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The question

Let A be a clutter
(aka antichain: a family of mutually incomparable subsets of )

How does A ressemble a matroid? or How far is A from being a
matroid? or Which is the matroid closest to A?
Example: let A ={123,124,345}

» Both {123,124,34} and {123,124,34,5} are are clutters
of circuits of a matroid:

1 1 5
3 5 3
5 5

» Both {123,124} and {123,124,345,134,235,245} are
clutters of bases of a matroid:

7 3
3 2 1
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What's ahead

State of the art
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Some definitions and notations
Our results (joint with Jaume Marti-Farré from UPC)

» Existence theorems
» Constructive algorithms
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Previous efforts/interest in linking clutters and matroids

» Vaderlind, 1986: Clutters and semimatroids

» Dress and Wenzel, 1990: Matroidizing set systems: a new
approach to matroid theory

» Cordovil, Fukuda, and Moreira, 1991: Clutters and matroids
» Traldi, 1997-2003: Clutters and circuits I, 11, 111

» Blasiak, Rowe, Traldi, and Yacobi, 2005: Several definitions of
matroids

» Ford, 2012: Question on mathoverflow.net: | have a bunch
of k-element subsets of {1,...,n}. Call a matroid good if all
of these k-element sets are not bases. | want to find all the
matroids M which are minimal among the good ones, in the
sense that there is no good matroid whose independent sets
are a proper subset of those of M.



Definitions: matroids

A matroid is a pair (€2,C) where Q is a finite set and C is a family
of subsets of Q, called circuits, satisfying

- C is a clutter different from {0}

- for distinct C;, G € C and e € G N G, there is C3 € C such
that (3 C (C1 U CQ) = @3
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Definitions: matroids

A matroid is a pair (€2,C) where Q is a finite set and C is a family
of subsets of Q, called circuits, satisfying
- C is a clutter different from {0}

- for distinct C;, G € C and e € G N G, there is C3 € C such
that (3 C (Cl U CQ) = @3

Ex: each graph determines a matroid with ground set the edge-set
and where circuits correspond to cycles

Subsets of € that do not contain any circuit are called independent
and subsets that do contain some circuit are dependent
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Definitions: matroids

As circuits are the minimal dependent sets, knowing the sets of
dependent or of independent sets determines the matroid

Maximal independent sets are called bases; knowing the clutter of
bases suffices to determine the matroid

Moreover,
Fact: a family B C 2% is the set of bases of some matroid if, and
only if,

S B#£0

- for B1,By € B and x € By — By, there is y € B, — By such
that (B —x)Uy € B



Definitions: clutters
Denote by Clutt(2) the set of all clutters on Q

For A € Clutt(Q), let
AN ={BCQ:BDAforsome Ac A}
AN ={BCQ:BCAforsome Ac A}
Hence

A = minimal(A™) = maximal(A™)

Ex: for a matroid M, C(M)" are the dependent sets and B(M)~
are the independent sets



Definitions: clutters
Denote by Clutt(2) the set of all clutters on Q

For A € Clutt(Q), let
AN ={BCQ:BDAforsome Ac A}
AN ={BCQ:BCAforsome Ac A}

Hence
A = minimal(A™) = maximal(A™)

Ex: for a matroid M, C(M)" are the dependent sets and B(M)~
are the independent sets

Define the following two partial orders on Clutt(£2)
AN <t A<= N CAS
—VAehITAechst. ADA
M < A<= N CA;
= VAeAhTAehst. ACA



Definitions: clutters

Ex: for matroids My, M»

C(My) <T C(My) < every circuit of My contains a circuit of M
< (My is above M, in the weak order)

B(M;) <™ B(M>) < every basis of My is contained in a basis of M
< (My is below M, in the weak order)

(Note: B(M;) < B(Ma) can also be interpreted in terms of the
weak order, but C(M;) <~ C(M>) cannot)
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Definitions: clutters

The clutter A€ is {Q\ A: Ae A}

Lem A; <t Ay & AS < AS

The blocker of a clutter is

b(A) = minimal{B: BN A #( for all A€ A}

Lem /\1 §+ /\2 54 b(/\z) §+ b(/\l)

Facts:

B(M)€ is the clutter of bases of a matroid M*, called the dual
matroid of M

b(C(M)) = B(M")
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Answering our initial question

Given A € Clutt(Q):

» We want it close to a matroid clutter. Do we choose circuit
clutters or basis clutters? Let's say we choose ¥ C Clutt(Q)

» Now, which order do we use to compare? <t or <~ 7 Let's
say we take ORDER

» And we want our clutter A to be above or below with respect
to ORDER? Let's say we take SIDE

Thm (Informal)

For any choice of ORDER and SIDE, there is a family of clutters
F C Clutt(2) such that:

If 7 C %, then there exist A1,...,As in X that are closest to A
with respect to ORDER and SIDE. Moreover, A can be recovered
from Ay, ..., A



Decomposition theorems: in general

Thm Let A € Clutt(2) and X C Clutt(Q2)

If for all S ={x1,...,x} C Q the clutter As = {{x1},...,{x}}
belongs to ¥, then

(1) there exists some A’ € ¥ such that A <t A

(2) if A1,...,As € X are the minimal clutters in (1) then
A =minimal{A; U---UAs: A € A}
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Decomposition theorems: in general

Thm Let A € Clutt(2) and X C Clutt(Q2)
If for all S ={xq,...,x} C Q the clutter As = {{x1},...,{x-}}
belongs to ¥, then

(1) there exists some A’ € ¥ such that A <t A

(2) if A1,...,As € X are the minimal clutters in (1) then
A =minimal{A; U---UAs: A € A}

Proof:
(1): clear, as A < Aq
(2): let Ag = minimal{A; U---UA;: A; € Aj}

As A <t A;, for all A€ A there is A; € A; such that A; C A
If not, there is Ag € Aq such that for all A€ A, A Ag
Consider the clutter A = {{x} : x & Ao}
As for all A€ A we have A\ Ag # 0, we deduce A <7 A
By minimality, there is some k such that A, <* A
As Ag = A1 U---UAs with A; € A;, the set Ax € A must
contain {x} for some x & Ag, a contradiction



Decomposition theorems: in general

For each choice of ORDER and SIDE, we have a “special family of
clutters” F and a decomposition formula

Thm

Fo Ul el o €9
L e A S
e S
PO A
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Decomposition theorems: matroids

Recall the “special families”:
Fir={{{xa},.- ., {x}}ix, ..., x €Q}
Fo={{Q\ x1,...,Q\ x} : x1,...,x € Q}
F={{x...x}:x,....,x € Q}

Lem All clutters in Fq, F», F3 are clutters of bases
Fi: r elements in parallel
F2: a cycle on r elements
F3: a tree on r elements

Lem All clutters in Fy, F3 are clutters of circuits, but J> is not
Fi1: r loops
F3: a cycle on r elements
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Decomposition theorems: matroids

Obs: {Q\ x1,...,Q2\ x,} is not a clutter of circuits if r > 2, as:
for e € (2\ x1) N (2 \ x2), we have

(Q\X1UQ\X2)\GZQ\E
so circuit-exchange does not hold for 2 < r < |Q|

This implies that the result does not hold if we are trying to
approximate by CIRCUITS using the order <~ and ABOVE

Ex: A={12,13}

We look for M such that A <~ C(M), that is, every subset of A is
contained in a circuit of M

Two options: C(M;) = {123} and C(M») = {12,13,23}

As C(M,) <= C(My), there is only one clutter of circuits above A
in the order <~

But A # C(M,), so there is no decomposition result
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Decomposition theorems: matroids

In summary, given A we can consider approximations for any
combination of
CIRCUITS / BASES; <T / <7; ABOVE / BELOW

except: CIRCUITS, <~ , ABOVE
For each choice, the resulting closest clutters Ay, ..., As are called
the completions of A

Now, how can we effectively compute these completions?

In principle we should consider 7 cases, but we will see that they
actually reduce to only 3



Finding the completions: reductions

Recall:
Lem A; <+ N & /\f{ <& /\g
/\1 <+ /\2 ~ b(/\2) <+ b(/\l)
Facts: B(M)S = B(M*), b(C(M)) = B(M*)



Finding the completions: reductions

Recall:

Lem A; <+ N & /\f <& /\g
/\1 <+ /\2 = b(/\g) <+ b(/\l)

Facts: B(M)S = B(M*), b(C(M)) = B(M*)

By combining blockers and complements, it is enough to solve one
of

(circulTs, <1, ABOVE), (BASES, <1, BELOW), (BASES, <™,
BELOW)

By combining blockers and complements, it is enough to solve one
of

(ciRcUITS, <1, BELOW), (BASES, <T, ABOVE), (BASES, <™,
ABOVE)
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Finding the completions: algorithms

We describe the case (CIRCUITS, <*, ABOVE)
from Marti-Farré 2014

For distinct A1, Ay € A, define

INALU Az) = ﬂ X
XeNXCAIUA;

Fact: A is the clutter of circuits of some matroid if, and only if,
I/\(A1 U A2) = () for all A; # A eN
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We define three transformations of a clutter A
() take Ay # Ay with In(A1 U A) # 0 and set

A® = minimal(AU {A1 N Ay})

(ﬂ) N = minimal(/\ U {(Al U A2) \ //\(Al U Az) DA 75 A € /\})
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Finding the completions: algorithms

We define three transformations of a clutter A
() take Ay # Ay with In(A1 U A) # 0 and set

A® = minimal(AU {A1 N Ay})

(5) N = minimal(/\ U {(Al U A2) \ //\(Al U Az) DA 75 A € /\})
(’y) N = minimal(/\U{(A1 UAQ)\X x € AiNA, A 7& A € /\})

Lem A<t A, A<HAS, A<HAY

Lem None of the transformations applied to A yields a different
clutter if and only if A is the clutter of circuits of some matroid
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Finding the completions: algorithms

Thm Let A be a completion of A for (CIRCUITS, <, ABOVE).
There is a finite sequence (i1, ..., ix) € {a, 3,7}* such that

A/ — /\fl,...,ik
So to obtain all completions, we apply the «, 5, transformations

in all possible orders until no more applications are possible, and
take the minimal clutters thus generated

We have similar looking algorithms for (CIRcUITS, <, BELOW)
and (CIRCUITS, <™, BELOW)
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AY = minimal(A U {A; N Ax}) if IN(ALUAR) £ 10
A? = minimal(A U {(A1 U Ap) \ IA(A1 U Az) : Ay # Ay € A})
N = minimal(/\ U {(Al U A2) \X x € A1 N A A 75 As € /\})
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A®=minimal(123, 124, 345,12) = {12,345} = C(M;)
AP=minimal(123, 124, 345, 34) = {123,124, 34} = C(M>)

AY=minimal(123, 124, 345, 234, 134, 1245, 1235)
= {123,124,345,234, 134}

I (123U 124) = {12}, (345 U 234) = {34},
I (345 U 134) = {34}

A1 =minimal(123, 124, 345,234, 134, 12) = {12, 345,234,134}



Finding the completions: example

AY = minimal(A U {A; N Ax}) if IN(ALUAR) £ 10
A? = minimal(A U {(A1 U Ap) \ IA(A1 U Az) : Ay # Ay € A})
N = minimal(/\ U {(Al U A2) \X x € A1 N A A 75 As € /\})

A = {123,124,345}: [5(123 U 124) = {12}
A®=minimal(123, 124, 345,12) = {12,345} = C(M;)
AP=minimal(123, 124, 345, 34) = {123,124, 34} = C(M>)

AY=minimal(123, 124, 345, 234, 134, 1245, 1235)
= {123,124,345,234,134}
I (123 U 124) = {12}, Ir~(345 U 234) = {34},
In+ (345 U 134) = {34}

AV *1=minimal(123,124,345,234,134,12) = {12,345,234, 134}
As A% <t AV there is no need to continue from here



Finding the completions: example

AY = minimal(A U {A; N Ax}) if IN(A1 U AR) # 10
A? = minimal(A U {(A1 U A2) \ IA(A1 U Ap) : Ap # Ay € A})
A7 = minimal(AU {(A1 UA2) \ x : x € A1 N Az, A1 # Ax € N\})

N'={123,124,345,234, 134}
I (123U 124) = {12}, (345 U 234) = {34},
In (345 U 134) = {34}



Finding the completions: example

AY = minimal(A U {A; N Ax}) if IN(A1 U AR) # 10
A? = minimal(A U {(A1 U A2) \ IA(A1 U Ap) : Ap # Ay € A})
A7 = minimal(AU {(A1 UA2) \ x : x € A1 N Az, A1 # Ax € N\})

N'={123,124,345,234, 134}
I (123U 124) = {12}, (345 U 234) = {34},
In (345 U 134) = {34}

A2 =minimal(123, 124,345,234, 134,34) = {123,124,34} = A



Finding the completions: example

AY = minimal(A U {A; N Ax}) if IN(A1 U AR) # 10
A? = minimal(A U {(A1 U A2) \ IA(A1 U Ap) : Ap # Ay € A})
A7 = minimal(AU {(A1 UA2) \ x : x € A1 N Az, A1 # Ax € N\})

N'={123,124,345,234, 134}
I (123U 124) = {12}, (345 U 234) = {34},
In (345 U 134) = {34}

A2 =minimal(123, 124, 345, 234, 134, 34) = {123,124,34} = \®
A9 =minimal(123, 124,345, 234, 134, 34) = {123,124,34} = A®



Finding the completions: example

AY = minimal(A U {A; N Ax}) if IN(A1 U AR) # 10
A? = minimal(A U {(A1 U A2) \ IA(A1 U Ap) : Ap # Ay € A})
A7 = minimal(AU {(A1 UA2) \ x : x € A1 N Az, A1 # Ax € N\})

N'={123,124,345,234, 134}
I (123U 124) = {12}, (345 U 234) = {34},
In (345 U 134) = {34}

A2 =minimal(123, 124, 345, 234, 134, 34) = {123,124,34} = \®
A9 =minimal(123, 124,345, 234, 134, 34) = {123,124,34} = A®

N8 =minimal(123, 124, 345, 234, 134, 34, 25, 15)
={123,124, 34,15, 25}



Finding the completions: example

AY = minimal(A U {A; N Ax}) if IN(A1 U AR) # 10
A? = minimal(A U {(A1 U A2) \ IA(A1 U Ap) : Ap # Ay € A})
A7 = minimal(AU {(A1 UA2) \ x : x € A1 N Az, A1 # Ax € N\})

N'={123, 124, 345,234, 134}

I (123 U 124) = {12}, Ir~(345 U 234) = {34},

In(345 U 134) = {34}
A2 =minimal(123, 124, 345, 234, 134, 34) = {123,124,34} = \®
A9 =minimal(123, 124,345, 234, 134, 34) = {123,124,34} = A®

/\”/ﬁzminimal(123, 124,345,234,134,34,25,15)
={123,124,34,15,25}
Like before, A’ <™ A7?, so no need to continue this path



Finding the completions: example

AY = minimal(A U {A; N Ax}) if IN(A1 U AR) # 10
A? = minimal(A U {(A1 U A2) \ IA(A1 U Ap) : Ap # Ay € A})
A7 = minimal(AU {(A1 UA2) \ x : x € A1 N Az, A1 # Ax € N\})

N'={123,124,345,234, 134}
I (123U 124) = {12}, (345 U 234) = {34},
In (345 U 134) = {34}

NV *2=minimal(123,124,345,234,134,34) = {123,124,34} = NP

A7 *3=minimal(123,124,345,234,134,34) = {123,124,34} = N8

/\”/ﬁzminimal(123, 124,345,234,134,34,25,15)
={123,124,34,15,25}

Like before, A’ <™ A7?, so no need to continue this path

N1={123,124, 345,234, 134, 235, 245,135, 145}



Finding the completions: example

AY = minimal(A U {A; N Ax}) if IN(A1 U AR) # 10
A? = minimal(A U {(A1 U A2) \ IA(A1 U Ap) : Ap # Ay € A})
A7 = minimal(AU {(A1 UA2) \ x : x € A1 N Az, A1 # Ax € N\})

N'={123,124,345,234, 134}
I (123U 124) = {12}, (345 U 234) = {34},
In (345 U 134) = {34}

A2 =minimal(123, 124, 345, 234, 134, 34) = {123,124,34} = \®
A9 =minimal(123, 124,345, 234, 134, 34) = {123,124,34} = A®

/\”/ﬁzminimal(123, 124,345,234,134,34,25,15)
={123,124,34,15,25}
Like before, A’ <™ A7?, so no need to continue this path

N1={123,124, 345,234, 134, 235, 245,135, 145}

N1={123, 124, 345, 234, 134, 235,245, 135,145, 125}



Finding the completions: example

Hence, the smallest circuit clutters that are larger than
{123,124,345} with respect to the order < are

Ay = {12,345}
A, = {123,124,34}
As = {123,124,345 234,134,235, 245 135,145,125}



Finding the completions: example

Hence, the smallest circuit clutters that are larger than
{123,124,345} with respect to the order < are

Ay = {12,345}
A, = {123,124,34}
As = {123,124,345 234,134,235, 245 135,145,125}

We have also A = minimal(A; U Ay U Az, A; € \))



Finding the completions: example

Hence, the smallest circuit clutters that are larger than
{123,124,345} with respect to the order < are

Ay = {12,345}
Ao = {123,124, 34}
A3 = {123,124, 345,234, 134, 235, 245, 135, 145, 125}
We have also A = minimal(A; U Ay U Az, A; € \))
But actually A = minimal(A; U Az, Ai € \})

It does happen very often that not all the clutters of the
completion are needed for the decomposition to hold



Other families of clutters

Let \V be a class of matroids (as binary, graphic, transversal, ...)

Define:

T(C,N) = {C(M): M e N}
S(B,N) = {B(M): M € N}



Other families of clutters

Let \V be a class of matroids (as binary, graphic, transversal, ...)
Define:

T(C,N) = {C(M): M e N}
S(B,N) = {B(M): M € N}

For each ORDER and SIDE, if £(C, ) or X(B, ) contain all
clutters in the corresponding “special family”, then we can
approximate any clutter A with matroids in the class A/



Other families of clutters

Let \V be a class of matroids (as binary, graphic, transversal, ...)
Define:

T(C,N) = {C(M): M e N}
S(B,N) = {B(M): M € N}

For each ORDER and SIDE, if £(C, ) or X(B, ) contain all
clutters in the corresponding “special family”, then we can
approximate any clutter A with matroids in the class A/

Fact: for all "usual” classes of matroids, all combinations work
except (CIRCUITS, <~, ABOVE)



Other families of clutters: examples
With respect to (CIRCUITS, <*, ABOVE)

» The matroid Us 4 with circuits {123,124,134,234} has 6
binary completions:

{1k, hizia, i2i3is} for {i1,i2,3,ia} = {1,2,3,4}



Other families of clutters: examples
With respect to (CIRCUITS, <*, ABOVE)

» The matroid Us 4 with circuits {123,124,134,234} has 6
binary completions:

{1k, hizia, i2i3is} for {i1,i2,3,ia} = {1,2,3,4}

» The non-Fano matroid has 9 completions in the class of
matroids representable over a field of characteristic 2



To be done

> Improve the algorithms to compute completions

» Find algorithms to compute completions directly with respect
to BASES

» Find algorithms to compute completions in subclasses of
matroids

» Study the relationship between the number of completions
and the number needed for the decomposition formula to work

» Study the behaviour of deletion and contraction
> Answer the question on mathoverflow.net

> Apply the results!



