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Invariants



Background: Invariants

» G a group of matrices - GL,, O,, Sp,,, &,

» V a G-module - natural or adjoint representation

Goal: describe the ring of polynomial invariants

C[V]® = {f polynomial in the coordinates of V :
Vge G,ve V:f(gv)="f(v)}

First Fundamental Theorem (FFT): explicit generating system

Second Fundamental Theorem (SFT): relations between
generators



Background: Invariants

Equivalently (in characteristic 0), describe

Homg (V®r, V®S) = {f € Hom (V®r, V®5) :
Vg € G,ve V® :f(gv)=gf(v)}.

FFT: explicit generating system

SFT: linear relations between generators



Background: Ancestors

David Hilbert, ‘Uber die Theorie der algebraischen
Formen’, 1890.

14th problem: is the ring of invariants finitely
generated?

Hermann Weyl, ‘The classical groups - their invariants
and representations’, 1939.

first and second fundamental theorem for the classical
groups and their natural representation
Richard Brauer, ‘On algebras which are connected with |

the semisimple continuous groups’, 1937.

combinatorial description of the invariants of the
orthogonal and the symplectic group
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Background: Ancestors

Emmy Noether, ‘Der Endlichkeitssatz der Invarianten
endlicher Gruppen’, 1916.
explicit bounds for finite groups

Judith Braunsteiner, ‘A Sundaram bijection for the odd
orthogonal groups’, 20177.

combinatorial description of the invariants of the odd
orthogonal group in low dimension

Sheila Sundaram, ‘On the combinatorics of represen-
tations of the symplectic group’, 1986.

combinatorial description of the invariants of the
symplectic group in low dimension




Background: classical results

» natural representation of GL, (Schur, 1901)

(a matrix g actson v € C" as g - v)
» natural representation of O, Sp,, (Weyl, 1924)
» natural representation of &,

» adjoint representation of GL,
(a matrix g acts on v € Mat, ,(C) as g-v-g~ ')



Background: GL,, natural representation (Schur, Weyl)

FFT: Homgg, (V®, V&) =0 for r # s,
and the algebra homomorphism

ev, : C&, — Homgy, (V®r, V®r)
eVp(0) =vi® RV, 3 Vo1 ® - @ Vo1,

is surjective.
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Background: GL,, natural representation (Schur, Weyl)

FFT: Homgg, (V®, V&) =0 for r # s,
and the algebra homomorphism

ev, : C&, — Homgy, (V®r, V®r)
eVp(0) =vi® RV, 3 Vo1 ® - @ Vo1,

is surjective.

SFT: The kernel of ev, is generated by the antisymmetriser

E(n+1)= > e(mm

€Syt

Alternatively:

{evn(m) | longest decreasing subsequence in 7

has length at most n}

is a basis of Homgg,, (V®", V®").



|dea: algebraic combinatorics

algebra combinatorics
Homgy, (V& VE) s >é§<
(r=5,n>2)
composition — stack
tensor product — draw side by side

(modulo kerev,)



Sp,,, Natural representation (Brauer, Weyl)

Let B, s be the set of perfect matchings of 1,...,r +s.

FFT: Homgp, (V@ V@) =0 when r + s odd,
and the evaluation functor

ev,: B, s — Homg,, (V®r, V®s)

is full (i.e., surjective on objects).

SFT: The kernel of ev, is generated by

E(n+1)= >

7"'Eanqtl,nJrl

Alternatively (R. & Westbury):
{evp(m) | mis (n + 1)-noncrossing}

is a basis of Homg,, (V®", V®s).
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Brauer's category

B, s is the set of perfect matchings of 1,...,r +s.

\— r=3

CB, s is the set of morphisms of ‘Brauer’s category’:

identity — I I I
composition  +— stack
tensor product <— draw side by side

When stacking, loops may occur.
Remove them, then multiply the
result with § = —2n for each loop:

nzéz‘
v

A



The evaluation functor

> bi,..., by, a basis of V,

» (, ) a skew symmetric bilinear form,

> bi,..., b5, the dual basis, regarded as basis of V:
(b7, bj) = diy.
Define

ev, : CB, s — Homgp, (V®’, V®5)

by

ev,,( >< ):u®vr—>—v®u
evn( ):1~>Zb,®b;‘

i

M
ev,,( \ ):u®v+—><u,v>.



The evaluation functor

> bi,..., by, a basis of V,

» (, ) a skew symmetric bilinear form,

> bi,..., b5, the dual basis, regarded as basis of V:
(b7, bj) = diy.
Define

ev, : CB, s — Homgp, (V®’, V®5)

by

ev,,( \ ):u®v+—><u,v>.

(exercise: these are Sp,,-invariants.)



Sp,,, Natural representation (Brauer, Weyl)

FFT: Homgp, (V@ V@) =0 when r + s odd,
and the evaluation functor

ev, : CB, s — Homgp, (V®r, V®5)

is full (i.e., surjective on objects).
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(n + 1)-noncrossing perfect matchings

B, s is the set of perfect matchings of 1,...,r +s.

N r=3

3-noncrossing

A perfect matching is (n + 1)-noncrossing,
if there is no set of n+ 1 mutually crossing arcs.

a 3-crossing



Sp,,, Natural representation (Brauer, Weyl)

SFT: The kernel of ev, is generated by

E(n+1)= >

7"'eanqLI,nJrl

Alternatively (R. & Westbury):
{evp(m) | mis (n + 1)-noncrossing}

is a basis of Homg,, (V®", V®*).
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Sketch of proof of the second fundamental theorem
> ev, (E(n + 1)) =ev, (Zwe%n+1,n+1 77) =0

(not completely trivial)

example: n=1:

(11X %)

=uRv—u®v—-—veu+ (b ®b] + b ® b3)(u,v).
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Sketch of proof of the second fundamental theorem

> &Vp (E(n + 1)) = &n (Zﬂe%n+1,n+1 7T) =0

(not completely trivial)

> dimCB, 5/(E(n+ 1)) > dim Homg,, (V", V®*)

(since ev, is surjective and (E(n+ 1)) C kerev,)

» dimCB, /(E(n+1)) < dimHomg,, (V®", V)

s = 0 suffices!

dim Homg,, (V¥",C) (Sundaram)

= #(n+ 1)-noncrossing perfect matchings of 1,...,r

dimCB, s/(E(n+ 1))
< #(n + 1)-noncrossing perfect matchings of 1,...,r

(exactly one summand of E(n+ 1) is (n+ 1)-noncrossing)



SpP»,,, symmetric powers of natural representation

(Rubey & Westbury)

Let ‘B’r‘,s be the set of perfect matchings of 1,..., k- (r +s), such
that

» points in a block are not matched and

» arcs originating from one block do not cross.

ONNHNT

r+s=4 k=2




SpP»,,, symmetric powers of natural representation

(Rubey & Westbury)

Let ‘B’r‘,s be the set of perfect matchings of 1,..., k- (r +s), such

that

» points in a block are not matched and

» arcs originating from one block do not cross.

N

r+s=4 k=2

SFT: Let W = SK(V) = V®/(u® v — v® u) and
ev, : CBf, — Homgp, (W®", W®*). Then

{evy(m) | mis (n+ 1)-noncrossing}

is a basis of Homg,, (W®", W®*).
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The cyclic sieving phenomenon

» Let X be a finite set and (c) a cyclic group with r elements,
acting on X. (‘rotation’)

» Let P(q) a polynomial with non-negative integer coefficients,
such that for any primitive rth root of unity ¢

P(¢?) = #fixed points of c?.

Then (X, (c), P(q)) exhibits the ‘cyclic sieving phenomenon’
(Reiner, Stanton & White)



Example: noncrossing perfect matchings

» Let X be the set of noncrossing perfect matchings of
1,....,2r:

rmn (AN A A A
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Example: noncrossing perfect matchings

» Let X be the set of noncrossing perfect matchings of

1,...,2r:
man (AN AR (N A A
> | X| = r+1( " 1,2,5,14,42,. (Catalan)
» P(q) = [r+11]q [er]q (Relner, Stanton & White)
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Example: noncrossing perfect matchings

» Let X be the set of noncrossing perfect matchings of
1, =72

> X = A 75— atalan)
» P(q) = L [Zr]q (Reiner, Stanton & White)
L1+¢*1+¢*+q* +q* +¢°...

[mle=1+q+...q""

[mlg! = [m]q ... [2]q[1]q
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Example: noncrossing perfect matchings

» Let X be the set of noncrossing perfect matchings of

1,...,2r:
nnn (AN AR (TN A A
> | X| = r+1( " 1,2,5,14,42,. (Catalan)
» P(q) = [r+11]q [er]q (Relner, Stanton & White)
L1+¢*1+¢*+q* +q* +¢°...
a miracle! [mlg=1+qg+...q""
[mlq! = [m]q ... [2]q[1]q
in case one cannot guess P(q), it is usu- ml [m]q!
ally hard to find. .. k| = [Klg![m — k]!
q



The cyclic sieving phenomenon

Theorem: Let X C U be a basis of the module p: &, — End(U),
which is permuted by the long cycle ¢ = (1,2,...,r). Then

(X, {c),fdch(p))

exhibits the cyclic sieving phenomenon.
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which is permuted by the long cycle ¢ = (1,2,...,r). Then

(X, {c),fdch(p))

exhibits the cyclic sieving phenomenon.

» the Frobenius character of p is

1
ch(p) = = > trp(m)pan)
’ TI'GGr

tr the trace,
A7) = (A1, Az, ... ) the cycle type of T,
Pk =X + X5+ ..., PA=Pr; Pr



The cyclic sieving phenomenon
Theorem: Let X C U be a basis of the module p: &, — End(U),
which is permuted by the long cycle ¢ = (1,2,...,r). Then

(X, {c),fdch(p))

exhibits the cyclic sieving phenomenon.

» the Frobenius character of p is

1
ch(p) = = > trp(m)pan)
’ TI'GGr

tr the trace,

A7) = (A1, Az, ... ) the cycle type of T,

P =X+ X354 ..., px=pPr Pr
> the ‘fake degree’ polynomial fd is

T a standard Young tableau of shape A



The cyclic sieving phenomenon

Theorem: (Sundaram), (Tokuyama)

ch Homgp,2,)(0,2r) = Z Syt

A=2r
columns of even length

£L(N\)<2n



The cyclic sieving phenomenon

Theorem: (Sundaram), (Tokuyama)

ch Homgp,2,)(0,2r) = Z Syt

A=2r
columns of even length

£L(N\)<2n

Corollary: Let X be the set of (n+ 1)-noncrossing perfect
matchings of 1,...,2r and let ¢ be rotation by one element.
Then

(X, (c), fd ch Homg,2,(0, 2r))

exhibits the cyclic sieving phenomenon.
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» natural representation of &,
(a permutation matrix g acts on v € C" as g - v)
The morphisms of the diagram category are set partitions.
The set of set partitions into at most n blocks is a basis.
(Halverson, Martin, Ram)



Further results

» natural representation of &,
(a permutation matrix g acts on v € C" as g - v)
The morphisms of the diagram category are set partitions.
The set of set partitions into at most n blocks is a basis.
(Halverson, Martin, Ram)

> adjoint representation of GL,
(a matrix g acts on v € Mat, ,(C) as g-v-g~ ")
The morphisms of the diagram category are permutations (or
directed matchings).
The set of permutations with length of longest decreasing
subsequence at most n is a basis.

basis invariant under rotation still unknown.
(Rubey & Westbury)



Promotion



n-symplectic oscillating tableaux

1 ©s M4 Hs  fie Pz Mg o = [t

Mo p1 o M2
®DH REEREREE | | |

An n-symplectic oscillating tableau of shape u is a sequence of
partitions

(®:M07M17"‘7/1’r:/’l')

such that consecutive partitions differ by precisely one cell and
each partition has at most n parts.



n-symplectic oscillating tableaux

algebra ...are the highest weight words for the representation of
Spy, on V&',

combinatorics .. .are (for u = (}) in bijection (Sundaram)
with (n 4 1)-noncrossing perfect matchings of 1,...,r.



Promotion

The promotion of a highest weight word w = wy ... w, of V&' can
be obtained as follows:
» let w’ be w without its first letter,
» let w” be the unique highest weight word in the same
component as w’
» obtain prw by appending the unique letter to w” such that
prw and w have the same weight.



Promotion

The promotion of a highest weight word w = wy ... w, of V&' can
be obtained as follows:
» let w’ be w without its first letter,
» let w” be the unique highest weight word in the same
component as w’
» obtain prw by appending the unique letter to w” such that
prw and w have the same weight.

a miracle:
when w has weight 0, Sun pr w = rot Sun w



Sketch of proof of the miracle

> Interpret promotion as a generator (s; s ) of Henriques and
Kamnitzer's cactus group.
» ‘local rules’ for w — prw are known. (van Leeuven, Lenart)

» Determine ‘local rules’ for the map Sun™* M — Sun™! rot M.

Show that these coincide.

v



Promotion via local rules (van Leeuven)

0 1 11
0 1

21 2
2 21

21 11 21 11 1 O
22 21 31 21 210

K

I

pu=domg, (k+ v —A)

A =domg, (k+v — p)



Sundaram'’s bijection

10

1 2 3 7 10
I >%2) 6 o] o [}
i) 0 1 1 1 1
X
1 1 11 11 %1 11
1 1 11 11 21
1 1 11 11
X
1 2 21
1 2
X
up 21
11



_

A v
Cc = ‘ ‘OI’
K %

p = domg, (K" + 1/ — \)

N =domg, (K + v/ — i)

A A
c= || X

A M
w=A+e€
A=p—e



