
Approximating and decomposing clutters with
matroids

Anna de Mier

Universitat Politècnica de Catalunya
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The question
Let Λ be a clutter

(aka antichain: a family of mutually incomparable subsets of Ω)

How does Λ ressemble a matroid? or How far is Λ from being a
matroid? or Which is the matroid closest to Λ?

Example: let Λ = {1 2 3, 1 2 4, 3 4 5}
I Both {1 2 3, 1 2 4, 3 4} and {1 2 3, 1 2 4, 3 4, 5} are are clutters

of circuits of a matroid:
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I Both {1 2 3, 1 2 4} and {1 2 3, 1 2 4, 3 4 5, 1 3 4, 2 3 5, 2 4 5} are
clutters of bases of a matroid:
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What’s ahead

I State of the art

I Some definitions and notations
I Our results (joint with Jaume Mart́ı-Farré from UPC)

I Existence theorems
I Constructive algorithms

I Perspective



Previous efforts/interest in linking clutters and matroids

I Vaderlind, 1986: Clutters and semimatroids

I Dress and Wenzel, 1990: Matroidizing set systems: a new
approach to matroid theory

I Cordovil, Fukuda, and Moreira, 1991: Clutters and matroids

I Traldi, 1997-2003:Clutters and circuits I, II, III

I Blasiak, Rowe, Traldi, and Yacobi, 2005: Several definitions of
matroids

I Ford, 2012:Question on mathoverflow.net: I have a bunch
of k-element subsets of {1, . . . , n}. Call a matroid good if all
of these k-element sets are not bases. I want to find all the
matroids M which are minimal among the good ones, in the
sense that there is no good matroid whose independent sets
are a proper subset of those of M.



Definitions: matroids

A matroid is a pair (Ω, C) where Ω is a finite set and C is a family
of subsets of Ω, called circuits, satisfying

- C is a clutter different from {∅}
- for distinct C1,C2 ∈ C and e ∈ C1 ∩ C2, there is C3 ∈ C such

that C3 ⊆ (C1 ∪ C2)− e

Ex: each graph determines a matroid with ground set the edge-set
and where circuits correspond to cycles

Subsets of Ω that do not contain any circuit are called independent
and subsets that do contain some circuit are dependent
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Definitions: matroids

As circuits are the minimal dependent sets, knowing the sets of
dependent or of independent sets determines the matroid

Maximal independent sets are called bases; knowing the clutter of
bases suffices to determine the matroid

Moreover,

Fact: a family B ⊆ 2Ω is the set of bases of some matroid if, and
only if,

- B 6= ∅
- for B1,B2 ∈ B and x ∈ B1 − B2, there is y ∈ B2 − B1 such

that (B1 − x) ∪ y ∈ B
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Definitions: clutters
Denote by Clutt(Ω) the set of all clutters on Ω

For Λ ∈ Clutt(Ω), let

Λ+ = {B ⊆ Ω : B ⊇ A for some A ∈ Λ}
Λ− = {B ⊆ Ω : B ⊆ A for some A ∈ Λ}

Hence
Λ = minimal(Λ+) = maximal(Λ−)

Ex: for a matroid M, C(M)+ are the dependent sets and B(M)−

are the independent sets

Define the following two partial orders on Clutt(Ω)

Λ1 6+ Λ2 ⇐⇒ Λ+
1 ⊆ Λ+

2

⇐⇒ ∀ A ∈ Λ1 ∃ A′ ∈ Λ2 s.t. A ⊇ A′

Λ1 6− Λ2 ⇐⇒ Λ−1 ⊆ Λ−2
⇐⇒ ∀ A ∈ Λ1 ∃ A′ ∈ Λ2 s.t. A ⊆ A′
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Definitions: clutters

Ex: for matroids M1,M2

C(M1) 6+ C(M2)⇔ every circuit of M1 contains a circuit of M2

⇔ (M1 is above M2 in the weak order)

B(M1) 6− B(M2)⇔ every basis of M1 is contained in a basis of M2

⇔ (M1 is below M2 in the weak order)

(Note: B(M1) 6+ B(M2) can also be interpreted in terms of the
weak order, but C(M1) 6− C(M2) cannot)



Definitions: clutters

The clutter Λc is {Ω \ A : A ∈ Λ}

Lem Λ1 6+ Λ2 ⇔ Λc
1 6− Λc

2

The blocker of a clutter is

b(Λ) = minimal{B : B ∩ A 6= ∅ for all A ∈ Λ}

Lem Λ1 6+ Λ2 ⇔ b(Λ2) 6+ b(Λ1)

Facts:
B(M)c is the clutter of bases of a matroid M∗, called the dual
matroid of M
b(C(M)) = B(M∗)
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Answering our initial question

Given Λ ∈ Clutt(Ω):

I We want it close to a matroid clutter. Do we choose circuit
clutters or basis clutters? Let’s say we choose Σ ⊆ Clutt(Ω)

I Now, which order do we use to compare? 6+ or 6− ? Let’s
say we take order

I And we want our clutter Λ to be above or below with respect
to order? Let’s say we take side

Thm (Informal)
For any choice of order and side, there is a family of clutters
F ⊂ Clutt(Ω) such that:
If F ⊆ Σ, then there exist Λ1, . . . ,Λs in Σ that are closest to Λ
with respect to order and side. Moreover, Λ can be recovered
from Λ1, . . . ,Λs
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Decomposition theorems: in general

Thm Let Λ ∈ Clutt(Ω) and Σ ⊆ Clutt(Ω)
If for all S = {x1, . . . , xr} ⊆ Ω the clutter ΛS = {{x1}, . . . , {xr}}
belongs to Σ, then

(1) there exists some Λ′ ∈ Σ such that Λ 6+ Λ′

(2) if Λ1, . . . ,Λs ∈ Σ are the minimal clutters in (1) then
Λ = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}

Proof:
(1): clear, as Λ 6+ ΛΩ

(2): let Λ0 = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}
Λ 6+ Λ0: As Λ 6+ Λi , for all A ∈ Λ there is Ai ∈ Λi such that Ai ⊆ A

Λ0 6+ Λ: If not, there is A0 ∈ Λ0 such that for all A ∈ Λ, A 6⊆ A0

Consider the clutter Λ̃ = {{x} : x 6∈ A0}
As for all A ∈ Λ we have A \ A0 6= ∅, we deduce Λ 6+ Λ̃

By minimality, there is some k such that Λk 6+ Λ̃
As A0 = A1 ∪ · · · ∪As with Ai ∈ Λi , the set Ak ∈ Λk must
contain {x} for some x 6∈ A0, a contradiction



Decomposition theorems: in general

Thm Let Λ ∈ Clutt(Ω) and Σ ⊆ Clutt(Ω)
If for all S = {x1, . . . , xr} ⊆ Ω the clutter ΛS = {{x1}, . . . , {xr}}
belongs to Σ, then

(1) there exists some Λ′ ∈ Σ such that Λ 6+ Λ′

(2) if Λ1, . . . ,Λs ∈ Σ are the minimal clutters in (1) then
Λ = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}

Proof:

(1): clear, as Λ 6+ ΛΩ

(2): let Λ0 = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}
Λ 6+ Λ0: As Λ 6+ Λi , for all A ∈ Λ there is Ai ∈ Λi such that Ai ⊆ A

Λ0 6+ Λ: If not, there is A0 ∈ Λ0 such that for all A ∈ Λ, A 6⊆ A0

Consider the clutter Λ̃ = {{x} : x 6∈ A0}
As for all A ∈ Λ we have A \ A0 6= ∅, we deduce Λ 6+ Λ̃

By minimality, there is some k such that Λk 6+ Λ̃
As A0 = A1 ∪ · · · ∪As with Ai ∈ Λi , the set Ak ∈ Λk must
contain {x} for some x 6∈ A0, a contradiction



Decomposition theorems: in general

Thm Let Λ ∈ Clutt(Ω) and Σ ⊆ Clutt(Ω)
If for all S = {x1, . . . , xr} ⊆ Ω the clutter ΛS = {{x1}, . . . , {xr}}
belongs to Σ, then

(1) there exists some Λ′ ∈ Σ such that Λ 6+ Λ′

(2) if Λ1, . . . ,Λs ∈ Σ are the minimal clutters in (1) then
Λ = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}

Proof:
(1): clear, as Λ 6+ ΛΩ

(2): let Λ0 = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}
Λ 6+ Λ0: As Λ 6+ Λi , for all A ∈ Λ there is Ai ∈ Λi such that Ai ⊆ A

Λ0 6+ Λ: If not, there is A0 ∈ Λ0 such that for all A ∈ Λ, A 6⊆ A0

Consider the clutter Λ̃ = {{x} : x 6∈ A0}
As for all A ∈ Λ we have A \ A0 6= ∅, we deduce Λ 6+ Λ̃

By minimality, there is some k such that Λk 6+ Λ̃
As A0 = A1 ∪ · · · ∪As with Ai ∈ Λi , the set Ak ∈ Λk must
contain {x} for some x 6∈ A0, a contradiction



Decomposition theorems: in general

Thm Let Λ ∈ Clutt(Ω) and Σ ⊆ Clutt(Ω)
If for all S = {x1, . . . , xr} ⊆ Ω the clutter ΛS = {{x1}, . . . , {xr}}
belongs to Σ, then

(1) there exists some Λ′ ∈ Σ such that Λ 6+ Λ′

(2) if Λ1, . . . ,Λs ∈ Σ are the minimal clutters in (1) then
Λ = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}

Proof:
(1): clear, as Λ 6+ ΛΩ

(2): let Λ0 = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}

Λ 6+ Λ0: As Λ 6+ Λi , for all A ∈ Λ there is Ai ∈ Λi such that Ai ⊆ A

Λ0 6+ Λ: If not, there is A0 ∈ Λ0 such that for all A ∈ Λ, A 6⊆ A0

Consider the clutter Λ̃ = {{x} : x 6∈ A0}
As for all A ∈ Λ we have A \ A0 6= ∅, we deduce Λ 6+ Λ̃

By minimality, there is some k such that Λk 6+ Λ̃
As A0 = A1 ∪ · · · ∪As with Ai ∈ Λi , the set Ak ∈ Λk must
contain {x} for some x 6∈ A0, a contradiction



Decomposition theorems: in general

Thm Let Λ ∈ Clutt(Ω) and Σ ⊆ Clutt(Ω)
If for all S = {x1, . . . , xr} ⊆ Ω the clutter ΛS = {{x1}, . . . , {xr}}
belongs to Σ, then

(1) there exists some Λ′ ∈ Σ such that Λ 6+ Λ′

(2) if Λ1, . . . ,Λs ∈ Σ are the minimal clutters in (1) then
Λ = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}

Proof:
(1): clear, as Λ 6+ ΛΩ

(2): let Λ0 = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}
Λ 6+ Λ0: As Λ 6+ Λi , for all A ∈ Λ there is Ai ∈ Λi such that Ai ⊆ A

Λ0 6+ Λ: If not, there is A0 ∈ Λ0 such that for all A ∈ Λ, A 6⊆ A0

Consider the clutter Λ̃ = {{x} : x 6∈ A0}
As for all A ∈ Λ we have A \ A0 6= ∅, we deduce Λ 6+ Λ̃

By minimality, there is some k such that Λk 6+ Λ̃
As A0 = A1 ∪ · · · ∪As with Ai ∈ Λi , the set Ak ∈ Λk must
contain {x} for some x 6∈ A0, a contradiction



Decomposition theorems: in general

Thm Let Λ ∈ Clutt(Ω) and Σ ⊆ Clutt(Ω)
If for all S = {x1, . . . , xr} ⊆ Ω the clutter ΛS = {{x1}, . . . , {xr}}
belongs to Σ, then

(1) there exists some Λ′ ∈ Σ such that Λ 6+ Λ′

(2) if Λ1, . . . ,Λs ∈ Σ are the minimal clutters in (1) then
Λ = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}

Proof:
(1): clear, as Λ 6+ ΛΩ

(2): let Λ0 = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}
Λ 6+ Λ0: As Λ 6+ Λi , for all A ∈ Λ there is Ai ∈ Λi such that Ai ⊆ A

Λ0 6+ Λ: If not, there is A0 ∈ Λ0 such that for all A ∈ Λ, A 6⊆ A0

Consider the clutter Λ̃ = {{x} : x 6∈ A0}
As for all A ∈ Λ we have A \ A0 6= ∅, we deduce Λ 6+ Λ̃

By minimality, there is some k such that Λk 6+ Λ̃
As A0 = A1 ∪ · · · ∪As with Ai ∈ Λi , the set Ak ∈ Λk must
contain {x} for some x 6∈ A0, a contradiction



Decomposition theorems: in general

Thm Let Λ ∈ Clutt(Ω) and Σ ⊆ Clutt(Ω)
If for all S = {x1, . . . , xr} ⊆ Ω the clutter ΛS = {{x1}, . . . , {xr}}
belongs to Σ, then

(1) there exists some Λ′ ∈ Σ such that Λ 6+ Λ′

(2) if Λ1, . . . ,Λs ∈ Σ are the minimal clutters in (1) then
Λ = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}

Proof:
(1): clear, as Λ 6+ ΛΩ

(2): let Λ0 = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}
Λ 6+ Λ0: As Λ 6+ Λi , for all A ∈ Λ there is Ai ∈ Λi such that Ai ⊆ A

Λ0 6+ Λ: If not, there is A0 ∈ Λ0 such that for all A ∈ Λ, A 6⊆ A0

Consider the clutter Λ̃ = {{x} : x 6∈ A0}

As for all A ∈ Λ we have A \ A0 6= ∅, we deduce Λ 6+ Λ̃

By minimality, there is some k such that Λk 6+ Λ̃
As A0 = A1 ∪ · · · ∪As with Ai ∈ Λi , the set Ak ∈ Λk must
contain {x} for some x 6∈ A0, a contradiction



Decomposition theorems: in general

Thm Let Λ ∈ Clutt(Ω) and Σ ⊆ Clutt(Ω)
If for all S = {x1, . . . , xr} ⊆ Ω the clutter ΛS = {{x1}, . . . , {xr}}
belongs to Σ, then

(1) there exists some Λ′ ∈ Σ such that Λ 6+ Λ′

(2) if Λ1, . . . ,Λs ∈ Σ are the minimal clutters in (1) then
Λ = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}

Proof:
(1): clear, as Λ 6+ ΛΩ

(2): let Λ0 = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}
Λ 6+ Λ0: As Λ 6+ Λi , for all A ∈ Λ there is Ai ∈ Λi such that Ai ⊆ A

Λ0 6+ Λ: If not, there is A0 ∈ Λ0 such that for all A ∈ Λ, A 6⊆ A0

Consider the clutter Λ̃ = {{x} : x 6∈ A0}
As for all A ∈ Λ we have A \ A0 6= ∅, we deduce Λ 6+ Λ̃

By minimality, there is some k such that Λk 6+ Λ̃
As A0 = A1 ∪ · · · ∪As with Ai ∈ Λi , the set Ak ∈ Λk must
contain {x} for some x 6∈ A0, a contradiction



Decomposition theorems: in general

Thm Let Λ ∈ Clutt(Ω) and Σ ⊆ Clutt(Ω)
If for all S = {x1, . . . , xr} ⊆ Ω the clutter ΛS = {{x1}, . . . , {xr}}
belongs to Σ, then

(1) there exists some Λ′ ∈ Σ such that Λ 6+ Λ′

(2) if Λ1, . . . ,Λs ∈ Σ are the minimal clutters in (1) then
Λ = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}

Proof:
(1): clear, as Λ 6+ ΛΩ

(2): let Λ0 = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}
Λ 6+ Λ0: As Λ 6+ Λi , for all A ∈ Λ there is Ai ∈ Λi such that Ai ⊆ A

Λ0 6+ Λ: If not, there is A0 ∈ Λ0 such that for all A ∈ Λ, A 6⊆ A0

Consider the clutter Λ̃ = {{x} : x 6∈ A0}
As for all A ∈ Λ we have A \ A0 6= ∅, we deduce Λ 6+ Λ̃

By minimality, there is some k such that Λk 6+ Λ̃

As A0 = A1 ∪ · · · ∪As with Ai ∈ Λi , the set Ak ∈ Λk must
contain {x} for some x 6∈ A0, a contradiction
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Decomposition theorems: in general

For each choice of order and side, we have a “special family of
clutters” F and a decomposition formula

Thm

6+, above
F =

{
{{x1}, . . . , {xr}} : x1, . . . , xr ∈ Ω

}
Λ = minimal{A1 ∪ · · · ∪ As : Ai ∈ Λi}

6−, above
F = {{Ω \ x1, . . . ,Ω \ xr} : x1, . . . , xr ∈ Ω}
Λ = maximal{A1 ∩ · · · ∩ As : Ai ∈ Λi}

6+, below
F = {{x1 . . . xr} : x1, . . . , xr ∈ Ω}
Λ = minimal{A : A ∈ Λ1 ∪ · · · ∪ Λs}

6−, below
F = {{x1 . . . xr} : x1, . . . , xr ∈ Ω}
Λ = maximal{A : A ∈ Λ1 ∪ · · · ∪ Λs}



Decomposition theorems: matroids

Recall the “special families”:
F1 = {{{x1}, . . . , {xr}} : x1, . . . , xr ∈ Ω}
F2 = {{Ω \ x1, . . . ,Ω \ xr} : x1, . . . , xr ∈ Ω}
F3 = {{x1 . . . xr} : x1, . . . , xr ∈ Ω}

Lem All clutters in F1,F2,F3 are clutters of bases
F1: r elements in parallel
F2: a cycle on r elements
F3: a tree on r elements

Lem All clutters in F1,F3 are clutters of circuits, but F2 is not
F1: r loops
F3: a cycle on r elements
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Decomposition theorems: matroids

Obs: {Ω \ x1, . . . ,Ω \ xr} is not a clutter of circuits if r ≥ 2, as:
for e ∈ (Ω \ x1) ∩ (Ω \ x2), we have

(Ω \ x1 ∪ Ω \ x2) \ e = Ω \ e

so circuit-exchange does not hold for 2 ≤ r < |Ω|

This implies that the result does not hold if we are trying to
approximate by circuits using the order 6− and above

Ex: Λ = {1 2, 1 3}
We look for M such that Λ 6− C(M), that is, every subset of Λ is
contained in a circuit of M
Two options: C(M1) = {1 2 3} and C(M2) = {1 2, 1 3, 2 3}
As C(M2) 6− C(M1), there is only one clutter of circuits above Λ
in the order 6−

But Λ 6= C(M2), so there is no decomposition result
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Decomposition theorems: matroids

In summary, given Λ we can consider approximations for any
combination of

circuits / bases; 6+ / 6−; above / below

except: circuits, 6−, above

For each choice, the resulting closest clutters Λ1, . . . ,Λs are called
the completions of Λ

Now, how can we effectively compute these completions?

In principle we should consider 7 cases, but we will see that they
actually reduce to only 3
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Finding the completions: reductions

Recall:

Lem Λ1 6+ Λ2 ⇔ Λc
1 6− Λc

2

Λ1 6+ Λ2 ⇔ b(Λ2) 6+ b(Λ1)

Facts: B(M)c = B(M∗), b(C(M)) = B(M∗)

By combining blockers and complements, it is enough to solve one
of
(circuits, 6+, above), (bases, 6+, below), (bases, 6−,
below)

By combining blockers and complements, it is enough to solve one
of
(circuits, 6+, below), (bases, 6+, above), (bases, 6−,
above)
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Finding the completions: algorithms

We describe the case (circuits, 6+, above)
from Mart́ı-Farré 2014

For distinct A1,A2 ∈ Λ, define

IΛ(A1 ∪ A2) =
⋂

X∈Λ,X⊆A1∪A2

X

Fact: Λ is the clutter of circuits of some matroid if, and only if,
IΛ(A1 ∪ A2) = ∅ for all A1 6= A2 ∈ Λ
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Finding the completions: algorithms

We define three transformations of a clutter Λ

(α) take A1 6= A2 with IΛ(A1 ∪ A2) 6= ∅ and set

Λα = minimal(Λ ∪ {A1 ∩ A2})

(β) Λβ = minimal(Λ ∪ {(A1 ∪ A2) \ IΛ(A1 ∪ A2) : A1 6= A2 ∈ Λ})
(γ) Λγ = minimal(Λ∪{(A1 ∪A2) \ x : x ∈ A1 ∩A2,A1 6= A2 ∈ Λ})

Lem Λ 6+ Λα, Λ 6+ Λβ, Λ 6+ Λγ

Lem None of the transformations applied to Λ yields a different
clutter if and only if Λ is the clutter of circuits of some matroid
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Finding the completions: algorithms

Thm Let Λ′ be a completion of Λ for (circuits, 6+, above).
There is a finite sequence (i1, . . . , ik) ∈ {α, β, γ}k such that

Λ′ = Λi1,...,ik

So to obtain all completions, we apply the α, β, γ transformations
in all possible orders until no more applications are possible, and
take the minimal clutters thus generated

We have similar looking algorithms for (circuits, 6+, below)
and (circuits, 6−, below)
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Finding the completions: example

Λα = minimal(Λ ∪ {A1 ∩ A2}) if IΛ(A1 ∪ A2) 6= ∅
Λβ = minimal(Λ ∪ {(A1 ∪ A2) \ IΛ(A1 ∪ A2) : A1 6= A2 ∈ Λ})
Λγ = minimal(Λ ∪ {(A1 ∪ A2) \ x : x ∈ A1 ∩ A2,A1 6= A2 ∈ Λ})

Λ = {123, 124, 345}:

IΛ(123 ∪ 124) = {12}

Λα=minimal(123, 124, 345, 12) = {12, 345} = C(M1)

Λβ=minimal(123, 124, 345, 34) = {123, 124, 34} = C(M2)

Λγ=minimal(123, 124, 345, 234, 134, 1245, 1235)
= {123, 124, 345, 234, 134}

IΛγ (123 ∪ 124) = {12}, IΛγ (345 ∪ 234) = {34},
IΛγ (345 ∪ 134) = {34}

Λγ,α1=minimal(123, 124, 345, 234, 134, 12) = {12, 345, 234, 134}
As Λα 6+ Λγ,α1 , there is no need to continue from here
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Finding the completions: example

Hence, the smallest circuit clutters that are larger than
{123, 124, 345} with respect to the order 6+ are

Λ1 = {12, 345}
Λ2 = {123, 124, 34}
Λ3 = {123, 124, 345, 234, 134, 235, 245, 135, 145, 125}

We have also Λ = minimal(A1 ∪ A2 ∪ A3,Ai ∈ Λi )

But actually Λ = minimal(A1 ∪ A2,Ai ∈ Λi )

It does happen very often that not all the clutters of the
completion are needed for the decomposition to hold
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Other families of clutters

Let N be a class of matroids (as binary, graphic, transversal, . . .)

Define:

Σ(C,N ) = {C(M) : M ∈ N}
Σ(B,N ) = {B(M) : M ∈ N}

For each order and side, if Σ(C,N ) or Σ(B,N ) contain all
clutters in the corresponding “special family”, then we can
approximate any clutter Λ with matroids in the class N

Fact: for all “usual” classes of matroids, all combinations work
except (circuits, 6−, above)
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Other families of clutters: examples
With respect to (circuits, 6+, above)

I The matroid U2,4 with circuits {123, 124, 134, 234} has 6
binary completions:

{i1i2, i1i3i4, i2i3i4} for {i1, i2, i3, i4} = {1, 2, 3, 4}

I The non-Fano matroid has 9 completions in the class of
matroids representable over a field of characteristic 2
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To be done

I Improve the algorithms to compute completions

I Find algorithms to compute completions directly with respect
to bases

I Find algorithms to compute completions in subclasses of
matroids

I Study the relationship between the number of completions
and the number needed for the decomposition formula to work

I Study the behaviour of deletion and contraction

I Answer the question on mathoverflow.net

I Apply the results!


