Combinatorial optimization problems

D. Torrão

26th may 2017

This is joint work with: J.C. Rosales and M.B. Branco

Combinatorial optimization problems Bracelet Monoids and Numerical Semigroups

> Introduction

- > Characterization of the (n_1, \ldots, n_p) -bracelets
- > The numerical (n_1, \ldots, n_p) -bracelets
- > The Frobenius variety of the numerical (n_1, \ldots, n_p) -bracelet
- > Minimal (n_1, \ldots, n_p) -system of generators
- > Indecomposable (n_1, \ldots, n_p) -bracelets

 $>\ensuremath{\mathsf{Sets}}$ of positive integers closed under product and the number of decimal digits

> Introduction

> Characterization of the (n_1, \ldots, n_p) -bracelets

> The numerical (n_1, \ldots, n_p) -bracelets

> The Frobenius variety of the numerical (n_1, \ldots, n_p) -bracelet

> Minimal (n_1, \ldots, n_p) -system of generators

> Indecomposable (n_1, \ldots, n_p) -bracelets

 $> \mbox{Sets}$ of positive integers closed under product and the number of decimal digits

• S - set of segments

- S set of segments
- C set of circles

- S set of segments
- C set of circles

• (*S*, *C*)-bracelet - finite sequence *b* of the elements in the set $S \cup C$ fulfilling the following conditions:

- 1. *b* does not start by a circle and it does not end by a circle;
- 2. in *b* there are no two consecutive circles.

- S set of segments
- C set of circles

• (*S*, *C*)-bracelet - finite sequence *b* of the elements in the set $S \cup C$ fulfilling the following conditions:

- 1. *b* does not start by a circle and it does not end by a circle;
- 2. in *b* there are no two consecutive circles.

- S set of segments
- C set of circles

• (*S*, *C*)-bracelet - finite sequence *b* of the elements in the set $S \cup C$ fulfilling the following conditions:

- 1. *b* does not start by a circle and it does not end by a circle;
- 2. in *b* there are no two consecutive circles.

• $\ell(b)$ - Length of a (S, C)-bracelet b = lengths of all segments + diameters of all circles

- S set of segments
- C set of circles

• (*S*, *C*)-bracelet - finite sequence *b* of the elements in the set $S \cup C$ fulfilling the following conditions:

- 1. *b* does not start by a circle and it does not end by a circle;
- 2. in *b* there are no two consecutive circles.

• $\ell(b)$ - Length of a (S, C)-bracelet b = lengths of all segments + diameters of all circles

• $B(S, C) = \{b \mid b \text{ is a } (S, C) - \text{bracelet}\}.$

- S set of segments
- C set of circles

• (*S*, *C*)-bracelet - finite sequence *b* of the elements in the set $S \cup C$ fulfilling the following conditions:

- 1. *b* does not start by a circle and it does not end by a circle;
- 2. in *b* there are no two consecutive circles.

• $\ell(b)$ - Length of a (S, C)-bracelet b = lengths of all segments + diameters of all circles

- $B(S, C) = \{b \mid b \text{ is a } (S, C) \text{bracelet}\}.$
- $LB(S, C) = \{\ell(b) \mid b \in B(S, C)\}$

- S set of segments
- C set of circles

• (*S*, *C*)-bracelet - finite sequence *b* of the elements in the set $S \cup C$ fulfilling the following conditions:

- 1. *b* does not start by a circle and it does not end by a circle;
- 2. in *b* there are no two consecutive circles.

• $\ell(b)$ - Length of a (S, C)-bracelet b = lengths of all segments + diameters of all circles

- $B(S, C) = \{b \mid b \text{ is a } (S, C) \text{bracelet}\}.$
- $LB(S,C) = \{\ell(b) \mid b \in B(S,C)\}$
- $\mathbb{N} = \{0, 1, 2, 3, 4, ...\}$

- S set of segments
- C set of circles

• (*S*, *C*)-bracelet - finite sequence *b* of the elements in the set $S \cup C$ fulfilling the following conditions:

- 1. *b* does not start by a circle and it does not end by a circle;
- 2. in *b* there are no two consecutive circles.

• $\ell(b)$ - Length of a (S, C)-bracelet b = lengths of all segments + diameters of all circles

- $B(S, C) = \{b \mid b \text{ is a } (S, C) \text{bracelet}\}.$
- $LB(S, C) = \{\ell(b) \mid b \in B(S, C)\}$
- $\mathbb{N} = \{0, 1, 2, 3, 4, ...\}$

• A submonoid of $(\mathbb{N}, +)$, *M*, is a (n_1, \ldots, n_p) -bracelet if

 $a+b+\{n_1,\ldots,n_p\}\subseteq M ext{ for every } a,b\in Mackslash \{0\}.$

- A numerical semigroup S is a submonoid of $(\mathbb{N},+)$ such that $\mathbb{N}\backslash S$ is finite $(\mathit{gcd}(S)=1)$

- A numerical semigroup S is a submonoid of $(\mathbb{N}, +)$ such that $\mathbb{N} \setminus S$ is finite (gcd(S) = 1)
- For $A \subset \mathbb{N}$, $\langle A \rangle = \{\lambda_1 x_1 + \dots + \lambda_n x_n \mid n \in \mathbb{N} \setminus \{0\}, x_1, \dots, x_n \in A \text{ and } \lambda_1, \dots, \lambda_n \in \mathbb{N} \}$

- A numerical semigroup S is a submonoid of $(\mathbb{N},+)$ such that $\mathbb{N}\backslash S$ is finite $(\mathit{gcd}(S)=1)$
- For $A \subset \mathbb{N}$, $\langle A \rangle = \{\lambda_1 x_1 + \dots + \lambda_n x_n \mid n \in \mathbb{N} \setminus \{0\}, x_1, \dots, x_n \in A \text{ and } \lambda_1, \dots, \lambda_n \in \mathbb{N} \}$
- The set A is a system os generators of S if < A >= S.

- A numerical semigroup S is a submonoid of $(\mathbb{N}, +)$ such that $\mathbb{N} \setminus S$ is finite (gcd(S) = 1)
- For $A \subset \mathbb{N}$, $\langle A \rangle = \{\lambda_1 x_1 + \dots + \lambda_n x_n \mid n \in \mathbb{N} \setminus \{0\}, x_1, \dots, x_n \in A \text{ and } \lambda_1, \dots, \lambda_n \in \mathbb{N} \}$
- The set A is a system os generators of S if < A >= S.
- A is a minimal system of generators of *S* if no proper subset of A generates *S msg*(*S*)

- A numerical semigroup S is a submonoid of $(\mathbb{N}, +)$ such that $\mathbb{N} \setminus S$ is finite (gcd(S) = 1)
- For $A \subset \mathbb{N}$, $\langle A \rangle = \{\lambda_1 x_1 + \dots + \lambda_n x_n \mid n \in \mathbb{N} \setminus \{0\}, x_1, \dots, x_n \in A \text{ and } \lambda_1, \dots, \lambda_n \in \mathbb{N} \}$
- The set A is a system os generators of S if < A >= S.
- A is a minimal system of generators of *S* if no proper subset of A generates *S msg*(*S*)
- The largest integer belonging to $\mathbb{Z} \setminus (S)$ is the Frobenius Number of S, denoted by F(S).

- A numerical semigroup S is a submonoid of $(\mathbb{N}, +)$ such that $\mathbb{N} \setminus S$ is finite (gcd(S) = 1)
- For $A \subset \mathbb{N}$, $\langle A \rangle = \{\lambda_1 x_1 + \dots + \lambda_n x_n \mid n \in \mathbb{N} \setminus \{0\}, x_1, \dots, x_n \in A \text{ and } \lambda_1, \dots, \lambda_n \in \mathbb{N} \}$
- The set A is a system os generators of S if < A >= S.

• A is a minimal system of generators of *S* if no proper subset of A generates *S* - *msg*(*S*)

• The largest integer belonging to $\mathbb{Z} \setminus (S)$ is the Frobenius Number of S, denoted by F(S).

• $PF(S) = \{x \in \mathbb{Z} \setminus S \mid x + s \in S \text{ for every } s \in S \setminus \{0\}\} =$ = set of pseudo-Frobenius numbers of *S*

- A numerical semigroup S is a submonoid of $(\mathbb{N}, +)$ such that $\mathbb{N} \setminus S$ is finite (gcd(S) = 1)
- For $A \subset \mathbb{N}$, $\langle A \rangle = \{\lambda_1 x_1 + \dots + \lambda_n x_n \mid n \in \mathbb{N} \setminus \{0\}, x_1, \dots, x_n \in A \text{ and } \lambda_1, \dots, \lambda_n \in \mathbb{N} \}$
- The set A is a system os generators of S if < A >= S.

• A is a minimal system of generators of *S* if no proper subset of A generates *S* - *msg*(*S*)

• The largest integer belonging to $\mathbb{Z} \setminus (S)$ is the Frobenius Number of S, denoted by F(S).

- $PF(S) = \{x \in \mathbb{Z} \setminus S \mid x + s \in S \text{ for every } s \in S \setminus \{0\}\} =$ = set of pseudo-Frobenius numbers of S
- SG(S) = { $x \in PF(S) \mid 2x \in S$ } = set of special gaps of S

> Introduction

> Characterization of the (n_1, \ldots, n_p) -bracelets

> The numerical (n_1, \ldots, n_p) -bracelets

> The Frobenius variety of the numerical (n_1, \ldots, n_p) -bracelet

> Minimal (n_1, \ldots, n_p) -system of generators

> Indecomposable (n_1, \ldots, n_p) -bracelets

 $> \mbox{Sets}$ of positive integers closed under product and the number of decimal digits

Proposition

Let m_1, \ldots, m_q and n_1, \ldots, n_p be positive integers and let M be a submonoid of $(\mathbb{N}, +)$ generated by $\{m_1, \ldots, m_q\}$. The following conditions are equivalent.

1. *M* is a (n_1, \ldots, n_p) -bracelet.

2. If $i, j \in \{1, ..., q\}$ then $m_i + m_j + \{n_1, ..., n_p\} \subseteq M$.

Proposition

Let m_1, \ldots, m_q and n_1, \ldots, n_p be positive integers and let M be a submonoid of $(\mathbb{N}, +)$ generated by $\{m_1, \ldots, m_q\}$. The following conditions are equivalent.

- 1. *M* is a (n_1, \ldots, n_p) -bracelet.
- 2. If $i, j \in \{1, ..., q\}$ then $m_i + m_j + \{n_1, ..., n_p\} \subseteq M$.

Example

Let $M = \langle \{4, 6\} \rangle = \{0, 4, 6, 8, 10, 12, ...\}$. We prove that M is a (2, 4)-bracelet. As $4 + 4 + \{2, 4\} \subseteq M$, $4 + 6 + \{2, 4\} \subseteq M$ and $6 + 6 + \{2, 4\} \subseteq M$, by applying the previous proposition, we obtain that M is a (2, 4)-bracelet.

Given $X \subseteq \mathbb{N}$ we define the (n_1, \ldots, n_p) -bracelet generated by X as the intersection of all (n_1, \ldots, n_p) -bracelet containing X.

Proposition

Let m_1, \ldots, m_q and n_1, \ldots, n_p be positive integers and let M be a submonoid of $(\mathbb{N}, +)$ generated by $\{m_1, \ldots, m_q\}$. The following conditions are equivalent.

- 1. *M* is a (n_1, \ldots, n_p) -bracelet.
- 2. If $i, j \in \{1, ..., q\}$ then $m_i + m_j + \{n_1, ..., n_p\} \subseteq M$.

Example

Let $M = \langle \{4, 6\} \rangle = \{0, 4, 6, 8, 10, 12, ...\}$. We prove that M is a (2, 4)-bracelet. As $4 + 4 + \{2, 4\} \subseteq M$, $4 + 6 + \{2, 4\} \subseteq M$ and $6 + 6 + \{2, 4\} \subseteq M$, by applying the previous proposition, we obtain that M is a (2, 4)-bracelet.

Given $X \subseteq \mathbb{N}$ we define the (n_1, \ldots, n_p) -bracelet generated by X as the intersection of all (n_1, \ldots, n_p) -bracelet containing X. • $L_{\{n_1, \ldots, n_p\}}(X)$ is the smallest (n_1, \ldots, n_p) -bracelet containing X

Proposition

Let m_1, \ldots, m_q and n_1, \ldots, n_p be positive integers and let M be a submonoid of $(\mathbb{N}, +)$ generated by $\{m_1, \ldots, m_q\}$. The following conditions are equivalent.

- 1. *M* is a (n_1, \ldots, n_p) -bracelet.
- 2. If $i, j \in \{1, ..., q\}$ then $m_i + m_j + \{n_1, ..., n_p\} \subseteq M$.

Example

Let $M = \langle \{4, 6\} \rangle = \{0, 4, 6, 8, 10, 12, ...\}$. We prove that M is a (2, 4)-bracelet. As $4 + 4 + \{2, 4\} \subseteq M$, $4 + 6 + \{2, 4\} \subseteq M$ and $6 + 6 + \{2, 4\} \subseteq M$, by applying the previous proposition, we obtain that M is a (2, 4)-bracelet.

Given $X \subseteq \mathbb{N}$ we define the (n_1, \ldots, n_p) -bracelet generated by X as the intersection of all (n_1, \ldots, n_p) -bracelet containing X.

• $L_{\{n_1,\ldots,n_p\}}(X)$ is the smallest (n_1,\ldots,n_p) -bracelet containing X

• If $M = L_{\{n_1,...,n_p\}}(X)$ we say that X is a $(n_1,...,n_p)$ -system of generators of M. Moreover, if no proper subset of X generates M, then we say that X is a minimal $(n_1,...,n_p)$ -system of generators.

Theorem

Let
$$X = \{x_1, \dots, x_t\} \subseteq \mathbb{N} \setminus \{0\}$$
 and let $\{n_1, \dots, n_p\} \subseteq \mathbb{N} \setminus \{0\}$. Then

$$L_{\{n_1,...,n_p\}}(X) = \{a_1x_1 + \dots + a_tx_t + b_1n_1 + \dots + b_pn_p \mid a_1,\dots,a_t,b_1,\dots,b_p \in \mathbb{N} \text{ and } a_1 + \dots + a_t > b_1 + \dots + b_p\} \cup \{0\}.$$

Theorem

Let
$$X = \{x_1, \dots, x_t\} \subseteq \mathbb{N} \setminus \{0\}$$
 and let $\{n_1, \dots, n_p\} \subseteq \mathbb{N} \setminus \{0\}$. Then

$$L_{\{n_1,...,n_p\}}(X) = \{a_1x_1 + \dots + a_tx_t + b_1n_1 + \dots + b_pn_p \mid a_1,\dots,a_t, b_1,\dots,b_p \in \mathbb{N} \text{ and } a_1 + \dots + a_t > b_1 + \dots + b_p\} \cup \{0\}.$$

Example

Let us calculate $L_{\{2,3\}}$ ({4}). From previous theorem, we have that $L_{\{2,3\}}$ ({4}) = { $a_14 + b_12 + b_23 \mid a_1, b_1, b_2 \in \mathbb{N}$ and $a_1 > b_1 + b_2\} \cup \{0\}$. Therefore $L_{\{2,3\}}$ ({4}) = { $0, 4, 8, 10, 11, 12, 14, 15, 16, 17, 18, \rightarrow$ } = $\langle 4, 10, 11, 17 \rangle$.

> Introduction

> Characterization of the (n_1, \ldots, n_p) -bracelets

> The numerical (n_1, \ldots, n_p) -bracelets

> The Frobenius variety of the numerical (n_1, \ldots, n_p) -bracelet

> Minimal (n_1, \ldots, n_p) -system of generators

> Indecomposable (n_1, \ldots, n_p) -bracelets

> Sets of positive integers closed under product and the number of decimal digits

• A numerical (n_1, \ldots, n_p) -bracelet is a (n_1, \ldots, n_p) -bracelet M such that gcd(M) = 1.

• A numerical (n_1, \ldots, n_p) -bracelet is a (n_1, \ldots, n_p) -bracelet M such that gcd(M) = 1.

• $\mathcal{B}(n_1, ..., n_p) = \{M \mid M \text{ is a } (n_1, ..., n_p) - \text{bracelet} \}$

• A numerical (n_1, \ldots, n_p) -bracelet is a (n_1, \ldots, n_p) -bracelet M such that gcd(M) = 1.

• $\mathcal{B}(n_1,\ldots,n_p) = \{M \mid M \text{ is a } (n_1,\ldots,n_p) - \text{bracelet}\}$

 $\mathcal{N}(n_1, \dots, n_p) = \{ M \in \mathcal{B}(n_1, \dots, n_p) \mid M \text{ is a numerical } (n_1, \dots, n_p) - \text{bracelet} \}$

• A numerical (n_1, \ldots, n_p) -bracelet is a (n_1, \ldots, n_p) -bracelet M such that gcd(M) = 1.

•
$$\mathcal{B}(n_1,\ldots,n_p) = \{M \mid M \text{ is a } (n_1,\ldots,n_p) - \text{bracelet}\}$$

 $\mathcal{N}(n_1, \dots, n_p) = \{ M \in \mathcal{B}(n_1, \dots, n_p) \mid M \text{ is a numerical } (n_1, \dots, n_p) - \text{bracelet} \}$

Theorem

Let n_1, \ldots, n_p be positive integers and let D be the set of all positive divisors of $gcd \{n_1, \ldots, n_p\}$. Then

$$\mathcal{B}(n_1,\ldots,n_p)\setminus \{\{0\}\} = \bigcup_{d\in D} \left\{ dS \mid S \in \mathcal{N}(\frac{n_1}{d},\ldots,\frac{n_p}{d}) \right\}.$$

> Introduction

> Characterization of the (n_1, \ldots, n_p) -bracelets

> The numerical (n_1, \ldots, n_p) -bracelets

> The Frobenius variety of the numerical (n_1, \ldots, n_p) -bracelet

> Minimal (n_1, \ldots, n_p) -system of generators

> Indecomposable (n_1, \ldots, n_p) -bracelets

> Sets of positive integers closed under product and the number of decimal digits

A Frobenius variety is a nonempty set \mathcal{V} of numerical semigroups fulfilling the following conditions:

- 1. if *S* and *T* are in \mathcal{V} , then so is $S \cap T$;
- 2. if *S* is in \mathcal{V} and it is not equal to \mathbb{N} , then $S \cup \{F(S)\}$ is in \mathcal{V} .

A Frobenius variety is a nonempty set $\ensuremath{\mathcal{V}}$ of numerical semigroups fulfilling the following conditions:

- 1. if *S* and *T* are in \mathcal{V} , then so is $S \cap T$;
- 2. if *S* is in \mathcal{V} and it is not equal to \mathbb{N} , then $S \cup \{F(S)\}$ is in \mathcal{V} .

Proposition

Let n_1, \ldots, n_p be positive integers. Then $\mathcal{N}(n_1, \ldots, n_p)$ is a Frobenius variety.

We define the graph $G(\mathcal{N}(n_1, \ldots, n_p))$ as follows:

- 1. the vertices are the elements of $\mathcal{N}(n_1, \ldots, n_p)$;
- 2. an element $(S, S') \in \mathcal{N}(n_1, \dots, n_p) \times \mathcal{N}(n_1, \dots, n_p)$ is an edge if $S \cup \{F(S)\} = S'$.

We define the graph $G(\mathcal{N}(n_1, \ldots, n_p))$ as follows:

- 1. the vertices are the elements of $\mathcal{N}(n_1, \ldots, n_p)$;
- 2. an element $(S, S') \in \mathcal{N}(n_1, \dots, n_p) \times \mathcal{N}(n_1, \dots, n_p)$ is an edge if $S \cup \{F(S)\} = S'$.

Theorem

The graph $G(\mathcal{N}(n_1,...,n_p))$ is a tree rooted in \mathbb{N} . Moreover, the descendants of $S \in \mathcal{N}(n_1,...,n_p)$ are the elements of the set $\{S \setminus \{x\} \mid x \in msg(S), x > F(S) \text{ and } S \setminus \{x\} \in \mathcal{N}(n_1,...,n_p)\}.$

The Frobenius variety of the numerical (n_1, \ldots, n_p) -bracelet

Example

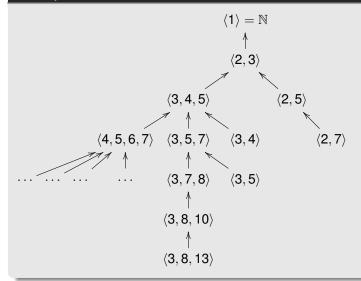
We now draw part of the tree associated to the numerical (2,3)-bracelets.

- . $\mathbb N$ has an only descendant $\mathbb N\backslash\{1\}=\langle 2,3\rangle,$
- . $\langle 2,3 \rangle$ has two descendants $\langle 2,3 \rangle \setminus \{2\} = \langle 3,4,5 \rangle$ and $\langle 2,3 \rangle \setminus \{3\} = \langle 2,5 \rangle$,
- . $\langle 2,5\rangle$ has an only descendant $\langle 2,5\rangle\backslash\{5\}=\langle 2,7\rangle,$
- . $\langle 2,7\rangle$ has no descendants,
- . $\langle 3,4,5\rangle$ has three descendants $\langle 3,4,5\rangle \setminus \{3\} = \langle 4,5,6,7\rangle$, $\langle 3,4,5\rangle \setminus \{4\} = \langle 3,5,7\rangle$ and $\langle 3,4,5\rangle \setminus \{5\} = \langle 3,4\rangle$,
- . $\langle \mathbf{3},\mathbf{4}\rangle$ has no descendants,
- . $\langle 3,5,7\rangle$ has two descendants $\langle 3,5,7\rangle\backslash\{5\}=\langle 3,7,8\rangle$ and $\langle 3,5,7\rangle\backslash\{7\}=\langle 3,5\rangle,$
- . $\langle \mathbf{3},\mathbf{5}\rangle$ has no descendants,
- . $\langle 3,7,8\rangle$ has an only descendant $\langle 3,7,8\rangle \backslash \{7\} = \langle 3,8,10\rangle,$
- . $\langle 3,8,10\rangle$ has an only descendant $\langle 3,8,10\rangle \backslash \{10\} = \langle 3,8,13\rangle,$
- . $\langle \mathbf{3},\mathbf{8},\mathbf{13}\rangle$ has no descendants,
 - (4.5.6.7) has four descendants

D. Torrão (UE and UG)

The Frobenius variety of the numerical (n_1, \ldots, n_p) -bracelet

Example



Minimal (n_1, \ldots, n_p) -system of generators

Proposition

If m is a positive integer, then

 $L_{\{2,3\}}\left(\{m\}\right) = \{km + i \mid k \in \mathbb{N} \setminus \{0\}, i \in \{0, 2, 3, \dots, 3(k-1)\}\} \cup \{0\}.$

Minimal (n_1, \ldots, n_p) -system of generators

Proposition

If m is a positive integer, then

$$L_{\{2,3\}}(\{m\}) = \{km + i \mid k \in \mathbb{N} \setminus \{0\}, i \in \{0, 2, 3, \dots, 3(k-1)\}\} \cup \{0\}.$$

Corollary

If *m* is a positive integer then $F(L_{\{2,3\}}(\{m\})) = (\lfloor \frac{m}{3} \rfloor + 2) m + 1$.

Minimal (n_1, \ldots, n_p) -system of generators

Proposition

If m is a positive integer, then

$$L_{\{2,3\}}(\{m\}) = \{km + i \mid k \in \mathbb{N} \setminus \{0\}, i \in \{0, 2, 3, \dots, 3(k-1)\}\} \cup \{0\}.$$

Corollary

If *m* is a positive integer then $F(L_{\{2,3\}}(\{m\})) = (\lfloor \frac{m}{3} \rfloor + 2) m + 1$.

Example

Let us calculate the set of elements in $L_{\{2,3\}}$ ({7}). In view of the previous corollary we obtain that F $(L_{\{2,3\}} (\{7\})) = 29$. By using the above proposition we have that

$$L_{\{2,3\}}({7\}) = \{0\} \cup {7\} \cup (14 + \{0,2,3\}) \cup (21 + \{0,2,3,4,5,6\}) \cup (28 + \{0,2,3,4,5,6,7,8,9\}) \cup {30,\rightarrow} \}$$

and thus
$$L_{\{2,3\}}({7\}) = \{0,7,14,16,17,21,23,24,25,26,27,28,30,\rightarrow\} = \langle 7,16,17,25,26,27,36 \rangle.$$

> Introduction

> Characterization of the (n_1, \ldots, n_p) -bracelets

> The numerical (n_1, \ldots, n_p) -bracelets

> The Frobenius variety of the numerical (n_1, \ldots, n_p) -bracelet

> Minimal (n_1, \ldots, n_p) -system of generators

> Indecomposable (n_1, \ldots, n_p) -bracelets

 $> \mbox{Sets}$ of positive integers closed under product and the number of decimal digits

We say that a (n_1, \ldots, n_p) -bracelet is indecomposable if it can not be expressed as an intersection of (n_1, \ldots, n_p) -bracelets that contain it properly.

We say that a (n_1, \ldots, n_p) -bracelet is indecomposable if it can not be expressed as an intersection of (n_1, \ldots, n_p) -bracelets that contain it properly.

Proposition

Let m_1, \ldots, m_q be positive integers such that $S = \langle m_1, \ldots, m_q \rangle$ is a numerical (n_1, \ldots, n_p) -bracelet. Then S is an indecomposable (n_1, \ldots, n_p) -bracelet if and only if for every $x \in SG(S) \setminus \{F(S)\}$ we have that $x + \{x, m_1, \ldots, m_q\} + \{n_1, \ldots, n_p\} \nsubseteq S$.

We say that a (n_1, \ldots, n_p) -bracelet is indecomposable if it can not be expressed as an intersection of (n_1, \ldots, n_p) -bracelets that contain it properly.

Proposition

Let m_1, \ldots, m_q be positive integers such that $S = \langle m_1, \ldots, m_q \rangle$ is a numerical (n_1, \ldots, n_p) -bracelet. Then S is an indecomposable (n_1, \ldots, n_p) -bracelet if and only if for every $x \in SG(S) \setminus \{F(S)\}$ we have that $x + \{x, m_1, \ldots, m_q\} + \{n_1, \ldots, n_p\} \nsubseteq S$.

Example

• $S = \langle 5, 12, 19, 26, 33 \rangle =$ {0, 5, 10, 12, 15, 17, 19, 20, 22, 24, 25, 26, 27, 29, 30, 31, 32, 33, \rightarrow } • F(S) = 28 • $PF(S) = \{7, 14, 21, 28\}$ • $SG(S) = \{21, 28\}$ Since $21 + 5 + 2 = 28 \notin S$ We can conclude that the numerical (2)-bracelet $S = \langle 5, 12, 19, 26, 33 \rangle$ is an indecomposable (2)-bracelet

> Introduction

- > Characterization of the (n_1, \ldots, n_p) -bracelets
- > The numerical (n_1, \ldots, n_p) -bracelets
- > The Frobenius variety of the numerical (n_1, \ldots, n_p) -bracelet
- > Minimal (n_1, \ldots, n_p) -system of generators
- > Indecomposable (n_1, \ldots, n_p) -bracelets

> Sets of positive integers closed under product and the number of decimal digits

• $\ell(n)$ is the number of digits of a positive integer *n* written in decimal expansion.

• $\ell(n)$ is the number of digits of a positive integer *n* written in decimal expansion.

• A digital semigroup *D* is a subsemigroup of $(\mathbb{N}\setminus\{0\}, \cdot)$ such that if $d \in D$ then $\{x \in \mathbb{N}\setminus\{0\} \mid \ell(x) = \ell(d)\} \subseteq D$.

• $\ell(n)$ is the number of digits of a positive integer *n* written in decimal expansion.

• A digital semigroup *D* is a subsemigroup of $(\mathbb{N}\setminus\{0\}, \cdot)$ such that if $d \in D$ then $\{x \in \mathbb{N}\setminus\{0\} \mid \ell(x) = \ell(d)\} \subseteq D$.

• $L(A) = \{\ell(a) \mid a \in A\}$, for A a subset of $\mathbb{N} \setminus \{0\}$.

• $\ell(n)$ is the number of digits of a positive integer *n* written in decimal expansion.

• A digital semigroup *D* is a subsemigroup of $(\mathbb{N}\setminus\{0\}, \cdot)$ such that if $d \in D$ then $\{x \in \mathbb{N}\setminus\{0\} \mid \ell(x) = \ell(d)\} \subseteq D$.

• $L(A) = \{\ell(a) \mid a \in A\}$, for A a subset of $\mathbb{N} \setminus \{0\}$.

Lemma

If D is a digital semigroup, then $L(D) \cup \{0\}$ is a numerical semigroup.

• $\ell(n)$ is the number of digits of a positive integer *n* written in decimal expansion.

• A digital semigroup *D* is a subsemigroup of $(\mathbb{N}\setminus\{0\}, \cdot)$ such that if $d \in D$ then $\{x \in \mathbb{N}\setminus\{0\} \mid \ell(x) = \ell(d)\} \subseteq D$.

• $L(A) = \{\ell(a) \mid a \in A\}$, for A a subset of $\mathbb{N} \setminus \{0\}$.

Lemma

If D is a digital semigroup, then $L(D) \cup \{0\}$ is a numerical semigroup.

A numerical semigroup *S* is called LD-semigroup if there exists a digital semigroup *D* such that $S = L(D) \cup \{0\}$.

• $\ell(n)$ is the number of digits of a positive integer *n* written in decimal expansion.

• A digital semigroup *D* is a subsemigroup of $(\mathbb{N}\setminus\{0\}, \cdot)$ such that if $d \in D$ then $\{x \in \mathbb{N}\setminus\{0\} \mid \ell(x) = \ell(d)\} \subseteq D$.

• $L(A) = \{\ell(a) \mid a \in A\}$, for A a subset of $\mathbb{N} \setminus \{0\}$.

Lemma

If D is a digital semigroup, then $L(D) \cup \{0\}$ is a numerical semigroup.

A numerical semigroup *S* is called LD-semigroup if there exists a digital semigroup *D* such that $S = L(D) \cup \{0\}$.

Let *S* be a LD-semigroup, then $S = L(D) \cup \{0\}$.

Theorem

Let S be a numerical semigroup. The following conditions are equivalent.

- 1) S is a LD-semigroup.
- 2) If $a, b \in S \setminus \{0\}$ then $a + b 1 \in S$.

Theorem

Let S be a numerical semigroup. The following conditions are equivalent.

- 1) S is a LD-semigroup.
- 2) If $a, b \in S \setminus \{0\}$ then $a + b 1 \in S$.

Let $\mathcal{D} = \{ D \mid D \text{ is a digital semigroup} \}$ and let $\mathcal{L} = \{ S \mid S \text{ is a LD-semigroup} \}$.

Theorem

Let S be a numerical semigroup. The following conditions are equivalent.

- 1) S is a LD-semigroup.
- 2) If $a, b \in S \setminus \{0\}$ then $a + b 1 \in S$.

Let $\mathcal{D} = \{ D \mid D \text{ is a digital semigroup} \}$ and let $\mathcal{L} = \{ S \mid S \text{ is a LD-semigroup} \}$.

Corollary

The correspondence $\varphi : \mathcal{D} \to \mathcal{L}$, defined by $\varphi(D) = L(D) \cup \{0\}$, is a bijective map. Furthermore its inverse is the map $\theta : \mathcal{L} \to \mathcal{D}$, $\theta(S) = \{a \in \mathbb{N} \setminus \{0\} \mid \ell(a) \in S\}.$ So, $\mathcal{D} = \{\theta(S) \mid S \text{ is a } L \text{ D somigroup}\}$

 $\mathcal{D} = \{\theta(S) \mid S \text{ is a LD-semigroup}\}.$

Proposition

Let $\mathcal{L} = \{S \mid S \text{ is a LD-semigroup}\}$. The set \mathcal{L} is a Frobenius variety.

Proposition

Let $\mathcal{L} = \{S \mid S \text{ is a LD-semigroup}\}$. The set \mathcal{L} is a Frobenius variety.

Let $\mathcal{L} = \{S \mid S \text{ is a LD-semigroup}\}$. We define the graph $G(\mathcal{L})$ as the graph whose vertices are the elements of \mathcal{L} and $(S, S') \in \mathcal{L} \times \mathcal{L}$ is an edge if $S' = S \cup \{F(S)\}$.

Proposition

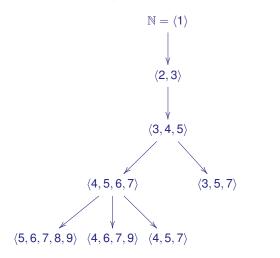
Let $\mathcal{L} = \{S \mid S \text{ is a LD-semigroup}\}$. The set \mathcal{L} is a Frobenius variety.

Let $\mathcal{L} = \{S \mid S \text{ is a LD-semigroup}\}$. We define the graph $G(\mathcal{L})$ as the graph whose vertices are the elements of \mathcal{L} and $(S, S') \in \mathcal{L} \times \mathcal{L}$ is an edge if $S' = S \cup \{F(S)\}$.

Theorem

The graph $G(\mathcal{L})$ is a tree rooted in \mathbb{N} . Moreover, the sons of a vertex $S \in \mathcal{L}$ are $S \setminus \{x_1\}, \ldots, S \setminus \{x_l\}$ with $\{x_1, \ldots, x_l\} = \{x \in msg(S) \mid x > F(S) \text{ and } S \setminus \{x\} \in \mathcal{L}\}$

Figure: The tree of LD-numerical semigroups



Thank you!