {1,2, ...,n}.
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Tilings by crosses

n-cross: Cluster consisting of 2n+1 unit cubes; a central cube where
at each facet another unit cube is attached.

Figure: A 2-cross and a 3-cross.

Golomb & Welch (1968): there is a tiling of Rn by crosses for all n ≥ 2.

Molnár (1971): The number of non-conguent lattice Z-tilings of Rn by
crosses equals the number of non-isomorphic abelian groups of order 2n+1.

Szabó (1981): If 2n+1 is not a prime, then there exists a Q-tiling of Rn by
crosses that is neither a Z-tiling nor a lattice tiling.
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Lee spheres

By a Lee sphere centered at W = (w1, ...,wn) ∈ Zn of radius r , denoted by S(W , r)
we mean the set

S(W , r)= {V = (v1, ...,vn) ∈ Zn : ρL(V ,W ) = ∑
n
i=1 |wi − vi | ≤ r}.

Figure: Lee sphere of radius 1 and 2 in Z2 and the corresponding unit cube clusters
in R2 and R3 respectively.
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2.1. Perfect error correcting Lee codes

Perfect error correcting Lee codes

Let us consider the metric space (Zn,ρL). Any subset M of Zn, |M | ≥ 2, is called a
code. The elements of Zn will be referred as words and in particular, the elements of
M will be called codewords.

A code M is a r -error correcting Lee code if
(i) ∀W ,V∈M , S(W , r)∩S(V , r) = /0.

If, in adition,

(ii) ∪W∈M S(W , r) = Zn,

then M is a perfect r -error correcting Lee code of word length n over Z, shortly a
PL(n, r) code.

The elements V ∈ S(W , r), with W ∈M are said to be covered by W .

A PL(n, r) code is a tiling of Zn by Lee spheres of radius r

inducing a tiling of Rn by the corresponding cluster of unit cubes.
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2.1. Perfect error correcting Lee codes

PL(2, r) codes

For each r ≥ 2 there is a tiling of R2 by clusters of unit 2-cubes associated to

Lee Spheres of radius r .

PL(2, r) codes do exist for any r ≥ 2.

Figure: Tiling of R2 by Lee Spheres of radius 2.
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Golomb-Welch Conjecture

Golomb-Welch Conj. (1969): For any n ≥ 3 there is no tilings of Rn by clusters of
unit cubes associated with Lee spheres of radius r ≥ 2.

Equivalently, there are no PL(n, r) codes for n ≥ 3
and r ≥ 2.

Gravier, Molard, Payan (1998): There are no PL(3, r) codes for any r ≥ 2.

Spacapan (2007): There are no PL(4, r) codes for any r ≥ 2.

P. Horak (2009): There are no PL(5, r) codes for any r ≥ 2;.
There are no PL(6,2) codes.
There are no PL(6, r) codes for any r ≥ 2.

O. Grosek & P. Horak (2014): There are no lattice tilings of Rn for 7≤ n ≤ 12 by
Lee spheres of radius 2.

What about PL(7,2) codes?
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PL(n,2) codes

Let M be a PL(n,2) code and that O = (0,0, ...,0) ∈M , which means that:

• all words V ∈ Zn such that ρL(V ,O)≤ 2 are covered by O.

Next level of words to be covered⇒ V3 = {V ∈ Zn : ρL(O,V) = 3}.

Let T = {W ∈M covering the words of V3}. Then, T ⊂ V5,

T = A ∪B ∪C ∪D ∪E ∪F ∪G where

I A = {V ∈ T : V is of type [±5]};
I B = {V ∈ T : V is of type[±4,±1];
I C = {V ∈ T : V is of type[±3,±2];
I D = {V ∈ T : V is of type[±3,±12];
I E = {V ∈ T : V is of type[±22,±1];
I F = {V ∈ T : V is of type[±2,±13];
I G = {V ∈ T : V is of type[±15].
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PL(n,2) codes

Let M be a PL(n,2) code and that O = (0,0, ...,0) ∈M , which means that:

• all words V ∈ Zn such that µL(V ,O)≤ 2 are covered by O.

Next level of words to be covered⇒ V3 = {V ∈ Zn : ρL(O,V) = 3}.

Let T = {W ∈M covering the words V of V3}. Then, T ⊂ V5,

T = A ∪B ∪C ∪D ∪E ∪F ∪G where

I A = {V ∈ T : V is of type [±5]}; =⇒ a = |A |
I B = {V ∈ T : V is of type[±4,±1]; =⇒ b = |B|
I C = {V ∈ T : V is of type[±3,±2]; =⇒ c = |C |
I D = {V ∈ T : V is of type[±3,±12]; =⇒ d = |D|
I E = {V ∈ T : V is of type[±22,±1]; =⇒ e = |E |
I F = {V ∈ T : V is of type[±2,±13]; =⇒ f = |F |
I G = {V ∈ T : V is of type[±15]; =⇒ g = |G |.
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A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

• All words V ∈ Zn such that µL(V ,O)≤ 2 are covered by O.

Next level of words to be covered⇒ V3 = {V ∈ Zn : ρL(O,V) = 3}.

V3 = {[±3]; [±2,±1]; [±13]}.

I Each word of type [±3] is covered by one and only one codeword in
A ∪B ∪C ∪D and |[±3]|= 2n. Thus,

a+b+ c+d = 2n
I Each word of type [±2,±1] is covered by one codeword in B ; 2 codewords in

C ; 2 codewords in D ; 4 codewords in E and 3 codewords in F . Besides,
|[±2,±1]|= 8

(n
2

)
. Thus,

b+2c+2d +4e+3f = 8
(n

2

)
I Each word of type [±13] is covered by one codeword of D ; one codeword of E ;

4 codewords of F and 10 words of G . Besides, |[±13]|= 8
(n

3

)
. Thus,

d +e+4f +10g = 8
(n

3

)
.
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A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Set of signed coordinates I = {+1,+2, ...,+n,−1,−2, ...,−n}

Given H ⊂ Zn denote by

I Hi = {W ∈H : iw|i| > 0}, i ∈ I

I Hij = {W ∈H : iw|i| > 0 ∧ jw|j| > 0}, i, j ∈ I i 6= j, i 6=−j

I H (k)
i = {W ∈H : iw|i| > 0 ∧ |w|i||= k}, i ∈ I , k ∈ Z+.

Relation between the cardinality of each set of codewords and their index
subsets can be derived:

I g = |G |= 1
5 ∑i∈I |Gi |; |Gi |= 1

4 ∑j∈I\{i,−i} |Gij ; |Gij |= 1
3 ∑k∈I\{i,−i,j,−j} |Gijk |.

Similar equalities for the other subsets of T can be derived.
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A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Proposition:

I |Ai ∪B(4)
i ∪C (3)

i ∪D(3)
i |= 1, for each i ∈ I ;

I |B(4)
i ∩B(1)

j |+ |Ci ∩Cj |+ |D
(3)
i ∩D(1)

j |+ |E
(2)
i ∩Ej |+ |F

(2)
i ∩F (1)

j |= 1, for
each i, j ∈ I , with |i| 6= |j|

I |Dijk ∪Eijk ∪Fijk ∪Gijk |= 1, for each i, j,k ∈ I , with |i|, |j| and |k | distinct
between them.

I ∀i∈I , |B(4)
i ∪C (2)

i ∪C (3)
i |+2|D(3)

i ∪E (2)
i |+3|F (2)

i |= 2(n−1) and

|B(1)
i ∪C (2)

i ∪C (3)
i ∪D(1)

i ∪E (2)
i ∪F (1)

i |+2|E (1)
i |= 2(n−1).
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5. PL(7,2) codes

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Proposition:

|B(4)
i ∩B(1)

j |+ |Ci ∩Cj |+ |D
(3)
i ∩D(1)

j |+ |E
(2)
i ∩Ej |+ |F

(2)
i ∩F (1)

j |= 1, for each
i, j ∈ I , with |i| 6= |j|

Proof: Let V be a word of type [±2,±1], satisfying iv|i|, jv|j| > 0, |v|i||= 2 and |v|j||= 1.

V must be covered by a codeword W ∈ B ∪C ∪D ∪E ∪F satisfying one and only one of the
following conditions:

W ∈ B(4)
i ∩B(1)

j ; W ∈ Ci ∩Cj ; W ∈D(3)
i ∩D(1)

j ; W ∈ E (2)
i ∩Ej ; W ∈ F (2)

i ∩F (1)
j .

|B(4)
i ∩B(1)

j |+ |Ci ∩Cj |+ |D
(3)
i ∩D(1)
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(2)
i ∩Ej |+ |F

(2)
i ∩F (1)

j |= 1.
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A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Proposition:

I |Di ∪Ei |+3|Fi |+6|Gi |= 4
(n−1

2

)
,

I |Dij ∪Eij |+2|Fij |+3|Gij |= 2(n−2); |Di ∪Ei | ≤ 2n−1

I |Gi |> |Di∪Ei |+(n−1)(n−6)
3 − 1

6 , i ∈ I ;

I |Fi | ≤ 8(n−1)+1
3 −|Di ∪Ei |− 2

3 |Ei |, i ∈ I ;

I If n ≡ 1(mod3), then |Gi | ≤ (n−1)(2n−5)
6 for each i ∈ I .

I If n ≡ 0(mod3), then |Gi | ≤ (n−1)(n−3)
3 for each i ∈ I .
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Corollary:

I If n ≡ 0 (mod 3), then g ≤ 2n(n−1)(n−3)
15 ;

I If n ≡ 1 (mod 3), then g ≤ n(n−1)(2n−5)
15 .
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1. Tilings; n-Crosses and Lee Spheres
2. Perfect error correcting Lee codes

3. Golomb-Welch Conjecture
4. Known results on PL(n,2) codes

5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

I “Good Solutions" of


a+b+ c+d = 14
b+2c+2d +4e+3f = 168
d +e+4f +10g = 280.
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1. Tilings; n-Crosses and Lee Spheres
2. Perfect error correcting Lee codes

3. Golomb-Welch Conjecture
4. Known results on PL(n,2) codes

5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Proposition:

I |Di ∪Ei |+3|Fi |+6|Gi |= 60,

I |Dij ∪Eij |+2|Fij |+3|Gij |= 10; |Dij ∪Eij | and |Gij have the same parity,

|Di ∪Ei | ≤ 13

I 3≤ |Gi | ≤ 9 for each i ∈ I .

I |Fi | ≤ 49
3 −|Di ∪Ei |− 2

3 |Ei |, i ∈ I ;

I 6≤ g ≤ 25.

I ∀i∈I , |B(4)
i ∪C (2)

i ∪C (3)
i |+2|D(3)

i ∪E (2)
i |+3|F (2)

i |= 12 and

|B(1)
i ∪C (2)

i ∪C (3)
i ∪D(1)

i ∪E (2)
i ∪F (1)

i |+2|E (1)
i |= 12.
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5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Proposition:
For each i ∈ I , 3≤ |Gi | ≤ 8; 9≤ g ≤ 22.

Proof: By contradiction, assume |Gi |= 9 for some i ∈ I .

. |Gi |=
1
4 ∑

j∈I\{i,−i}
|Gij | =⇒ ∑

j∈I\{i,−i}
|Gij |= 36.

. |Gij |= 3 for any j ∈ I\{i,−i}.

Let W1 ∈ G iαβγδ, α,β,γ,δ ∈ I\{i,−i} and |α|, |β|, |γ|, |δ| pairwise distinct.

. For any W ∈ Gi\{W1} there exists, at most, one element ε ∈ {α,β,γ,δ} so that
W ∈ Giε.
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A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Proposition:
For each i ∈ I , 3≤ |Gi | ≤ 8; 9≤ g ≤ 22.

Proof:
Let J = {α,β,γ,δ}, J− = {−α,−β,−γ,−δ}, K = I\({i,−i}∪ J ∪ J−) = {x ,−x ,y ,−y}.

Figure: Partial index distribution of the codewords of Gi .
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1. Tilings; n-Crosses and Lee Spheres
2. Perfect error correcting Lee codes

3. Golomb-Welch Conjecture
4. Known results on PL(n,2) codes

5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Lemma
∀i ∈ I , |F (2)

i | ≤ 4. If |F (2)
i |= 4, then |F (2)

i ∩Fj |= 1 for all j ∈ I\{i,−i}

Lemma
I |Gi |= 3 =⇒ |Ai |= 1, |Bi ∪Ci ∪Ei |= 0, |Di |= |D

(1)
i |= 3 (|D(3)

i |= 0);

|Fi |= 13 with |F (2)
i |= 4 and |F (1)

i |= 9.

I |Gi |= 4 =⇒ |Di ∪Ei |= 3 and |Fi |= 11; or

|Di |= 6 = |D(1)
i |, |Ei |= 0, |Fi |= 10, |Ai |= 1, |Bi ∪Ci |= 0 ,

|F (2)
i |= 4 and |F (1)

i |= 6.

I |Gi |= 5 =⇒ |Di ∪Ei |= 0 and |Fi |= 10 or |Di ∪Ei |= 3 and |Fi |= 9 or

|Di ∪Ei |= 6, |Fi |= 8 and |Di | ≥ 3 or

|Di |= 9 = |D(1)
i |, |Ai |= 1, |Bi ∪Ci |= |Ei |= 0 and |Fi |= 7.

with |F (2)
i |= 4 and |F (1)

i |= 3.
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|Di |= 6 = |D(1)
i |, |Ei |= 0, |Fi |= 10, |Ai |= 1, |Bi ∪Ci |= 0 ,

|F (2)
i |= 4 and |F (1)

i |= 6.

I |Gi |= 5 =⇒ |Di ∪Ei |= 0 and |Fi |= 10 or |Di ∪Ei |= 3 and |Fi |= 9 or

|Di ∪Ei |= 6, |Fi |= 8 and |Di | ≥ 3 or

|Di |= 9 = |D(1)
i |, |Ai |= 1, |Bi ∪Ci |= |Ei |= 0 and |Fi |= 7.

with |F (2)
i |= 4 and |F (1)

i |= 3.
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1. Tilings; n-Crosses and Lee Spheres
2. Perfect error correcting Lee codes

3. Golomb-Welch Conjecture
4. Known results on PL(n,2) codes

5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Conditions satisfied by the index subsets of A ∪B ∪C ∪D ∪E ∪F for a specific value of |Gi |.

Lemma
I |Gi |= 6 =⇒ |Di ∪Ei |= 0, |Fi |= 8 or ; |Di ∪Ei |= 3, |Fi |= 7; or

|Di ∪Ei |= 6, |Fi |= 6 or |Di ∪Ei |= 9, |Di | ≥ 6, |Fi |= 5 or

|Ai |= 1, |Bi ∪Ci ∪Ei |= 0, |Di |= |D
(1)
i |= 12, |Fi |= |F

(2)
i |= 4

I |Gi |= 7 =⇒ |Di ∪Ei |= 3, |Fi |= 5 or |Di ∪Ei |= 6, |Fi |= 4; or

|Di ∪Ei |= 9, |Di | ≥ 3, |Fi |= 63 or

|Di ∪Ei |= 12, |Di | ≥ 9, |Fi |= 2.
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2. Perfect error correcting Lee codes

3. Golomb-Welch Conjecture
4. Known results on PL(n,2) codes

5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Proposition:
For each i ∈ I , 3≤ |Gi | ≤ 7; 9≤ g ≤ 19.

Proof: By contradiction assume ∃i∈I |Gi |= 8 ⇒ ∑j∈I\{i,−i} |Gij |= 32.

Recall that ∀j∈∈I\{i,−i} |Gij | ≤ 3.

Denote by J = {j ∈ I\{i,−i} : |Gij |= 3} (⇒ |J | ≥ 8), by

L = {j ∈ I\{i,−i} : |Gij | ≤ 2} (⇒ |L | ≤ 4) and by

K = {j ∈ I\{i,−i} : |Gij |= 2}.

I There are, at most, four distinct elements j ∈ J such that −j ∈ L
I There are x ,y ∈ J , distinct between them, so that −x ,−y ∈ J ; i. e.
|Gix |= |Gi,−x |= |Giy |= |Gi,−y |= 3.
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4. Known results on PL(n,2) codes

5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Denote by J = {j ∈ I\{i,−i} : |Gij |= 3} (⇒ |J | ≥ 8), by

L = {j ∈ I\{i,−i} : |Gij | ≤ 2} (⇒ |L | ≤ 4) and by

K = {j ∈ I\{i,−i} : |Gij |= 2}.

|Gix |= |Gi,−x |= |Giy |= |Gi,−y |= 3.

Step 1: |J |= 8; |K |= |L |= 4 and the partial index distribution of the codewords
W1, ...,W8 ∈ Gi satisfies:
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Denote by J = {j ∈ I\{i,−i} : |Gij |= 3} (⇒ |J | ≥ 8), and by

K = {j ∈ I\{i,−i} : |Gij |= 2}.

|Gix |= |Gi,−x |= |Giy |= |Gi,−y |= 3.

Step 2: If k ∈K , then −k ∈K .
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1. Tilings; n-Crosses and Lee Spheres
2. Perfect error correcting Lee codes

3. Golomb-Welch Conjecture
4. Known results on PL(n,2) codes

5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Denote by J = {j ∈ I\{i,−i} : |Gij |= 3} (⇒ |J | ≥ 8), and by

K = {j ∈ I\{i,−i} : |Gij |= 2}.

Step 3: |Fi |= 0.

Step 4: ∀j∈J |Dij ∪Eij |= 1; ∀k∈K |Dik ∪Eik |= 4. Besides, if k ∈K there are codewords
V1,V2 ∈ Gik and U1, ...,U4 ∈Dik ∪Eik whose index distribution satisfies:
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1. Tilings; n-Crosses and Lee Spheres
2. Perfect error correcting Lee codes

3. Golomb-Welch Conjecture
4. Known results on PL(n,2) codes

5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Denote by J = {j ∈ I\{i,−i} : |Gij |= 3} (⇒ |J | ≥ 8), and by

K = {j ∈ I\{i,−i} : |Gij |= 2}.

Step 5: |Gi | 6= 8.
Recall [±2,±1] are coverd by codewords of B, C , D, E , F .
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1. Tilings; n-Crosses and Lee Spheres
2. Perfect error correcting Lee codes

3. Golomb-Welch Conjecture
4. Known results on PL(n,2) codes

5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Step 5: |Gi | 6= 8.

I P1 may only be covered by U3 ∈ (B(4)
i ∩B(1)

j1
)∪Cij1 ∪ (D

(3)
i ∩D(1)

j1
)∪ (E (2)

i ∩Ej1 );

I P2 may only be covered by U4 ∈ (B(4)
i ∩B(1)

j2
)∪Cij2 ∪ (D

(3)
i ∩D(1)

j2
)∪ (E (2)

i ∩Ej2 )

But |B(4)
i ∩B(1)

j |+ |Ci ∩Cj |+ |D
(3)
i ∩D(1)

j |+ |E
(2)
i ∩Ej |+ |F

(2)
i ∩F (1)

j |= 1 and

U3,U4 ∈ (D(3)
i ∩D(1)

k )∪ (E (2)
i ∩Ek ) ⇒ either P1 is not covered by U3 or

P2 is not covered by U4.
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2. Perfect error correcting Lee codes

3. Golomb-Welch Conjecture
4. Known results on PL(n,2) codes

5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Step 5: |Gi | 6= 8.

I Assuming WLOG P1 not covered by U3 ⇒ P1 covered by

V ∈ (B(4)
i ∩B(1)

j1 )∪Cij1 .

Both cases V ∈ (B(4)
i ∩B(1)

j1 ) and V ∈ ∪Cij1 lead to a contradiction.

Result: ∀i∈I 3≤ |Gi | ≤ 7, 9≤ g ≤ 19.
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1. Tilings; n-Crosses and Lee Spheres
2. Perfect error correcting Lee codes

3. Golomb-Welch Conjecture
4. Known results on PL(n,2) codes

5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Proposition:
Let J = {i ∈ I : |Gi |= p∧|Fi |= q}.

I p = 3⇒ q = 13 and |J | ≤ 5;

I p = 4⇒ q = 10 and |J | ≤ 3;

I p = 5⇒ (q = 10 and |J | ≤ 4) or (q = 7 and |J | ≤ 2);

I p = 6⇒ (q = 8 and |J | ≤ 3) or (q = 7 and |J | ≤ 8) or (q = 5 and |J | ≤ 5);

I p = 7⇒ (q = 5 and |J | ≤ 5) or (q = 2 and |J | ≤ 2).

Corollary:
g 6= 9 and g 6= 10.

g = 9 = 1
5 ∑

i∈I
|Gi | ⇒∑

i∈I
|Gi |= 45 = 11×3+3×4⇒ |J | ≥ 11 (contradiction).

g = 10⇒∑
i∈I
|Gi |= 50 = 6×3+8×4⇒ |J | ≥ 6 (contradiction).
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I p = 4⇒ q = 10 and |J | ≤ 3;
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1. Tilings; n-Crosses and Lee Spheres
2. Perfect error correcting Lee codes

3. Golomb-Welch Conjecture
4. Known results on PL(n,2) codes

5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Proposition:
For each i ∈ I |Gi | 6= 3. More precisely, ∀i∈I 4≤ |Gi | ≤ 7, 12≤ g ≤ 19.

Proof: By contradiction assume ∃i∈I |Gi |= 3 ⇒ ∑j∈I\{i,−i} |Gij |= 12.

Step 1: |Gi |= 3 ⇒ |Di |= 3, |Ei |= 0, |Fi |= 13 and |J = {i ∈ I : |Gi |= 3∧|Fi |= 13}| ≤ 5.

Step 2: |Gi |= 3 ⇒ ∃α,β,γ∈I\{i,−i} |Fiα|= |Fiβ|= |Fiγ|= 5, α,β,γ distinct between them;

∀ω∈I\{i,−i,α,β,γ} |Fiω| ≤ 3.

∃U1 ,U2,U3 ,U4 ∈ Fi satisfying
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5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Proposition:
For each i ∈ I |Gi | 6= 3. More precisely, ∀i∈I 4≤ |Gi | ≤ 7, 12≤ g ≤ 19.

Step 3:
|Fiα|= |Fiβ|= |Fiγ|= 5 ⇒ |Giα|= |Giβ|= |Giγ|= 0.

∃δ,ε,θ∈I\{i,−i,α,β,γ} |Giδ|= |Giε|= |Giθ|= 2

and ∀ω∈I\{i,−i,α,β,γ,δ,ε,θ} |Giω|= 1

The 3 codewords W1,W2,W3 ∈ Gi satisfy:
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1. Tilings; n-Crosses and Lee Spheres
2. Perfect error correcting Lee codes
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4. Known results on PL(n,2) codes

5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Proposition:
For each i ∈ I |Gi | 6= 3. More precisely, ∀i∈I 4≤ |Gi | ≤ 7, 12≤ g ≤ 19.

Step 4: Characterization of the index distributions of Gi ∪Fi having into account their interaction.

Each one of these cases are subdivided in several other according with the available possibilities
to fill the unknown coordinates.
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1. Tilings; n-Crosses and Lee Spheres
2. Perfect error correcting Lee codes

3. Golomb-Welch Conjecture
4. Known results on PL(n,2) codes

5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Proposition:
For each i ∈ I |Gi | 6= 3. More precisely, ∀i∈I 4≤ |Gi | ≤ 7, 12≤ g ≤ 19.

Step 4: Identification of a partition of the index set relevant to the index distributions of Gi ∪Fi .
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5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Proposition:
For each i ∈ I |Gi | 6= 3. More precisely, ∀i∈I 4≤ |Gi | ≤ 7, 12≤ g ≤ 19.

Step 5: Identification of a partition of the index set relevant to the index distributions of Gi ∪Fi .
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1. Tilings; n-Crosses and Lee Spheres
2. Perfect error correcting Lee codes

3. Golomb-Welch Conjecture
4. Known results on PL(n,2) codes

5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

A := [±5];B := [±4,±1];C := [±3,±2];D := [±3,±12];
E := [±22,±1]; F := [±2,±13]; G := [±15]

Proposition:
For each i ∈ I |Gi | 6= 3. More precisely, ∀i∈I 4≤ |Gi | ≤ 7, 12≤ g ≤ 19.

Step 6: New results about the index distributions of G ∪F han«ving into account the known
distributions.

I 3≤ |Gm| ≤ 6;

I if |Gm|= 3, then |Fm|= 13 with |F (2)
m |= 4;

I if |Gm|= 4 and |Fm|= 10, then |F (2)
m |= 4;

I if |Gm|= 5 and |Fm|= 7, then |F (2)
m |= 4;

I if |Gm|= 6 and |Fm|= 4, then |F (2)
m |= 4;

I If |F (2)
m |= 4, then F (2)

m = {U8,M,M ′,M ′′}, where
U8 ∈ Fi,k ,m,−n and M,M ′,M ′′ satisfy one of the following conditions:
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1. Tilings; n-Crosses and Lee Spheres
2. Perfect error correcting Lee codes

3. Golomb-Welch Conjecture
4. Known results on PL(n,2) codes

5. PL(7,2) codes

5.1 3≤ |Gi | ≤ 8
5.2 3≤ |Gi | ≤ 7
5.3 4≤ |Gi | ≤ 7

PL(7,2) and the Golomb-Welch Conjecture

Thank You
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