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Young tableaux & Schensted’s algorithm
Let A = {1 < 2 < 3 < . . .} and let An = {1 < 2 < 3 < . . . < n}.

1 1 3 4 4

2 3 6

5

I Rows weakly increasing left to right.
I Columns strictly increasing top to

bottom.
I Longer columns to the left.

Schensted’s algorithm To insert a ∈ A into a tableau:
1. If adding a to the end of the top row gives a tableau, this is the

result.
2. Otherwise, let b the leftmost symbol of the top row such that

b > a. Replace b with a (‘bumping b’).
3. Recursively insert b into the tableau formed by all lower rows.

For a word u = u1u2 · · ·uk ∈ A∗:
I Start with an empty tableau and insert u1, then u2, . . . , finally uk.
I Call the resulting tableau Pplac(u). For example,

Pplac(2531613443) is the tableau above.
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The plactic monoid
Schensted’s algorithm computes a tableau Pplac(u) for u ∈ A∗.

Define u ≡plac v ⇐⇒ Pplac(u) = Pplac(v).

Theorem (Knuth 1970)
The relation ≡plac is a congruence on A∗.

I plac = A∗/≡plac is the plactic monoid.
I placn = A∗n/≡plac is the plactic monoid of rank n.

Clearly,

plac1 ↪→ plac2 ↪→ . . . ↪→ placn ↪→ placn+1 ↪→ . . . ↪→ plac.

and
plac =

⋃
n∈N

placn.



Identities
I An identity is a formal equality u = v, where u, v ∈ X∗.
I A monoid M satisfies u = v if substituting any element of M for

each symbol in X gives an equality that holds in M.

For example,
I Any commutative monoid satisfies xy = yx.
I Any nilpotent group of class 2 satisfies xyzyx = yxzxy

[Neumann & Taylor 1963].
An identity is trivial if u and v are the same word; otherwise
non-trivial.

I xy = xy is trivial.
I xy = yx and xyzyx = yxzxy are non-trivial.

Questions
I Does plac satisfy a non-trivial identity?
I Does each placn satisfy a non-trivial identity?



Chinese monoid
I The Chinese monoid is also defined by an insertion algorithm.
I The Chinese monoid is related to the plactic monoid by its

growth type.
I plac2 is isomorphic to the Chinese monoid of rank 2.

Proposition (Jaszuńska & Okniński)
The Chinese monoid embeds into a direct product of copies of the
bicyclic monoid and the infinite cyclic group.

Proposition (Adian)
The bicyclic monoid satisfies xyyxxyxyyx = xyyxyxxyyx (‘Adian’s
identity’).

Corollary
The Chinese monoid satisfies Adian’s identity.

Corollary
plac2 satisfies Adian’s identity.



Identities for plac3
Adian’s identity xyyxxyxyyx = xyyxyxxyyx

Proposition (Kubat & Okniński)
plac3 satisfies pqqpqp = pqpqqp, where p and q are the left and
right sides of Adian’s identity. plac3 does not satisfy Adian’s identity.

I Use detailed calculations using normal forms.

Proposition (Izhakian)
plac3 satisfies xyxy2x2yxyxyxy2x2y = xyxy2x2yyxxyxy2x2y.

I Use a (complicated) representation in the monoid of 3× 3
upper-triangular tropical matrices.

Proposition (C., Klein, Kubat, Malheiro, Okniński)
plac3 satisfies pqppq = pqqpq, where p and q are left and right
sides of Adian’s identity.

I Use a (simpler) representation in the monoid of 3× 3
upper-triangular tropical matrices.



Identities for plac and placn
Theorem (C., Klein, Kubat, Malheiro, Okniński)
plac does not satisfy any non-trivial identity.

Proposition (CKKMO)
placn does not satisfy any non-trivial identity of length less than or
equal to n.

Theorem (Schensted 1961)
Number of columns in Pplac(u) =

{
Length of the longest weakly
increasing subsequence of u;

Number of rows in Pplac(u) =

{
Length of the longest strictly
decreasing subsequence of u.
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Proof that placn satisfies no identity of length at most n
Suppose placn satisfies u(x, y) = v(x, y) of length n.
Assume

u = u1· · ·uj−1xuj+1· · ·un

v = v1 · · · vj−1yvj+1 · · · vn

Let s = 12 · · ·n ∈ A∗n,
t = 12 · · · (n− j)(n− j+ 2) · · ·n ∈ A∗n (miss out n− j+ 1).

So the tableaux Pplac
(
u(s, t)

)
and Pplac

(
v(s, t)

)
are equal.

Longest decreasing subsequences:

In u(s, t): u1 u2 · · · uj−1 x uj+1 · · · un−1 un
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‘Plactic-like’ monoids
A family of monoids whose elements can be viewed as combinatorial
objects:

Plactic monoid Hypoplactic monoid Sylvester monoid
Young tableaux Quasi-ribbon tableaux Binary search trees
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Taiga monoid Stalactite monoid Baxter monoid
BSTs with multiplicities Stalactite tableaux Pairs of twin binary search trees

32

23

12

61

51 73

81

1 2 4 3

1 2 3

2 3


3

2

1

1 2

3

4
,

3

1

2

1 2

3

4





Binary search trees and leaf insertion
Binary search tree
(BST):

4

1

1 3

4

5

5 6

To insert a into a BST T :
I Add a as a leaf node in the unique

position that yields a BST.

For a word u = ukuk−1 · · ·u1 ∈ A∗.
I Start with an empty BST and insert u1, then u2, . . . , finally uk.
I Call the resulting BST Psylv(u). For example, Psylv(214536154) is

the tree above.
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The sylvester monoid
The insertion algorithm computes a tree Psylv(u) for u ∈ A∗.

Define u ≡sylv v ⇐⇒ Psylv(u) = Psylv(v).

Theorem (Hivert et al. 2005)
The relation ≡sylv is a congruence on A∗.

I sylv = A∗/≡sylv is the sylvester monoid.
I sylvn = A∗n/≡sylv is the sylvester monoid of rank n.

Theorem (C., Malheiro)
sylv satisfies the identity xyxy = yxxy.
This is the unique shortest non-trivial identity satisfied by sylv.

I ‘unique’ up to renaming variables and swapping the two sides.
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Idea of proof of identity for sylv
I Want to show that Psylv(stst) = Psylv(tsst) for all s, t ∈ A∗.
I Suffices to prove that Psylv(pr) = Psylv(qr) for all p, q, r ∈ A∗,

where p, q, r contain the same number of each symbol.
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Quasi-ribbon tableaux & insertion
Quasi-ribbon tableau (QRT):

1 2

3 4 4

5 7

To insert a symbol a into a
quasi-ribbon tableau T :

I Break the tableau two parts:
T6 is up to and including the
bottom-right-most symbol r
such that r 6 a; the
remainder is T>.

I Add a to the right of r.
I Attach T> to the bottom of a.

For a word u = u1u2 · · ·un ∈ A∗.
I Start with an empty QRT and insert u1, then u2, . . . , finally un.
I Call the resulting QRT Phypo(u). For example, Phypo(15344723)is

the QRT above.

Lemma
If i < j are symbols in u and there is no k in u with i < k < j, then:

i and j are on the
different rows of Phypo(u)

⇐⇒ In u, some symbol i is to the
right of some symbol j
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The hypoplactic monoid
Define u ≡hypo v ⇐⇒ Phypo(u) = Phypo(v).

Theorem (Novelli 2000)
The relation ≡hypo is a congruence on A∗.

I hypo = A∗/≡hypo is the hypoplactic monoid.
I hypon = A∗n/≡hypo is the hypoplactic monoid of rank n.

Theorem (C., Malheiro)
hypo satisfies the identities

xyxy = xyyx = yxxy = yxyx;
xxyx = xyxx.

These are the unique shortest non-trivial identities satisfied by hypo.

I A QRT is determined by the number of each symbol it contains
and which symbols are on the same rows.

I These are the length-4 identities where the two sides preserve
these properties.



Summary table
Monoid Symbol Identity In rank n

Plactic plac None ?
Hypoplactic hypo xyxy = yxyx Y
Sylvester sylv xyxy = yxxy Y
Baxter baxt yxxyxy = yxyxxy Y
Stalactic stal xyx = yxx Y
Taiga taig xyx = yxx Y
Left patience sorting lPS None N
Right patience sorting rPS None Y

Question
Does placn satisfy a non-trivial identity for n > 4?

I Conjectured hierarchy of identities for placn, length 2× 5n−1.
I Lots of random examples checked in plac4 using Sage.


