# Combinatorics of generalized exponents

Cédric Lecouvey

Institut Denis Poisson Tours

Dias de combinatórica 2018

# I. Generalized exponents in type A

$$\mathbb{Z}^n = \bigoplus_{i=1}^n \mathbb{Z} e_i$$
.

Let Q be the sublattice of  $\mathbb{Z}^n$  generated by the vectors  $e_i - e_{i+1}$ ,  $1 \leq i < n$ .

For  $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{Z}^n$ , set  $x^{\beta} = x_1^{\beta_1} \cdots x_n^{\beta_n}$ . The *q*-Kostant partition function for  $\mathfrak{gl}_n(\mathbb{C})$  is defined by

$$\prod_{1 \le i < j \le n} \frac{1}{1 - q \frac{x_i}{x_j}} = \sum_{\beta \in \mathbb{Z}^n} \mathcal{P}_q(\beta) x^{\beta}.$$

 $\bullet \ \mathcal{P}_q(\beta) \in \mathbb{Z}_{\geq 0}[q]$ 

# I. Generalized exponents in type A

$$\mathbb{Z}^n = \bigoplus_{i=1}^n \mathbb{Z} e_i$$
.

Let Q be the sublattice of  $\mathbb{Z}^n$  generated by the vectors  $e_i - e_{i+1}$ ,  $1 \leq i < n$ .

For  $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{Z}^n$ , set  $x^{\beta} = x_1^{\beta_1} \cdots x_n^{\beta_n}$ . The *q*-Kostant partition function for  $\mathfrak{gl}_n(\mathbb{C})$  is defined by

$$\prod_{1 \le i < j \le n} \frac{1}{1 - q \frac{x_i}{x_j}} = \sum_{\beta \in \mathbb{Z}^n} \mathcal{P}_q(\beta) x^{\beta}.$$

- $\mathcal{P}_q(\beta) \in \mathbb{Z}_{\geq 0}[q]$
- $\mathcal{P}_1(\beta)$  gives the number of nonnegative decompositions of  $\beta$  as a sum of  $e_i e_j$ ,  $1 \le i < j \le n$ .

# I. Generalized exponents in type A

$$\mathbb{Z}^n = \bigoplus_{i=1}^n \mathbb{Z} e_i.$$

Let Q be the sublattice of  $\mathbb{Z}^n$  generated by the vectors  $e_i - e_{i+1}$ ,  $1 \leq i < n$ .

For  $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{Z}^n$ , set  $x^{\beta} = x_1^{\beta_1} \cdots x_n^{\beta_n}$ . The *q*-Kostant partition function for  $\mathfrak{gl}_n(\mathbb{C})$  is defined by

$$\prod_{1 \le i < j \le n} \frac{1}{1 - q \frac{x_i}{x_j}} = \sum_{\beta \in \mathbb{Z}^n} \mathcal{P}_q(\beta) x^{\beta}.$$

- $\mathcal{P}_q(\beta) \in \mathbb{Z}_{\geq 0}[q]$
- $\mathcal{P}_1(\beta)$  gives the number of nonnegative decompositions of  $\beta$  as a sum of  $e_i e_j$ ,  $1 \le i < j \le n$ .
- $\mathcal{P}_q(\beta) = 0$  when  $\beta \notin Q$ .

A partition is a sequence  $\lambda = (\lambda_1 \ge \cdots \ge \lambda_n \ge 0) \in \mathbb{Z}^n$ . Each partition is encoded by its Young diagram. For example



Let  $\rho = (n, n-1, ..., 2, 1)$ .

Let  $\mathfrak{S}_n$  be the symmetric group of rank n.

The group  $\mathfrak{S}_n$  acts on  $\mathbb{Z}^n$  by permutation  $\sigma \cdot (\beta_1, \ldots, \beta_n) = (\beta_{\sigma(1)}, \ldots, \beta_{\sigma(n)})$ . Consider  $\lambda$  and  $\mu$  two partitions such that  $|\lambda| = |\mu|$ .

#### **Definition**

The Kostka polynomial  $K_{\lambda,\mu}(q)$  is the polynomial of  $\mathbb{Z}[q]$  s.t.

$$K_{\lambda,\mu}(q) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \mathcal{P}_q(\sigma(\lambda + \rho) - \rho - \mu)$$

## Definition

In the particular case  $\mu=\left(\frac{|\lambda|}{n},\ldots,\frac{|\lambda|}{n}\right)$ , the polynomial  $K_{\lambda}(q)=K_{\lambda,\mu}(q)$  is the generalized exponent associated to  $\lambda$ .

A semistandard tableau T of shape  $\lambda$  is a filling of  $\lambda$  by letters in  $\{1, \ldots, n\}$  with

- strictly increasing columns from top to bottom
- weakly increasing rows from left to right.

Its weight is  $\operatorname{wt}(T) = (\mu_1, \dots, \mu_n)$  with  $\mu_i = \#$  letters i in T

### Example

$$T = \begin{bmatrix} 1 & 1 & 2 & 4 \\ 2 & 3 & 5 \\ \hline 3 & 4 \\ \hline 5 \end{bmatrix}$$

with weight wt(T) = (2, 2, 2, 2, 2) and reading

$$w(T) = 4211532435$$

### Theorem

- **1**  $K_{\lambda,\mu}(1)$  is equal to the number of SST of shape  $\lambda$  and weight  $\mu$ .
- **②**  $K_{\lambda}(1)$  is equal to the number of homogeneous SST of shape  $\lambda$ , i.e. with weight  $\mu = \left(\frac{|\lambda|}{n}, \ldots, \frac{|\lambda|}{n}\right)$ .

#### For Assertion 3:

 sophisticated geometric or algebraic proofs (Intersection cohomology of nilpotent orbits, affine Kazhdan-Lusztig polynomials, Brylinsky-Kostant filtration).

#### Theorem

- **1**  $K_{\lambda,\mu}(1)$  is equal to the number of SST of shape  $\lambda$  and weight  $\mu$ .
- **②**  $K_{\lambda}(1)$  is equal to the number of homogeneous SST of shape  $\lambda$ , i.e. with weight  $\mu = \left(\frac{|\lambda|}{n}, \ldots, \frac{|\lambda|}{n}\right)$ .

#### For Assertion 3:

- sophisticated geometric or algebraic proofs (Intersection cohomology of nilpotent orbits, affine Kazhdan-Lusztig polynomials, Brylinsky-Kostant filtration).
- a combinatorial proof and description by Lascoux & Schützenberger...

#### Theorem

- **1**  $K_{\lambda,\mu}(1)$  is equal to the number of SST of shape  $\lambda$  and weight  $\mu$ .
- **②**  $K_{\lambda}(1)$  is equal to the number of homogeneous SST of shape  $\lambda$ , i.e. with weight  $\mu = \left(\frac{|\lambda|}{n}, \dots, \frac{|\lambda|}{n}\right)$ .

#### For Assertion 3:

- sophisticated geometric or algebraic proofs (Intersection cohomology of nilpotent orbits, affine Kazhdan-Lusztig polynomials, Brylinsky-Kostant filtration).
- a combinatorial proof and description by Lascoux & Schützenberger...
- ...which extends in fact to any partition  $\mu$  (Kostka polynomial).

# II. The charge statistics

#### Examples of row insertions

Cocyclage from T of weight  $\mu$ :

#### Theorem

Cocyclage operations eventually ends to the unique row  $R_{\mu}$  of weight  $\mu$ 

### **Definition**

Set  $\mathrm{ch}_n(T)=\|\mu\|-I=\mathrm{ch}_n(R_\mu)-I\geq 0$  where I the number of cocyclage operations needed to get  $R_\mu$  and

$$\|\mu\| = \sum_{i=1}^{n-1} (n-i)\mu_i.$$

## Theorem (LS 1980)

We have

$$\mathcal{K}_{\lambda,\mu}(q) = \sum_{T \in \mathcal{SST}(\lambda)_{\mu}} q^{\operatorname{ch}_n(T)}.$$

## Example

For  $\lambda=(2,1,0)$  and  $\mu=(1,1,1)$  we have

$$\begin{array}{c|cccc}
\hline
1 & 2 \\
\hline
3 & \rightarrow & \boxed{1} & 2 & \boxed{3} \\
\hline
\hline
1 & 3 & \rightarrow & \boxed{1} & 2 & \boxed{3} \\
\hline
2 & \rightarrow & \boxed{3} & \rightarrow & \boxed{1} & 2 & \boxed{3}
\end{array}$$

hence

$$\operatorname{ch}_n\left(\begin{array}{|c|c|c} \hline 1 & 3 \\ \hline 2 & \end{array}\right) = 1 \text{ and } \operatorname{ch}_n\left(\begin{array}{|c|c|c} \hline 1 & 2 \\ \hline 3 & \end{array}\right) = 2$$

thus

$$K_{(2,1,0)}(q) = q + q^2.$$

Let  $w = x_1 \cdots x_\ell$  be a word on  $\{1 < \cdots < n\}$ .

For each i = 1, ..., n-1, form  $w_i$  the subword of w contained only the letters i and i + 1.

 $w_i^{\mathrm{red}} = (i+1)^{\varepsilon_i(w)} i^{\varphi_i(w)}$  is obtained by recursive deletion of factors i(i+1) in  $w_i$ .

Example: w = 2421153243135 with n = 5

- **1**  $w_1 = 21(12)1$  and  $w_1^{\text{red}} = 211$ . Thus  $\varepsilon_1(w) = 1$  and  $\varphi_1(w) = 2$
- ②  $w_2 = 2(23)(23)3$  and  $w_2^{\text{red}} = \emptyset$ . Thus  $\varepsilon_2(w) = \varphi_2(w) = 0$ .
- **1**  $w_3 = 4(34)3$  and  $w_3^{\mathrm{red}} = 43$ . Thus  $\varepsilon_3(w) = \varphi_3(w) = 1$ .

### Theorem (LLT 1995)

When T is homogeneous, we have

$$ch_n(T) = \sum_{i=1}^{n-1} (n-i)\varepsilon_i(w(T)).$$

## Example

For  $\lambda = (2, 1, 0)$  and  $\mu = (1, 1, 1)$  we have

$$\operatorname{ch}_n\left(\begin{array}{|c|c|}\hline 1 & 2\\\hline 3 & \end{array}\right) = \operatorname{ch}_n(213) = (3-1) \times 1 + (3-2) \times 0 = 2$$
 $\operatorname{ch}_n\left(\begin{array}{|c|c|}\hline 1 & 3\\\hline 2 & \end{array}\right) = \operatorname{ch}_n(312) = (3-1) \times 0 + (3-2) \times 1 = 1$ 

thus

$$K_{(2,1,0)}(q) = q + q^2.$$

# Generalized exponents in type C and beyond

Start from

$$\prod_{1 \leq i \leq j \leq n} \frac{1}{1 - qx_i x_j} \prod_{1 \leq i < j \leq n} \frac{1}{1 - q \frac{x_i}{x_j}} = \sum_{\beta \in \mathbb{Z}^n} \mathcal{P}_q^{C_n}(\beta) x^{\beta}.$$

and replace  $\mathfrak{S}_n$  by the group  $W_n$  of signed permutations on  $\{1,\overline{1},2,\overline{2},\ldots,n,\overline{n}\}$ 

$$w(x) = y \iff w(\overline{x}) = \overline{y}.$$

It acts on  $\mathbb{Z}^n$  by

$$w \cdot (\beta_1, \dots, \beta_n) = (\beta'_1, \dots, \beta'_n)$$
 with  $\beta'_i = \begin{cases} \beta_{w(i)} \text{ if } w(i) > 0 \\ -\beta_{-w(i)}, \text{ otherwise} \end{cases}$ 

### **Definition**

For any partitions  $\lambda$  and  $\mu$ 

$$K_{\lambda,\mu}^{\mathcal{C}_n}(q) = \sum_{w \in W_n} \varepsilon^{\mathcal{C}_n}(w) \mathcal{P}_q^{\mathcal{C}_n}(w(\lambda + \rho) - \rho - \mu) \text{ and } K_{\lambda}^{\mathcal{C}_n}(q) = K_{\lambda,0}^{\mathcal{C}_n}(q)$$

In fact  $K_{\lambda}^{C_n}(1)$  gives the dimension of the zero weight space in the irreducible  $\mathfrak{sp}_{2n}(\mathbb{C})$ -representation indexed by  $\lambda$ . Thus :

- $K_{\lambda}^{C_n}(1) = \#$  King tableaux of shape  $\lambda$  and zero weight,
- ullet  $K_{\lambda}^{\mathcal{C}_n}(1)=\#$  Kashiwara-Nakashima tableaux of shape  $\lambda$  and zero weight
- $K_{\lambda}^{C_n}(1)=\#$  Littelmann paths of shape  $\lambda$  starting and ending at 0.
- This generalizes to any weight.

### **Problem**

Find a charge for type  $C_n$  which proves the positivity of the coefficients.

From Cauchy and Littlewood identities on symmetric functions one gets:

## Theorem (C.L., C. Lenart)



$$rac{\mathcal{K}_{\lambda}(q)}{\prod_{i=1}^n (1-q^i)} = \sum_{\gamma \in \mathcal{P}_n} q^{|\gamma|} c_{\gamma,\gamma^*}^{\lambda}.$$

### Here

- $\gamma^* = (0, \gamma_1 \gamma_2, \dots, \gamma_1 \gamma_n),$
- ullet the  $c_{\gamma,\gamma^*}^{\lambda}$ 's are tensor product multiplicities,
- the  $c_{\nu}^{\lambda}$ 's are the branching coefficients appearing in the restrictions  $V(\nu)\downarrow_{\mathfrak{sp}_{2n}}^{\mathfrak{gl}_{2n}}$

From Cauchy and Littlewood identities on symmetric functions one gets:

## Theorem (C.L., C. Lenart)

1

$$rac{\mathcal{K}_{\lambda}(q)}{\prod_{i=1}^n(1-q^i)} = \sum_{\gamma \in \mathcal{P}_n} q^{|\gamma|} c_{\gamma,\gamma^*}^{\lambda}.$$

2

$$\frac{\mathit{K}^{\mathit{C}_{n}}_{\lambda}(q)}{\prod_{i=1}^{n}(1-q^{2i})} = \sum_{\nu \in 2\mathcal{P}_{2n}} q^{|\nu|/2} c_{\nu}^{\lambda}$$

### Here

- $\gamma^* = (0, \gamma_1 \gamma_2, \dots, \gamma_1 \gamma_n),$
- the  $c_{\gamma,\gamma^*}^{\lambda}$ 's are tensor product multiplicities,
- the  $c_{\nu}^{\lambda}$ 's are the branching coefficients appearing in the restrictions  $V(\nu)\downarrow_{\mathfrak{sp}_{2n}}^{\mathfrak{gl}_{2n}}$

• The combinatorial description of  $K_{\lambda}(q)$  (for  $\mathfrak{gl}_n$ ) with the  $\varepsilon_i$ 's easily follows from 1.

## Example

$$\mathcal{K}_{\boxminus}^{\mathcal{C}_{\infty}}(q) = \sum_{k>1} q^{2k} = rac{q^2}{1-q^2}.$$

16 / 20

- The combinatorial description of  $K_{\lambda}(q)$  (for  $\mathfrak{gl}_n$ ) with the  $\varepsilon_i$ 's easily follows from 1.
- Very more difficult for  $\mathfrak{sp}_{2n}$  because  $c_{\nu}^{\lambda}$  has a simple description only when  $\nu_k=0$  for k>n where

$$c_{
u}^{\lambda} = \sum_{\delta \in \mathcal{P}_{n}^{\boxminus}} c_{\lambda,\delta}^{
u}$$
 .

### Example

$$\mathcal{K}_{\boxminus}^{\mathcal{C}_{\infty}}(q) = \sum_{k>1} q^{2k} = rac{q^2}{1-q^2}.$$

- The combinatorial description of  $K_{\lambda}(q)$  (for  $\mathfrak{gl}_n$ ) with the  $\varepsilon_i$ 's easily follows from 1.
- Very more difficult for  $\mathfrak{sp}_{2n}$  because  $c_{\nu}^{\lambda}$  has a simple description only when  $\nu_k=0$  for k>n where

$$c_{
u}^{\lambda} = \sum_{\delta \in \mathcal{P}_{n}^{\boxminus}} c_{\lambda,\delta}^{
u}$$
 .

ullet Only gets a description of the formal series  $K_{\lambda}^{\mathcal{C}_{\infty}}(q) = \lim_{n \to +\infty} K_{\lambda}^{\mathcal{C}_{n}}(q)$ .

## Example

$$\mathcal{K}_{\boxminus}^{\mathcal{C}_{\infty}}(q) = \sum_{k>1} q^{2k} = rac{q^2}{1-q^2}.$$

A "King tableau" T of shape  $\lambda=(\lambda_1,\ldots,\lambda_n)$  is a filling of  $\lambda$  by letters of

$$\{1 < 2 < 3 < 4 < \dots < 2n-1 < 2n\}$$

s.t.

- T is semistandard,
- The letters in row i are greater to 2i 1

Such a tableau is distinguished when we have moreover

•  $\varphi_i(T) = 0$  for any odd i

A "King tableau" T of shape  $\lambda=(\lambda_1,\ldots,\lambda_n)$  is a filling of  $\lambda$  by letters of

$$\{1 < 2 < 3 < 4 < \dots < 2n-1 < 2n\}$$

s.t.

- T is semistandard,
- The letters in row i are greater to 2i 1

Such a tableau is distinguished when we have moreover

- $\varphi_i(T) = 0$  for any odd i
- $\varepsilon_i(T)$  is even for any odd i.

## Theorem (C. L. and C. Lenart)

We have

$$\mathcal{K}_{\lambda}^{\mathcal{C}_n}(q) = \sum_{\substack{T \ distinguished \ of \ shape \ \lambda}} q^{\mathrm{ch}^{\mathcal{C}_n}(T)}$$

where

$$\operatorname{ch}^{C_n}(T) = \sum_{i=1}^{2n-1} (2n-i) \left\lceil \frac{\varepsilon_i(T)}{2} \right\rceil.$$

## Corollary

- $K_{\lambda}^{C_n+1}(q) K_{\lambda}^{C_n}(q)$  has nonnegative coefficients.
- 2 Determination of the highest and lowest monomials in  $K_{\lambda}^{C_n}$ .
- **3** Simple formulas for particular partitions  $\lambda$ .

#### Futures directions

- lacktriangle Other classical types for finite n.
- **②** Generalization to any dominant weight  $\mu \neq 0$ .
- Connect to a conjectural charge statistics defined on KN tableaux from cyclage operation.
- Parabolic cases (positivity not even known in general).