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Expressibility of basic properties of
combinatorial polyhedra in FOL and extensions
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Abstract. Consider a first-order relational signature π3 with a binary
relation I and three unary predicate symbols P0, P1, and P2. Intuitively,
π3 is a language for three-dimensional combinatorial polyhedra: P0, P1,
and P3 hold, respectively, of the 0-, 1- and 2-polytopes of a polyhe-
dron, and I is an incidence relation for the polytopes. What properties
of polyhedra can be expressed in the first-order language π3? More gen-
erally, what properties of n-dimensional combinatorial can be expressed
in an appropriate signature πn (containing n unary predicate symbols
P0, P1, . . . , Pn−1 and a single binary relation I)? These problems, and
some natural generalizations, can be solved with basic techniques of finite
model theory.

How can we formally express certain properties of combinatorial polyhedra,
by which we understand polyhedra considered as incidence structures (as op-
posed to certain kind of spatial figures or regions)?

Definition 1. The first-order signature π3 consists of three unary relation sym-
bols V , E, and F , and one binary relation symbol I.

What properties of polyhedra can be express using π3? Can one express, for
example, that a finite π3-structure A satisfies Euler’s polyhedron formula, that
is, that |V A| − |EA| + |FA| = 2? What about the property of being a ho-
mology sphere (that is, every cycle is a boundary)? What about the property
that ∂ ◦ ∂ ≡ ∅? And can we express that an π3-structure comes from a convex
three-dimensional polyhedron?

The answer to most of these questions is “no”.

Theorem 1. The properties of (1), being a homology sphere, (2) satisfying Eu-
ler’s polyhedron formula, (3) satisfying ∂k(∂k+1(c) = ∅ for all (k + 1)-chains c,
(d) being the skeleton of a convex polyhedron are all not expressible by a first-
order sentence of the signature π3.

Some of the these properties can, however, be expressed with certain exten-
sions of first-order logic, which we shall see.

The aforementioned properties properties are straightforwardly computable:
given a finite π3-structure A, one can obviously compute in a finite amount of
time whether A satisfies Euler’s polyhedron formula, whether it satisfies the
property that ∂ ◦ ∂ ≡ ∅, and whether it is the skeleton of a convex polyhedron.

On Bounded Functional Interpretations

Gilda Ferreira
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A unified view over well-known interpretations of intuitionistic logic, such as Gödel’s
dialectica interpretation [6], Diller-Nahm interpretation [1] and Kreisel’s modified realiz-
ability [7] was achieved through a parametrised interpretation in the intuitionistic logic
context [8] but also, very elegantly, in the linear logic setting (see [10], [9] and [3]).

In this talk we report on work in progress concerning a general framework to the
unification of the bounded interpretations of intuitionistic logic. This unification should
include the known bounded functional interpretations whose bounds occur at the level of
the interpretation of formulas, namely: bounded functional interpretation [5], bounded
modified realizability [4] and confined modified realizability [2].

Similarly to the study of the interpretations that focuses in precise witnesses, in the
bounded environment we also outline two different approaches towards the unification.
One in the context of intuitionistic logic and the other via intuitionistic linear logic.

This is joint work with Paulo Oliva.
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(The latter claim is not immediately obvious; one needs to appeal to a basic
result known as Steinitz’s theorem for that. Steinitz’s theorem will be discussed
later.) Indeed, it is clear that one can compute most of these properties in time
polynomial in the cardinality |A| of the structure A. Fagin’s theorem [1] (which
says, roughly, that existential second-order logic captures the complexity class
NP) then implies that all these properties of finite π3-structures can be captured
in existential second-order logic. This investigation aims to place these properties
somewhere between first-order logic and ∃-SOL.

(These questions arose from a study of the philosophy of mathematics of
Imre Lakatos [2] carried out in the author’s dissertation [3].)
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Abstract

In 2007 and 2008 Terence Tao wrote on his blog essays about the finitization of prin-
ciples in analysis. His goal is to find for infinite qualitative “soft analysis” statements
equivalent finitary quantitative “hard analysis” statements. These equivalences are
usually proved using a contradiction and sequentially compactness argument. Tao’s
two prime examples are:

• a finitization of the infinite convergence principle (every bounded monotone
sequence of real numbers converges);

• an almost finitization of the infinite pigeonhole principle (every colouring of the
natural numbers with finitely many colours has a colour that occurs infinitely
often).

We take a logical look at Tao’s essays and make mainly two points:

• the finitizations can be done in a systematic way using proof theoretical tools,
namely Gödel (Dialectica) functional interpretation;

• Heine-Borel compactness arguments are preferable to sequentially compactness
arguments, for reverse mathematics reasons.

These points are then illustrated in a case study: the almost finitization of the
infinite pigeonhole principle.
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Abstract

Kleene algebra [1], (KA) normally called the algebra of regular events, is an alge-
braic system that axiomatically captures properties of several important struc-
tures arising in Computer Science, and has been applied in several contexts
like automata and formal languages, semantics and logic of programs, design
and analysis of algorithms, among others. Kleene algebra with tests (KAT) [2]
extends KA with an embedded Boolean algebra and is particularly suited for
the formal veri�cation of propositional programs. In particular, KAT subsumes
propositional Hoare logic (PHL) [3], a weaker Hoare logic without the assign-
ment axiom. This part of our formalization is described in detail by Pereira and
Moreira in [4].

Here we describe a formalization of a fragment of formal languages in the
Coq theorem prover. This formalization's goal is to provide a Coq library that
contains proof tactics for automatically proving equivalence of KA and KAT's
equational logics. Having these tactics available requires the codi�cation of KA
and KAT, and also providing proofs that they are complete for their standard
models, that is, regular languages and Kozen's automata on guarded strings [5],
respectively. In order to provide a proof that regular languages are a model of
KA, we have encoded regular languages, by extending Coq's Ensembles library
of basic set theory with new inductive types for the concatenation and Kleene's
star operations, based in the work of J.C. Filliâtre [6].

In what concerns to KAT, besides the Coqmodules describing KAT's signature
and of proofs of its main properties, we have encoded PHL deductive rules as
KAT expressions and proved that they are KAT theorems. We have also proved
correct an annotated version of PHL's deductive rules in our framework.

Currently, we are implementing a decision procedure for the equivalence of KA
terms, that leads to a decidable procedure for the equational theory of KA, based

? This work was partially funded by Funda cão para a Ciência e Tecnologia (FCT) and
program POSI, and by RESCUE project PTDC/EIA/65862/2006.

?? David Pereira is funded by FCT grant SFRH/BD/33233/2007

on the notion of Brzozowski's derivative [7] of a regular expression. This approach
di�ers from the standard approach for deciding regular expression equivalence in
the sense that it does no rely on comparing the minimal deterministic automata
corresponding to the regular expressions being tested. We have encoded the
notion of derivative of a regular expression and also proved that the derivative of
a regular expression correspond to the left-quotient of the language of the original
regular expression. We are currently proving that the number of derivatives
of a set of regular expressions modulo ACI (associativity, commutativity and
idempotence) is �nite. This proof will then serve as an argument for a general
recursive function that implements Brzozowski's decision procedure [8]. Since
this decision procedure cannot be described by a structurally recursive function,
we don't have program termination for free. In Coq, a standard solution is to
use as an arti�cial argument that is structurally decreasing and that re�ects the
behaviour of the decision procedure. In particular, we are interested in using the
known upper-bounds of the number of derivatives of a regular expression to be
such argument. We intend to extend this procedure to KAT by using Kozen's
co-algebraic approach [9], where derivatives of regular expressions were extended
to KAT.

We are also particularly interested in Schematic KAT (SKAT) [10], a special-
ization of KAT involving an augmented syntax to handle �rst-order constructs
and restricted semantic actions whose intended semantics coincides with the
semantics of �rst-order �owchart schemes over a ranked alphabet Σ. SKAT pro-
grams can be transformed into KAT expressions, by converting SKAT's logical
constructs into KAT Boolean tests, and converting SKAT variable assertions to
KAT program symbols. In this setting, we can prove the correctness of programs
using full �rst-order Hoare logic within our formalization, by manually convert-
ing SKAT programs into KAT expressions. We intend to automatize this task,
following the lines of Aboul-Hosn and Kozen in the development of the KAT-ML
[11] interactive theorem prover.

Our motivation for this work comes from the fact that we envision the usage
of (an extension of) our formalization as the formal system where we can be
encode and prove proof obligations in the context of Design by Contract [12] for
the Proof Carrying Code [13] paradigm.
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Many real-world systems are more suitably represented as infinite, rather
that finite-state transition systems. Some potential sources of infinity include
unbounded number of processes, unbounded stacks/queues, and unbounded nu-
meric variables. The past decade saw a lot of effort in extending the tools and
techniques of model checking to handle infinite-state systems. The main hurdle
one has to face in such an endeavor is that in general model checking infinite-state
systems is undecidable. Broadly speaking, there are two approaches to circum-
vent such a problem. The first approach concerns finding subclasses of infinite
systems with decidable properties of interests (e.g. safety and liveness). Such
subclasses include pushdown systems, prefix-recognizable systems, and timed
systems. At the other extreme, one might start with a broad class of infinite sys-
tems and develop semi-algorithms of various kinds (e.g. ones that are guaranteed
to terminate but might also give a “don’t know” answer).

In this talk, we briefly present some results from a conference paper [6] and
some unpublished results from the PhD thesis of the first author. We consider the
generic class of automatic transition systems [2] whose domain is represented by a
set of words, while the transition relations are represented by (finite) synchronous
transducers over words. Although model checking first-order logic over such a
class is decidable (e.g. see [2]), it is known that checking safety, liveness, and,
more generally, LTL-expressible properties is undecidable.

We are primarily interested in checking liveness and LTL-expressible prop-
erties. Define recurrent reachability over automatic transition systems to be the
problem of checking whether there exists an infinite path in the given auto-
matic transition system S from a given configuration s0 (i.e. word) that visits a
given regular “target” set T infinitely often. We first make an easy observation
that using the classical Vardi-Wolper conversion of LTL formulae into Büchi
automata [7], liveness and LTL-expressible properties over automatic transition
systems can be effectively (and even quite “efficiently”) reduced to the problem
of recurrent reachability.

To alleviate the problem of undecidability for recurrent reachability, we then
propose a semantic (i.e. not necessarily decidable) condition (C1) on the general
class of automatic transition systems: that the transitive closure relation →+ is
effectively regular and that a transducer R+ for→+ is computable from the given
input transducers. We shall later see that such a condition is not too restrictive
for two reasons: 1) many decidable subclasses of infinite systems satisfy this
condition, and 2) many quite successful semi-algorithms have been implemented
whose goal is to compute R+. The following was shown in [6].
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Theorem 1 ([6]). Given an automatic transition system S satisfying (C1) (i.e.
a transducer R+ for →+ is available as input), an input word w, and a regular
set T , the problem of recurrent reachability is solvable in time O(|R+|3 × |T |2).
Furthermore, an NFA of size O(|R+|2×|A|) recognizing the set of all w satisfying
the recurrent reachability property is computable in that time bound.

We shall emphasize now that this theorem is by no means obvious since in
proving it one has to take into account non-looping infinite paths, i.e. infinite
paths that do not visit any configurations twice. A restriction, considered in the
literature, to length-preserving transducers (i.e., (s, s′) ∈ R implies |s| = |s′)
reduces recurrent reachability to reachability; however, we do not make this
assumption, as many interesting classes of infinite-state transition systems do
not satisfy it (e.g., pushdown systems, and other examples listed below). The
proof of the theorem combines Ramsey theory techniques to obtain a compact
representation of an infinite path with automata techniques.

We apply the above theorem to solving LTL model checking over specific
classes of automatic transition systems satisfying (C1). In particular, our results
apply to the following classes:

– Pushdown systems. In this case, we derive an optimal upper bound which is
exponential in the size of the LTL formula and polynomial in the size of the
system. This matches the known bound of [4].

– Prefix-recognizable systems. In this case, we also match an optimal upper
bound of [5] which is exponential in both the size of the LTL formula and
the size of the system.

– Reversal-bounded counter systems. In this case, we derive an algorithm which
is double-exponential in the size of the LTL formula (but single-exponential
in the size of the specification if it is given as a Büchi automaton) and single-
exponential in the size of the system and the number of counters. This upper
bound on the problem is new (decidability was obtained in [3]), but it is open
whether such a bound is optimal.

– Reversal-bounded counter systems with discrete-timed clocks and one extra
real counter. In this case, we derive an algorithm which is double exponential
in the size of the LTL formula and the number of clocks, but is single-
exponential in the size of the system and the number of counters. Even
decidability for this class of systems was open (see [3]). The upper bound is
not known to be tight.

We have also obtained an initial experimental results. We have implemented
a prototype of our algorithm in combination with the tool FAST [1] restricted
to the generic class of counter systems with Presburger-definable transition rela-
tions. We have successfully verified a particular liveness property called freedom
from global starvation for many cache-coherence protocols in a fully-automatic
way. Most were verified in under ten minutes, the bulk of the time were spent
in computing by the tool FAST [1] for computing transducers for the transitive
closure relations.
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