Identities in plactic, hypoplactic, sylvester, Baxter, and related monoids

Alan J. Cain

Centro de Matemática e Aplicações Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa

Joint work with various subsets of {António Malheiro (CMA), Georg Klein, Łukasz Kubat, Jan Okniński (Warsaw), Fábio Silva (Lisboa)}

Funded by UID/MAT/00297/2013 Funded by IF/01622/2013/CP1161/CT0001

Let $\mathcal{A} = \{1 < 2 < 3 < \ldots\}$ and let $\mathcal{A}_n = \{1 < 2 < 3 < \ldots < n\}.$

1	1	3	4	4
2	3	6		
5				

- Rows weakly increasing left to right.
- Columns strictly increasing top to bottom.
- Longer columns to the left.

Schensted's algorithm To insert $a \in A$ into a tableau:

- 1. If adding a to the end of the top row gives a tableau, this is the result.
- 2. Otherwise, let b the leftmost symbol of the top row such that b > a. Replace b with a ('bumping b').
- 3. Recursively insert b into the tableau formed by all lower rows.

- Start with an empty tableau and insert u_1 , then u_2, \ldots , finally u_k .
- Call the resulting tableau P_{plac}(u). For example, P_{plac}(2531613443) is the tableau above.

Let $\mathcal{A} = \{1 < 2 < 3 < ... \}$ and let $\mathcal{A}_n = \{1 < 2 < 3 < ... < n\}.$

1	1	3	4	4	$\leftarrow 3$
2	3	6			
5					

- Rows weakly increasing left to right.
- Columns strictly increasing top to bottom.
- Longer columns to the left.

Schensted's algorithm To insert $a \in A$ into a tableau:

- 1. If adding a to the end of the top row gives a tableau, this is the result.
- 2. Otherwise, let b the leftmost symbol of the top row such that b > a. Replace b with a ('bumping b').
- 3. Recursively insert b into the tableau formed by all lower rows.

- Start with an empty tableau and insert u_1 , then u_2, \ldots , finally u_k .
- Call the resulting tableau P_{plac}(u). For example, P_{plac}(2531613443) is the tableau above.

Let $\mathcal{A} = \{1 < 2 < 3 < ... \}$ and let $\mathcal{A}_n = \{1 < 2 < 3 < ... < n\}.$

1	1	3	3	4
2	3	6	~	- 4
5				

- Rows weakly increasing left to right.
- Columns strictly increasing top to bottom.
- Longer columns to the left.

Schensted's algorithm To insert $a \in A$ into a tableau:

- 1. If adding a to the end of the top row gives a tableau, this is the result.
- 2. Otherwise, let b the leftmost symbol of the top row such that b > a. Replace b with a ('bumping b').
- 3. Recursively insert b into the tableau formed by all lower rows.

- Start with an empty tableau and insert u_1 , then u_2, \ldots , finally u_k .
- Call the resulting tableau P_{plac}(u). For example, P_{plac}(2531613443) is the tableau above.

Let $\mathcal{A} = \{1 < 2 < 3 < \ldots\}$ and let $\mathcal{A}_n = \{1 < 2 < 3 < \ldots < n\}.$

1	1	3	3	4
2	3	4		
5	÷	- 6		

- Rows weakly increasing left to right.
- Columns strictly increasing top to bottom.
- Longer columns to the left.

Schensted's algorithm To insert $a \in A$ into a tableau:

- 1. If adding a to the end of the top row gives a tableau, this is the result.
- 2. Otherwise, let b the leftmost symbol of the top row such that b > a. Replace b with a ('bumping b').
- 3. Recursively insert b into the tableau formed by all lower rows.

- Start with an empty tableau and insert u_1 , then u_2, \ldots , finally u_k .
- Call the resulting tableau P_{plac}(u). For example, P_{plac}(2531613443) is the tableau above.

Let $\mathcal{A} = \{1 < 2 < 3 < ...\}$ and let $\mathcal{A}_n = \{1 < 2 < 3 < ... < n\}$.

1	1	3	3	4
2	3	4		
5	6			

- Rows weakly increasing left to right.
- Columns strictly increasing top to bottom.
- Longer columns to the left.

Schensted's algorithm To insert $a \in A$ into a tableau:

- 1. If adding a to the end of the top row gives a tableau, this is the result.
- 2. Otherwise, let b the leftmost symbol of the top row such that b > a. Replace b with a ('bumping b').
- 3. Recursively insert b into the tableau formed by all lower rows.

- Start with an empty tableau and insert u_1 , then u_2, \ldots , finally u_k .
- Call the resulting tableau P_{plac}(u). For example, P_{plac}(2531613443) is the tableau above.

Let $\mathcal{A} = \{1 < 2 < 3 < ...\}$ and let $\mathcal{A}_n = \{1 < 2 < 3 < ... < n\}$.

1	1	3	3	4
2	3	4		
5	6			

- Rows weakly increasing left to right.
- Columns strictly increasing top to bottom.
- Longer columns to the left.

Schensted's algorithm To insert $a \in A$ into a tableau:

- 1. If adding a to the end of the top row gives a tableau, this is the result.
- 2. Otherwise, let b the leftmost symbol of the top row such that b > a. Replace b with a ('bumping b').
- 3. Recursively insert b into the tableau formed by all lower rows.

- Start with an empty tableau and insert u_1 , then u_2, \ldots , finally u_k .
- ► Call the resulting tableau P_{plac}(u). For example, P_{plac}(2531613443) is the tableau above.

The plactic monoid

Schensted's algorithm computes a tableau $P_{\text{plac}}(u)$ for $u\in \mathcal{A}^*.$

 $\text{Define } \mathfrak{u} \equiv_{\text{plac}} \nu \iff \text{P}_{\text{plac}}(\mathfrak{u}) = \text{P}_{\text{plac}}(\nu).$

Theorem (Knuth 1970)

The relation \equiv_{plac} is a congruence on \mathcal{A}^* .

- plac = $\mathcal{A}^* / \equiv_{plac}$ is the plactic monoid.
- ▶ $plac_n = A_n^* / \equiv_{plac}$ is the plactic monoid of rank n.

Clearly,

and

$$\mathsf{plac}_1 \hookrightarrow \mathsf{plac}_2 \hookrightarrow \ldots \hookrightarrow \mathsf{plac}_n \hookrightarrow \mathsf{plac}_{n+1} \hookrightarrow \ldots \hookrightarrow \mathsf{plac}.$$

$$\mathsf{plac} = \bigcup_{n \in \mathbb{N}} \mathsf{plac}_n.$$

Identities

- An identity is a formal equality u = v, where $u, v \in X^*$.
- ► A monoid M satisfies u = v if substituting any element of M for each symbol in X gives an equality that holds in M.

For example,

- Any commutative monoid satisfies xy = yx.
- Any nilpotent group of class 2 satisfies xyzyx = yxzxy [Neumann & Taylor 1963].

An identity is trivial if u and v are the same word; otherwise non-trivial.

- xy = xy is trivial.
- xy = yx and xyzyx = yxzxy are non-trivial.

Questions

- Does plac satisfy a non-trivial identity?
- Does each plac_n satisfy a non-trivial identity?

Chinese monoid

- The Chinese monoid is also defined by an insertion algorithm.
- The Chinese monoid is related to the plactic monoid by its growth type.
- plac₂ is isomorphic to the Chinese monoid of rank 2.

Proposition (Jaszuńska & Okniński)

The Chinese monoid embeds into a direct product of copies of the bicyclic monoid and the infinite cyclic group.

Proposition (Adian)

The bicyclic monoid satisfies xyyxxyxyx = xyyxyxxyyx ('Adian's identity').

Corollary

The Chinese monoid satisfies Adian's identity.

Corollary

plac₂ satisfies Adian's identity.

Identities for plac₃

Adian's identity xyyxyyx = xyyxyxyyx

Proposition (Kubat & Okniński)

 $plac_3$ satisfies pqqpqp = pqpqqp, where p and q are the left and right sides of Adian's identity. $plac_3$ does not satisfy Adian's identity.

Use detailed calculations using normal forms.

Proposition (Izhakian)

 $\mathsf{plac}_3 \text{ satisfies } xyxy^2x^2yxyxyxy^2x^2y = xyxy^2x^2yyxxyxy^2x^2y.$

► Use a (complicated) representation in the monoid of 3 × 3 upper-triangular tropical matrices.

Proposition (C., Klein, Kubat, Malheiro, Okniński)

 $plac_3$ satisfies pqppq = pqqpq, where p and q are left and right sides of Adian's identity.

► Use a (simpler) representation in the monoid of 3 × 3 upper-triangular tropical matrices.

Identities for plac and $plac_n$

Theorem (C., Klein, Kubat, Malheiro, Okniński) plac does not satisfy any non-trivial identity.

Proposition (CKKMO)

 plac_n does not satisfy any non-trivial identity of length less than or equal to n.

Theorem (Schensted 1961)	
Number of columns in $\textbf{P}_{\text{plac}}(u) =$	$ \begin{cases} \text{Length of the longest weakly} \\ \text{increasing subsequence of } \mathfrak{u}; \end{cases} $
Number of rows in $P_{plac}(\mathfrak{u}) =$	$ \left\{ \begin{array}{l} \text{Length of the longest strictly} \\ \text{decreasing subsequence of } u. \end{array} \right. $

Identities for plac and $plac_n$

Theorem (C., Klein, Kubat, Malheiro, Okniński) plac does not satisfy any non-trivial identity.

Proposition (CKKMO)

 $\text{plac}_{\mathfrak{n}}$ does not satisfy any non-trivial identity of length less than or equal to $\mathfrak{n}.$

 $\begin{array}{l} \mbox{Theorem (Schensted 1961)} \\ \mbox{Number of columns in } P_{plac}(\mathfrak{u}) = \begin{cases} \mbox{Length of the longest weakly} \\ \mbox{increasing subsequence of } \mathfrak{u}; \end{cases} \\ \mbox{Number of rows in } P_{plac}(\mathfrak{u}) = \begin{cases} \mbox{Length of the longest strictly} \\ \mbox{decreasing subsequence of } \mathfrak{u}. \end{cases} \end{array}$

Identities for plac and $plac_n$

Theorem (C., Klein, Kubat, Malheiro, Okniński) plac does not satisfy any non-trivial identity.

Proposition (CKKMO)

 plac_n does not satisfy any non-trivial identity of length less than or equal to n.

Theorem (Schensted 1961)	
Number of columns in $P_{plac}(u) = \langle v \rangle$	(Length of the longest weakly (increasing subsequence of u;
Number of rows in $P_{plac}(\mathfrak{u}) = \langle$	Length of the longest strictly decreasing subsequence of \mathfrak{u} .

Suppose plac_n satisfies u(x, y) = v(x, y) of length n. Assume

$$u = u_1 \cdots u_{j-1} x u_{j+1} \cdots u_n$$
$$v = v_1 \cdots v_{j-1} y v_{j+1} \cdots v_n$$

Let $s=12\cdots n\in \mathcal{A}_n^*,$ $t=12\cdots (n-j)(n-j+2)\cdots n\in \mathcal{A}_n^* \quad (\text{miss out } n-j+1).$ So the tableaux $\mathsf{P}_{\mathsf{plac}}\big(\mathfrak{u}(s,t)\big)$ and $\mathsf{P}_{\mathsf{plac}}\big(\nu(s,t)\big)$ are equal. Longest decreasing subsequences:

 $\ln \mathfrak{u}(s,t): \quad \mathfrak{u}_1 \quad \mathfrak{u}_2 \quad \cdots \quad \mathfrak{u}_{j-1} \quad x \quad \mathfrak{u}_{j+1} \quad \cdots \quad \mathfrak{u}_{n-1} \quad \mathfrak{u}_n$

Suppose plac_n satisfies u(x, y) = v(x, y) of length n. Assume

$$u = u_1 \cdots u_{j-1} x u_{j+1} \cdots u_n$$
$$v = v_1 \cdots v_{j-1} y v_{j+1} \cdots v_n$$

Let $s=12\cdots n\in \mathcal{A}_n^*,$ $t=12\cdots (n-j)(n-j+2)\cdots n\in \mathcal{A}_n^* \quad (\text{miss out } n-j+1).$ So the tableaux $\mathsf{P}_{\mathsf{plac}}\big(u(s,t)\big)$ and $\mathsf{P}_{\mathsf{plac}}\big(\nu(s,t)\big)$ are equal. Longest decreasing subsequences:

$$\begin{array}{c|c} & \underbrace{\mathfrak{n}-j+1}_{| & | & \mathbf{n}-j} & \underbrace{\mathfrak{n}-j+1}_{| & | & \mathbf{n}-j+2} & \underbrace{2}_{| & | & |}_{| & | & |} \\ \text{In } \mathfrak{u}(s,t) \text{:} & \mathfrak{u}_1 & \mathfrak{u}_2 & \cdots & \mathfrak{u}_{j-1} & x & \mathfrak{u}_{j+1} & \cdots & \mathfrak{u}_{n-1} & \mathfrak{u}_n \end{array}$$

Suppose plac_n satisfies u(x, y) = v(x, y) of length n. Assume

$$u = u_1 \cdots u_{j-1} x u_{j+1} \cdots u_n$$
$$v = v_1 \cdots v_{j-1} y v_{j+1} \cdots v_n$$

Let $s=12\cdots n\in \mathcal{A}_n^*,$ $t=12\cdots (n-j)(n-j+2)\cdots n\in \mathcal{A}_n^* \quad (\text{miss out } n-j+1).$ So the tableaux $\mathsf{P}_{\mathsf{plac}}\big(\mathfrak{u}(s,t)\big)$ and $\mathsf{P}_{\mathsf{plac}}\big(\nu(s,t)\big)$ are equal. Longest decreasing subsequences:

Suppose plac_n satisfies u(x, y) = v(x, y) of length n. Assume

$$u = u_1 \cdots u_{j-1} x u_{j+1} \cdots u_n$$
$$v = v_1 \cdots v_{j-1} y v_{j+1} \cdots v_n$$

Let $s=12\cdots n\in \mathcal{A}_n^*,$ $t=12\cdots (n-j)(n-j+2)\cdots n\in \mathcal{A}_n^* \quad (\text{miss out } n-j+1).$ So the tableaux $\mathsf{P}_{\mathsf{plac}}\big(\mathfrak{u}(s,t)\big)$ and $\mathsf{P}_{\mathsf{plac}}\big(\nu(s,t)\big)$ are equal. Longest decreasing subsequences:

Suppose plac_n satisfies u(x, y) = v(x, y) of length n. Assume

$$u = u_1 \cdots u_{j-1} x u_{j+1} \cdots u_n$$
$$v = v_1 \cdots v_{j-1} y v_{j+1} \cdots v_n$$

Let $s=12\cdots n\in \mathcal{A}_n^*,$ $t=12\cdots (n-j)(n-j+2)\cdots n\in \mathcal{A}_n^* \quad (\text{miss out } n-j+1).$ So the tableaux $\mathsf{P}_{\mathsf{plac}}\big(\mathfrak{u}(s,t)\big)$ and $\mathsf{P}_{\mathsf{plac}}\big(\nu(s,t)\big)$ are equal. Longest decreasing subsequences:

'Plactic-like' monoids

A family of monoids whose elements can be viewed as combinatorial objects:

Plactic monoid Young tableaux Hypoplactic monoid Quasi-ribbon tableaux

Sylvester monoid Binary search trees

Taiga monoid BSTs with multiplicities

Stalactite monoid Stalactite tableaux

1	2	4	3	
1	2		3	
	2		3	

Baxter monoid Pairs of twin binary search trees

Binary search tree (BST):

To insert α into a BST T:

Add a as a leaf node in the unique position that yields a BST.

- Start with an empty BST and insert u_1 , then u_2, \ldots , finally u_k .
- ► Call the resulting BST P_{sylv}(u). For example, P_{sylv}(214536154) is the tree above.

Binary search tree (BST):

To insert α into a BST T:

 Add a as a leaf node in the unique position that yields a BST.

- Start with an empty BST and insert u_1 , then u_2, \ldots , finally u_k .
- ► Call the resulting BST P_{sylv}(u). For example, P_{sylv}(214536154) is the tree above.

Binary search tree (BST):

To insert α into a BST T:

 Add a as a leaf node in the unique position that yields a BST.

- Start with an empty BST and insert u_1 , then u_2, \ldots , finally u_k .
- ► Call the resulting BST P_{sylv}(u). For example, P_{sylv}(214536154) is the tree above.

Binary search tree (BST):

To insert a into a BST T:

 Add a as a leaf node in the unique position that yields a BST.

- Start with an empty BST and insert u_1 , then u_2, \ldots , finally u_k .
- Call the resulting BST P_{sylv}(u). For example, P_{sylv}(214536154) is the tree above.

The sylvester monoid

The insertion algorithm computes a tree $P_{sylv}(u)$ for $u \in \mathcal{A}^*$.

$$\text{Define } \mathfrak{u} \equiv_{\text{sylv}} \nu \iff \text{P}_{\text{sylv}}(\mathfrak{u}) = \text{P}_{\text{sylv}}(\nu).$$

Theorem (Hivert et al. 2005)

The relation \equiv_{sylv} is a congruence on \mathcal{A}^* .

- sylv = $\mathcal{A}^* / \equiv_{sylv}$ is the sylvester monoid.
- ► $sylv_n = A_n^* / \equiv_{sylv}$ is the sylvester monoid of rank n.

Theorem (C., Malheiro)

sylv satisfies the identity xyxy = yxxy. This is the unique shortest non-trivial identity satisfied by sylv.

• 'unique' up to renaming variables and swapping the two sides.

The sylvester monoid

The insertion algorithm computes a tree $P_{sylv}(u)$ for $u \in \mathcal{A}^*$.

$$\text{Define } \mathfrak{u} \equiv_{\text{sylv}} \nu \iff \text{P}_{\text{sylv}}(\mathfrak{u}) = \text{P}_{\text{sylv}}(\nu).$$

Theorem (Hivert et al. 2005)

The relation \equiv_{sylv} is a congruence on \mathcal{A}^* .

- sylv = $\mathcal{A}^* / \equiv_{sylv}$ is the sylvester monoid.
- ► $sylv_n = A_n^* / \equiv_{sylv}$ is the sylvester monoid of rank n.

Theorem (C., Malheiro)

sylv satisfies the identity xyxy = yxxy. This is the unique shortest non-trivial identity satisfied by sylv.

• 'unique' up to renaming variables and swapping the two sides.

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- ► Suffices to prove that $P_{sylv}(pr) = P_{sylv}(qr)$ for all $p, q, r \in A^*$, where p, q, r contain the same number of each symbol.

 $P_{sylv}(22853671 \quad 37618225) =$

 $P_{sylv}(67125832 \quad 37618225) =$

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

5

5

 $P_{sylv}(22853671 \quad 37618225) =$

$P_{sylv}(67125832 \quad 37618225) =$

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

- ▶ Want to show that $P_{sylv}(stst) = P_{sylv}(tsst)$ for all $s, t \in A^*$.
- Suffices to prove that P_{sylv}(pr) = P_{sylv}(qr) for all p, q, r ∈ A*, where p, q, r contain the same number of each symbol.

Quasi-ribbon tableau (QRT):

To insert a symbol α into a quasi-ribbon tableau T:

- ▶ Break the tableau two parts: T_{\leq} is up to and including the bottom-right-most symbol r such that $r \leq a$; the remainder is $T_>$.
- Add α to the right of r.
- Attach $T_>$ to the bottom of a.

For a word $\mathfrak{u} = \mathfrak{u}_1\mathfrak{u}_2\cdots\mathfrak{u}_n \in \mathcal{A}^*$.

- Start with an empty QRT and insert u_1 , then u_2, \ldots , finally u_n .
- ► Call the resulting QRT P_{hypo}(u). For example, P_{hypo}(15344723)is the QRT above.

Lemma

If i < j are symbols in u and there is no k in u with i < k < j, then:

i and j are on the different rows of $P_{hypo}(u) \iff$ In u, some symbol i is to the right of some symbol j

Quasi-ribbon tableau (QRT):

To insert a symbol a into a quasi-ribbon tableau T:

- Break the tableau two parts: T_{\leqslant} is up to and including the bottom-right-most symbol r such that $r \leqslant a$; the remainder is $T_>$.
- Add a to the right of r.
- Attach $T_>$ to the bottom of a.

For a word $u = u_1 u_2 \cdots u_n \in \mathcal{A}^*$.

- Start with an empty QRT and insert u_1 , then u_2, \ldots , finally u_n .
- ► Call the resulting QRT P_{hypo}(u). For example, P_{hypo}(15344723)is the QRT above.

Lemma

If i < j are symbols in u and there is no k in u with i < k < j, then:

i and j are on the different rows of $\mathsf{P}_{\mathsf{hypo}}(\mathfrak{u}) \iff$ In \mathfrak{u} , some symbol i is to the right of some symbol j

Quasi-ribbon tableau (QRT):

To insert a symbol a into a quasi-ribbon tableau T:

- ▶ Break the tableau two parts: T_{\leq} is up to and including the bottom-right-most symbol r such that $r \leq a$; the remainder is $T_>$.
- Add a to the right of r.
- Attach $T_>$ to the bottom of a.

For a word $u = u_1 u_2 \cdots u_n \in \mathcal{A}^*$.

- Start with an empty QRT and insert u_1 , then u_2, \ldots , finally u_n .
- ► Call the resulting QRT P_{hypo}(u). For example, P_{hypo}(15344723)is the QRT above.

Lemma

If i < j are symbols in u and there is no k in u with i < k < j, then:

i and j are on the different rows of $P_{hypo}(u) \iff$ In u, some symbol i is to the right of some symbol j

Quasi-ribbon tableau (QRT):

To insert a symbol a into a quasi-ribbon tableau T:

- Break the tableau two parts: T_≤ is up to and including the bottom-right-most symbol r such that r ≤ a; the remainder is T_>.
- Add a to the right of r.
- Attach $T_>$ to the bottom of a.

For a word $u = u_1 u_2 \cdots u_n \in \mathcal{A}^*$.

- Start with an empty QRT and insert u_1 , then u_2, \ldots , finally u_n .
- ► Call the resulting QRT P_{hypo}(u). For example, P_{hypo}(15344723)is the QRT above.

Lemma

If i < j are symbols in u and there is no k in u with i < k < j, then:

i and j are on the different rows of $P_{hypo}(u) \iff$ In u, some symbol i is to the right of some symbol j

Quasi-ribbon tableau (QRT):

To insert a symbol a into a quasi-ribbon tableau T:

- Break the tableau two parts: T_≤ is up to and including the bottom-right-most symbol r such that r ≤ a; the remainder is T_>.
- Add a to the right of r.
- Attach $T_>$ to the bottom of a.

For a word $u = u_1 u_2 \cdots u_n \in \mathcal{A}^*$.

- Start with an empty QRT and insert u_1 , then u_2 , ..., finally u_n .
- ► Call the resulting QRT P_{hypo}(u). For example, P_{hypo}(15344723)is the QRT above.

Lemma

If i < j are symbols in u and there is no k in u with i < k < j, then:

i and j are on the different rows of $\mathsf{P}_{\mathsf{hypo}}(\mathfrak{u}) \iff$ In \mathfrak{u} , some symbol i is to the right of some symbol j

Quasi-ribbon tableau (QRT):

To insert a symbol a into a quasi-ribbon tableau T:

- Break the tableau two parts: T_≤ is up to and including the bottom-right-most symbol r such that r ≤ a; the remainder is T_>.
- Add a to the right of r.
- Attach $T_>$ to the bottom of a.

For a word $u = u_1 u_2 \cdots u_n \in \mathcal{A}^*$.

- Start with an empty QRT and insert u_1 , then u_2, \ldots , finally u_n .
- Call the resulting QRT P_{hypo}(u). For example, P_{hypo}(15344723)is the QRT above.

Lemma

If i < j are symbols in u and there is no k in u with i < k < j, then:

i and j are on the lifterent rows of $P_{hypo}(u) \iff$ ln u, some symbol i is to the right of some symbol j

Quasi-ribbon tableau (QRT):

To insert a symbol a into a quasi-ribbon tableau T:

- Break the tableau two parts: T_≤ is up to and including the bottom-right-most symbol r such that r ≤ a; the remainder is T_>.
- Add a to the right of r.
- Attach $T_>$ to the bottom of a.

For a word $u = u_1 u_2 \cdots u_n \in \mathcal{A}^*$.

- Start with an empty QRT and insert u_1 , then u_2, \ldots , finally u_n .
- Call the resulting QRT P_{hypo}(u). For example, P_{hypo}(15344723)is the QRT above.

Lemma

If i < j are symbols in u and there is no k in u with i < k < j, then:

i and j are on the different rows of $P_{hypo}(u) \iff$ In u, some symbol i is to the right of some symbol j

Quasi-ribbon tableau (QRT):

To insert a symbol a into a quasi-ribbon tableau T:

- Break the tableau two parts: T_≤ is up to and including the bottom-right-most symbol r such that r ≤ a; the remainder is T_>.
- Add a to the right of r.
- Attach $T_>$ to the bottom of a.

For a word $u = u_1 u_2 \cdots u_n \in \mathcal{A}^*$.

- Start with an empty QRT and insert u_1 , then u_2, \ldots , finally u_n .
- Call the resulting QRT P_{hypo}(u). For example, P_{hypo}(15344723)is the QRT above.

Lemma

If i < j are symbols in u and there is no k in u with i < k < j, then:

 $\begin{array}{c} i \text{ and } j \text{ are on the} \\ \text{different rows of } \mathsf{P}_{\mathsf{hypo}}(\mathfrak{u}) & \longleftrightarrow \\ \text{ right of some symbol } j \end{array}$

Quasi-ribbon tableau (QRT):

To insert a symbol a into a quasi-ribbon tableau T:

- Break the tableau two parts: T_{\leqslant} is up to and including the bottom-right-most symbol r such that $r \leqslant a$; the remainder is $T_>$.
- Add a to the right of r.
- Attach $T_>$ to the bottom of a.

For a word $u = u_1 u_2 \cdots u_n \in \mathcal{A}^*$.

- Start with an empty QRT and insert u_1 , then u_2, \ldots , finally u_n .
- Call the resulting QRT P_{hypo}(u). For example, P_{hypo}(15344723)is the QRT above.

Lemma

If i < j are symbols in u and there is no k in u with i < k < j, then:

 $\begin{array}{c} i \text{ and } j \text{ are on the} \\ \text{different rows of } \mathsf{P}_{\mathsf{hypo}}(\mathfrak{u}) & \longleftrightarrow \\ \text{ right of some symbol } j \end{array}$

The hypoplactic monoid

$$\text{Define } u \equiv_{\text{hypo}} \nu \iff \text{P}_{\text{hypo}}(u) = \text{P}_{\text{hypo}}(\nu).$$

Theorem (Novelli 2000)

The relation \equiv_{hypo} is a congruence on A^* .

- hypo = $\mathcal{A}^* / \equiv_{\text{hypo}}$ is the hypoplactic monoid.
- ▶ hypo_n = A_n^* / \equiv_{hypo} is the hypoplactic monoid of rank n.

Theorem (C., Malheiro)

hypo satisfies the identities

$$xyxy = xyyx = yxxy = yxyx;$$

 $xxyx = xyxx.$

These are the unique shortest non-trivial identities satisfied by hypo.

- A QRT is determined by the number of each symbol it contains and which symbols are on the same rows.
- These are the length-4 identities where the two sides preserve these properties.

Summary table

Monoid	Symbol	Identity	<i>In rank</i> n
Plactic	plac	None	?
Hypoplactic	hypo	xyxy = yxyx	Y
Sylvester	sylv	xyxy = yxxy	Y
Baxter	baxt	yxxyxy = yxyxx	y Y
Stalactic	stal	xyx = yxx	Y
Taiga	taig	xyx = yxx	Y
Left patience sorting	IPS	None	Ν
Right patience sorting	rPS	None	Y

Question

Does $plac_n$ satisfy a non-trivial identity for $n \ge 4$?

- Conjectured hierarchy of identities for $plac_n$, $length 2 \times 5^{n-1}$.
- ► Lots of random examples checked in plac₄ using Sage.