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A topological space is called coherent if is sober, if any

finite (including empty) meet of compact open sets is

compact, and the compact open sets are a base for the

topology.

Examples of coherent spaces include 2T and ST (S =

Sierpinski space) for any set T . We will see more ex-

amples later.
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Coherent spaces are characterized by the following: If

M is the class of compact open sets and N consists of

the complements of the sets in M, then the topology

for which M∪N is a subbase is compact Hausdorff (and

totally disconnected). [Hochster]

If X is coherent, M the family of compact opens and N
their complements, it follows from the characterization

above that the topology for which N is a basis is also

coherent. This might be called the dual topology.
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For any partial equational theory Th (it needn’t be es-

sentially algebraic) and any model A both the space of

subobjects with the “exclusion topology” or the “inclu-

sion topology” and the space of quotient objects with

the similar topologies (called the “Zariski” and “Scott”

topologies, resp.), are coherent.

By the exclusion topology, we mean that the sets

M(a) = {B ⊆ A | a /∈ B}

form a base, while the inclusion topology is the dual.

The Zariski topology has for basis

M(a, a′) = {(a, a′) ∈ A×A | (a.a′) /∈ E}

where E is the congruence kernel of the quotient map-

ping. The Scott topology is dual.
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The prime ideal spectrum of a ring is also coherent with

either the Zariski or Scott topology.

In the topology with basis M ∪ N , the sets in M are

now closed as well as compact and hence satisfy the

finite intersection property. If U is open in M-topology

it remains open in the stronger one and hence we have:

PROPOSITION. Suppose that {Mα} ⊆ M and that U

is open in X. If
∩
Mα ⊆ U , then there is a finite set

α1, · · · , αn of indices such that

n∩
i=1

Mαi ⊆ U

-4-



If X is any topological space and {Aα} is any collection

of subspaces, we have an ordinary intersection
∩
Aα and

their localic intersection
∧
Aα. The latter comes about

as follows.

If O(X ) is the open set lattice of X, every subset A ⊆ X

gives an equivalence relation EA on O(X ) defined by

UEAV if U ∩ A = V ∩ A. Then EA is a congruence on

the frame (= ∨-
∧

lattice) O(X ). The sup of the EAα

in the lattice of congruences is the localic meet of the

Aα.

It is trivial to see that
∧
Aα ⊆

∩
Aα, but the inclusion is

often strict.
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The main result of this talk is:

THEOREM. Suppose X is coherent and {Un} is a

countable collection of open sets in X. Then
∩
Un =∧

Un.

In the rest of this talk, I will sketch as much of the

proof as I can. The main tool in the proof is the fact

that there is a one-one correspondence between frame

congruences on O(X ) and nuclei.
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A nucleus is a function j : O(X ) → O(X ) that is ex-

pansive (U ⊆ j(U)), idempotent, and preserves finite

intersection. Given a congruence E, you get a nucleus

by

j(U) =
∪
{V | UEV }

and, given a nucleus j, you get a congruence E by

letting UEV when j(U) = j(V ) [Johnstone, Stone

Spaces].

To prove the main theorem, suppose A =
∩
Un and

that Un =
∪
σ∈Σn Mn,σ with each Mn,σ ∈ M. Let L =∧

Un and denote by jn, jA, and jL, resp. the nuclei

corresponding to Un, A, and L. By definition, jL =
∨
jn,

the sup taken in the lattice of nuclei. Since A ⊆ Un for

all n, we see that jn ≤ jA whence jL ≤ jA.
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By a choice function, we mean a map ξ : N →
∪
Σn

such that ξ(n) ∈ Σn for all n > 0. If ξ is a choice

function, then from Mn,ξ(n) ⊆ Un, it follows that∩∞
n=1Mn,ξ(n) ⊆ A.

If we suppose that L $ A, then jL � jA. Thus there

is an open set V such that jL(V ) $ jA(V ) and hence

there is an M0 ∈ M with M0 ⊆ jA(V ) while M0 ̸⊆ jL(V ).

This last implies that for all n > 0, M0 ̸⊆ jn(V ) which,

we will show, leads to a contradiction.
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LEMMA. Suppose that M ∈ M with M ̸⊆ jL(V ). Then

for each n > 0, there is a σ ∈ Σn such that M ∩Mn,σ ̸⊆
jL(V ).

Since M ̸⊆ jL(V ) = j2L(V ) and jL =
∨
jn, we see that

M ̸⊆ jn(jL(V )) and hence M ∩ Un ̸⊆ jL(V ). But Un =∪
σ∈Σn Mn,σ so there must be some σ ∈ Σn with M ∩

Mn,σ ̸⊆ jL(V ).
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By using this lemma we can inductively construct a

sequence ξ(1), ξ(2), . . . , ξ(n), . . . of elements of Σ such

that ξ(n) ∈ Σn and that for each n > 0,

M0 ∩M1,ξ(1) ∩M2,ξ(2) ∩ · · · ∩Mn,ξ(n) ̸⊆ jL(V )

Finish the proof by applying the proposition on Page 4

to conclude that M0 ∩
∩∞
n=1Mn,ξ(n) ̸⊆ jL(V ) and there-

fore M0 ∩
∩∞
n=1Mn,ξ(n) ̸⊆ V . It follows that M0 ∩A ̸⊆ V

and hence M0 ̸⊆ jA(V ), contrary to assumption.
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