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Simplicial complexes

(Finite abstract) simplicial complexes (also known as hereditary
collections) are structures of the form H = (V ,H), where:

V is a finite nonempty set;

H ⊆ 2V is nonempty and closed under taking subsets.

They admit a unique (up to homeomorphism) realization as
subspaces of an euclidean space, and this provides a
topological/geometric viewpoint.
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Circuits

Let H = (V ,H) be a simplicial complex

X ⊆ V is independent if X ∈ H, otherwise it is dependent

A minimal dependent subset is a circuit

Circuits determine the complex: X ⊆ V is independent if and
only if it contains no circuit
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Matroids

A simplicial complex H = (V ,H) is a matroid if

(I , J ∈ H ∧ |I | = |J|+ 1)⇒ ∃i ∈ I \ J : J ∪ {i} ∈ H

Simple matroids arise from a geometric lattice (i.e.
semimodular and atomistic) L, with atoms of L as points and
simplexes determined by the chains in L

This lattice is actually the lattice of flats of H (the closed
subsets of V for a certain closure operator)

The set of independent columns of a matrix over a field
constitutes a matroid, but not every matroid is field
representable
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An example: graphic matroids

Let Γ = (V ,E ) be a finite undirected graph

Given X ⊆ E , we write X ∈ F iff X is a forest

Then H(Γ) = (E ,F ) is the graphic matroid defined by Γ

Its circuits are the cycles of Γ
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Geometry of finite groups

For every finite group G and every n ≥ 1, we can define a
matroid Dn(G ) (Dowling, early 70s)

If m, n ≥ 3, then Dn(G ) ∼= Dm(H) iff m = n and G ∼= H

Dowling geometries play the role of universal objects in
matroid theory (Kahn and Kung 1982)

They are somewhat analogous to projective geometries, but
based on groups instead of fields
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Subset, partition, cross-section

Let [n] = {1, . . . , n}
Let π be a partition of I ⊆ [n]

Given maps f , h : I → G , we write

f ∼π h if f |πi ∈ G (h|πi ) for each block πi of π.

[f ]π is the equivalence class of f
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The Dowling order

SPCn(G ) is the set of triples (I , π, [f ]π), where I ⊆ [n], π is a
partition of I and f : I → G is a map

The Dowling order is given by refinement and omission of
blocks

That is, given two SPCs (I , π, [f ]π) and (J, τ, [h]τ ), we define
(I , π, [f ]π) ≤D (J, τ, [h]τ ) if:

1) J ⊆ I
2) every block of τ is a union of blocks of π
3) if πi is a block of π contained in J, then f |πi ∈ G (h|πi )
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The Dowling lattice

Under the Dowling order, SPCn(G ) is a geometric lattice
Qn(G )

The matroid defined by Qn(G ) is the Dowling geometry
Dn(G )

The Dowling geometries are not in general field representable
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Wreath products

Let PTn be the monoid of partial transformations of [n]

Let Sn be the group of permutations of [n]

An n × n matrix over G is monomial if each row and column
contains exactly one element of G and the rest are equal to 0

An n × n matrix over G is column monomial if each column
contains at most one element of G and the rest are equal to 0

G o Sn is the multiplicative group of n × n monomial matrices
over G

G o PTn is the multiplicative group of n × n column monomial
matrices over G
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Connection with semigroups

If M is a monoid and a ∈ M, then Ma is a principal left ideal
of M

Principal left ideals under inclusion correspond to the usual
ordering of R-classes for the famous Green relation R

Theorem (Margolis, Rhodes and Silva 2017)

The poset of principal left ideals of the monoid G o PTn is a lattice
isomorphic to the opposite of the Dowling lattice Qn(G ).
Furthermore, the usual action of G o Sn on Qn(G ) is equivalent to
the action of G o Sn considered as the group of units of G o PTn on
its lattice of principal left ideals.
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An alternative partial order

Independently, a different order on SPCn(G ) was defined by
Rhodes in 1968

The Rhodes order is based on containment of sets and
partitions:

That is, (I , π, [f ]π) ≤R (J, τ, [h]τ ) if

1) I ⊆ J,
2) every block of π is contained in a (necessarily unique) block of

τ ,
3) [h|I ]π = [f ]π.

We denote this poset by Rn(G )
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The Rhodes lattice

Proposition (MRS 2017)

(i) Rn(G ) is a ∧-semilattice.

(ii) Rn(G ) is a lattice if and only if n = 1 or G is trivial.

We turn Rn(G ) into a lattice R̂n(G ) by adjoining a top
element T

This lattice is not in general geometric
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Also a connection with semigroups

Let Bn(G ) be the Brandt inverse semigroup over [n] with
structure group G

We can describe Bn(G ) as the multiplicative semigroup of
n× n matrices over G ∪ {0} having at most one nonzero entry

Theorem (MRS 2017)

The lattice of aperiodic inverse subsemigroups of Bn(G ) containing
0 is isomorphic to the Rhodes lattice R̂n(G )
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A new concept of independence

In 2011, Izhakian and Rhodes develop a new concept of
independence for boolean matrices

Independence of columns in M ∈ Mm×n(B) may be defined
using the superboolean semiring SB = {0, 1, 2} but admits an
alternative combinatorial description:

The column subset C is independent if M[ ,C ] contains a
square submatrix congruent to some lower unitriangular matrix

1 0 0 . . . 0
? 1 0 . . . 0
? ? 1 . . . 0
...

...
...

. . .
...

? ? ? . . . 1
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Boolean representable simplicial complexes

A simplicial complex is boolean representable (BRSC) if it can
be realized as the set of subsets of independent columns of
some boolean matrix

Alternatively, BRSCs are the simplicial complexes which are
determined by chains in their lattice of flats (or any other
lattice, for that matter), with respect to an appropriate
sup-generating set

Every matroid is a BRSC

The lattice of flats Fl(H) is atomistic, but needs not be
semimodular
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Example: T2

Let V = 1234 and H = P≤2(V ) ∪ {123, 124}. Then0 0 1 1
0 1 1 1
1 1 0 1


is a boolean matrix representation of T2 = (V ,H):

1

2

3 4
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Example: T2

The lattice of flats is

V

∅

1 2 3 4

12

hence not semimodular (T2 is not a matroid)
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Example: T2

But T2 is also recognized by the smaller lattice

4

•

1 3

2

where the points label a sup-generating set.
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A different geometry

Theorem (MRS 2017)

The BRSC Hn(G ) defined by the Rhodes lattice R̂n(G ) is a matroid

Theorem (MRS 2017)

Let m, n > 1 and let G ,H be finite nontrivial groups. Then the
following conditions are equivalent:

(i) R̂n(G ) ∼= R̂m(H);

(ii) Ĥn(G ) ∼= Ĥm(H);

(iii) n = m and G ∼= H.
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Gain graphs

Given a finite graph Γ and a group G , we construct a gain
graph by associating elements of G to the edges of Γ with the
help of an orientation:

Given an edge p −− q, we associate a label g ∈ G to the
directed edge p−→q, and in this case we label the opposite
edge q−→p by g−1
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Balanced cycles

The label of a (directed) cycle

p1
g1−→p2

g2−→· · · gm−1−→pm
gm−→p1

is g1 . . . gm ∈ G

The label of the cycle is well defined up to conjugacy and
inversion

In particular, the label being 1 does not depend on neither of
these factors

We define as balanced those cycles which have label 1.
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The frame matroid

Let ∆ be a gain graph. The frame matroid F (∆) can be defined
by its circuits:

a balanced cycle

the union of two unbalanced cycles sharing a vertex (tight
handcuffs)

the union of two vertex disjoint unbalanced cycles with a
minimal path joining them (loose handcuffs)

a fully unbalanced theta
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The lift matroid

The lift matroid L(∆) can also be defined by its circuits:

a balanced cycle

the union of two unbalanced cycles sharing a vertex (tight
handcuffs)

the disjoint union of two unbalanced cycles

a fully unbalanced theta
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Defining gain graphs

∆n(G ) is the gain graph obtained from the complete
multigraph |G |Kn by attributing all possible labels g ∈ G to
the |G | distinct edges connecting each pair of distinct vertices

∆′n(G ) is the gain graph obtained by adjoining to each vertex
of ∆n(G ) a loop labeled by some element g ∈ G \ {1}
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Dowling and frame, Rhodes and lift

Theorem (Zaslavsky 1991)

The Dowling matroid Dn(G ) is the frame matroid of the gain
graph ∆′n(G )

Theorem (MRS 2017)

The Rhodes matroid Hn(G ) is the direct sum of the uniform
matroid Un,n with the lift matroid of the gain graph ∆n(G )
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Dowling vs Rhodes

the Dowling the Rhodes
matroid Dn(1) matroid Hn(1)

dimension n − 1 2n − 2

size of a minimal 2n 2n−1 + n
lattice representation

minimum degree of a n 2n − 1
boolean matrix representation
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