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Young tableaux & Schensted’s algorithm
letA={1<2<3<..}andlet A, ={1<2<3<...<nhL

» Rows weakly increasing left to right.

101]3]4]4) I :

713 » Columns strictly increasing top to
5 bottom.

L= » Longer columns to the left.

Schensted’s algorithm To insert a € A into a tableau:
1. If adding a to the end of the top row gives a tableau, this is the
result.
2. Otherwise, let b the leftmost symbol of the top row such that
b > a. Replace b with a (‘bumping b’).
3. Recursively insert b into the tableau formed by all lower rows.
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Foraword u =ujuy - -uy € A*:
» Start with an empty tableau and insert u;, then uy, ..., finally u.

» Call the resulting tableau Ppjac(1t). For example,
Ppiac(2531613443) is the tableau above.



The plactic monoid
Schensted’s algorithm computes a tableau Ppjac(u) for u € A*.

Define u =piac v <= Pplac(u) = Ppiac(v).

Theorem (Knuth 1970)
The relation =5 is @ congruence on A*.

» plac = A*/=piac is the plactic monoid.
> plac,, = A;},/=plac is the plactic monoid of rank n.
Clearly,
plac, — plac, — ... — plac, — plac,,,; — ... — plac.
and

plac = | J plac,,.
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|dentities

» An identity is a formal equality u = v, where u,v € X*.
» A monoid M satisfies u = v if substituting any element of M for
each symbol in X gives an equality that holds in M.
For example,
» Any commutative monoid satisfies xy = yx.

» Any nilpotent group of class 2 satisfies xyzyx = yxzxy
[Neumann & Taylor 1963].

An identity is trivial if uw and v are the same word; otherwise
non-trivial.

> xy = xy is trivial.
» xy = yx and xyzyx = yxzxy are non-trivial.

Questions

» Does plac satisfy a non-trivial identity?
» Does each plac,, satisfy a non-trivial identity?



Chinese monoid

» The Chinese monoid is also defined by an insertion algorithm.

» The Chinese monoid is related to the plactic monoid by its
growth type.

» plac, is isomorphic to the Chinese monoid of rank 2.

Proposition (Jaszunska & Okninski)

The Chinese monoid embeds into a direct product of copies of the
bicyclic monoid and the infinite cyclic group.

Proposition (Adian)

The bicyclic monoid satisfies xyyxxyxyyx = xyyxyxxyyx (‘Adian’s
identity’).

Corollary

The Chinese monoid satisfies Adian’s identity.

Corollary
plac, satisfies Adian’s identity.



Identities for plac;
Adian’s identity xyyxxyxyyx = xyyxyxxyyx

Proposition (Kubat & Okninski)

plac; satisfies pqqpqp = pqpqqp, where p and q are the left and
right sides of Adian’s identity. plac; does not satisfy Adian’s identity.

» Use detailed calculations using normal forms.
Proposition (Izhakian)
plac; satisfies xyxy2x*yxyxyxy?x?y = xyxy*x>yyxxyxyx2y.

» Use a (complicated) representation in the monoid of 3 x 3
upper-triangular tropical matrices.

Proposition (C., Klein, Kubat, Malheiro, Okninski)
plac; satisfies pqppq = pqqpq, where p and q are left and right
sides of Adian’s identity.

» Use a (simpler) representation in the monoid of 3 x 3
upper-triangular tropical matrices.



Identities for plac and plac,,

Theorem (C., Klein, Kubat, Malheiro, Okninski)
plac does not satisfy any non-trivial identity.
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Identities for plac and plac,,

Theorem (C., Klein, Kubat, Malheiro, Okninski)
plac does not satisfy any non-trivial identity.

Proposition (CKKMO)

plac,, does not satisfy any non-trivial identity of length less than or
equal to n.

Theorem (Schensted 1961)
Number of columns in Pyg(u) = {Length of the longest weakly

increasing subsequence of u;

Length of the longest strictly

Number of rows in Ppiac(1) = {decreasing subsequence of u.



Proof that plac,, satisfies no identity of length at most n

Suppose plac,, satisfies u(x,y) = v(x,y) of length n.
Assume

U=ur - -w_1xXuUj4i---Un

V= ViV 1YVisic - Vn
Lets=12---n € A%,

t=12---n—j)n—j+2)---neA; (missoutn—j+1).

So the tableaux Ppiac (u(s, t)) and Ppiac(v(s, t)) are equal.
Longest decreasing subsequences:

Inu(s,t): Up U2 oo Uj—1 X U] ccc Up—7 Up
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Proof that plac,, satisfies no identity of length at most n

Suppose plac,, satisfies u(x,y) = v(x,y) of length n.

Assume
u:u1...uj71xuj+1...un

v:\)1...\;j_1y\)j+1...vn
Lets =12---ne A%,

t=12---n—j)n—j+2)---neA; (missoutn—j+1).
So the tableaux Ppiac (u(s, t)) and Ppiac(v(s, t)) are equal.
Longest decreasing subsequences:

n—j+1
perd b feisd @0
Inu(s,t): ur Uz e Uj—1 X w+1~~un11m
Inv(s,t): Vi V2 s Vi1 Y Vgl oo Vnol Vn
| | |
WeoT) @) moie2

n—j+1



Proof that plac,, satisfies no identity of length at most n

Suppose plac,, satisfies u(x,y) = v(x,y) of length n.

Assume
u:u1...uj71xuj+1...un

v:\)1...\;j_1y\)j+1...vn
Lets =12---ne A%,

t=12---n—j)n—j+2)---neA; (missoutn—j+1).
So the tableaux Ppiac (u(s, t)) and Ppiac(v(s, t)) are equal.
Longest decreasing subsequences:

n—j—H
perd b feisd @0
Inu(s,t): ur Uz e Uj—1 X uJ+1 cr Un—1 Un
Inv(s,t): Vi V2 s Vi1 Y Vgl oo Vnol Vn
| | |
WeoT @) @iz

n—j+1



‘Plactic-like’ monoids

A family of monoids whose elements can be viewed as combinatorial

objects:
Plactic monoid  Hypoplactic monoid Sylvester monoid
Young tableaux Quasi-ribbon tableaux Binary search trees
11203 (1] 990
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Taiga monoid Stalactite monoid Baxter monoid
BSTs with multiplicities  Stalactite tableaux Pairs of twin binary search trees
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Binary search trees and leaf insertion

Binary search tree
(BST):




Binary search trees and leaf insertion

Binary search tree To insert a into a BST T:

(BST): » Add a as a leaf node in the unique
position that yields a BST.
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Binary search trees and leaf insertion

Binary search tree To insert a into a BST T:
(BST): » Add a as a leaf node in the unique
0 position that yields a BST.
For a word u = wup_1 ---uq € A*.
» Start with an empty BST and insert uq, then uy, ..., finally uy.

» Call the resulting BST Pgy, (u). For example, Py, (214536154) is
the tree above.



The sylvester monoid
The insertion algorithm computes a tree Pgy, (u) for u € A*.
Define u =gy v <= Pgy (1) = Py (v).

Theorem (Hivert et al. 2005)
The relation =, is a congruence on A*.

> sylv = A%/=,y is the sylvester monoid.
> sylv, = A} /=gy is the sylvester monoid of rank n.



The sylvester monoid
The insertion algorithm computes a tree Pgy, (u) for u € A*.
Define u =gy v <= Pgy (1) = Py (v).

Theorem (Hivert et al. 2005)
The relation =, is a congruence on A*.

> sylv = A%/=,y is the sylvester monoid.
> sylv, = A} /=gy is the sylvester monoid of rank n.

Theorem (C., Malheiro)
sylv satisfies the identity xyxy = yxxy.
This is the unique shortest non-trivial identity satisfied by sylv.

» ‘unique’ up to renaming variables and swapping the two sides.



Idea of proof of identity for sylv

» Want to show that Py (stst) = Pgy(tsst) for all s, t € A*.

» Suffices to prove that Psyy (pr) = Psyiv(qr) for all p, g, 7 € A*,
where p, q, T contain the same number of each symbol.
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Quasi-ribbon tableaux & insertion
Quasi-ribbon tableau (QRT):
B
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To insert a symbol a into a
quasi-ribbon tableau T:

» Break the tableau two parts:
T is up to and including the
bottom-right-most symbol r
such that r < a; the
remainder is T-.

» Add a to the right of r.

» Attach T- to the bottom of a.
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» Start with an empty QRT and insert u;, then u,, ..., finally u,,.
» Call the resulting QRT Ppypo(u). For example, Phypo (15344723 )is
the QRT above.
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iandj are on the PN In u, some symbol i is to the
different rows of Ppypo (1) right of some symbol j
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The hypoplactic monoid
Define u =hypo V = Phypo(u) = Phypo(V)-
Theorem (Novelli 2000)
The relation =y, is @ congruence on A*.
» hypo = A*/=pypo is the hypoplactic monoid.
> hypo, = A}, /=nypo is the hypoplactic monoid of rank n.

Theorem (C., Malheiro)
hypo satisfies the identities

XYXY = XYyx = Yxxy = yxyx,
XXYX = XYXX.

These are the unique shortest non-trivial identities satisfied by hypo.

» A QRT is determined by the number of each symbol it contains
and which symbols are on the same rows.

» These are the length-4 identities where the two sides preserve
these properties.



Summary table

Monoid Symbol Identity In rankn
Plactic plac None ?
Hypoplactic hypo XYXYy = Yyxyx Y
Sylvester sylv XYXy = yxxy Y
Baxter baxt yxxyxy = yxyxxy Y
Stalactic stal XYX = Yxx Y
Taiga taig XYX = Yxx Y
Left patience sorting IPS None N
Right patience sorting rPS None Y
Question

Does plac,, satisfy a non-trivial identity for n > 4?

» Conjectured hierarchy of identities for plac,,, length 2 x 571,
» Lots of random examples checked in plac, using Sage.



