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A Quillen model structure on a category &
involves three classes of morphisms -
weak equivalences, fibrations, and cofibrations
- which obey some weak factorization axioms.
Quillen showed that these provide a good
framework for describing and working with a
universal homotopy functor £ — Ho(&) which
inverts all the weak equivalences.

Gph denotes our category of directed graphs.
After describing graph covering morphisms and
some related weak factorization systems, we
describe two model structures on Gph - one
based on cycles and the other on infinite walks.
We calculate the associated homotopy cate-
gories and relate them to the study of
zeta series, spectra, and dynamical systems of
finite graphs.

Joint work with Aristide Tsemo.
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Categories of graphs?

There are many definitions of graph, designed
to fit many different situations.

e What objects should be allowed?

loops, multiple edges, finite, ...7?

e What morphisms should be allowed?

collapsing or not collapsing?

Since the definitions don't agree, it seems im-
portant to choose one with generality and ab-
straction, and stick with it.

We want a category of graphs

e close to many applications

e able to “emulate” other categories of graphs
e good relations with combinatorics

e with some of the “feel” of generalized spaces

Bill Lawvere has a nice paper from 1989
Qualitative distinctions between

some toposes of generalized graphs,
giving a good idea of the choices available.



The category Gph

e Directed (and possibly infinite) graphs,
(with loops and multiple arcs allowed).

e A graph is a data-structure
X = (Xo, X1,s5,1)

with sets Xy of nodes and X; of arcs, and
with functions s,t : X; — X which specify
source node and target node of each arc.

e A graph morphism f : X — Y is a pair of
functions f1 . X1 — Yl and fo . XO — YO
such that so fi = foosandto f; = fpot.

e An arc a € X, leaves s(a) and enters t(a).

e A Joop is an arc a with s(a) = t(a).
Gph is a presheaf topos, on site

e The terminal object 1 has one node and arc.
e The initial object 0 has no nodes or arcs.

e ectc.



Examples and Concepts as Morphisms

e [he dot D has one node and no arcs.

e [ he arrow A has one arc and its source and
target nodes.

e The path P,, has nodes 0,...,n and arcs
(0,1),...,(n—1,n),
with s((¢ — 1,7)) =i —1 and t((i — 1,¢)) = ¢.

e The infinite walk N has a node n and arc
(n,n + 1) for each non-negative integer.

e The cycle C,, identifies nodes 0, n in P,,.

Define loops, paths, cycles, infinite walks, etc
as graph morphisms.

e The bouquet of loops B(S) on a set S.
An arc-labeling is a graph morphism to B(S5).

e A rooted tree T has one root node r, and a
unique path from r to x, for each node x.

v



Some classes of morphisms

Attaching a rooted forest F' (a sum of rooted
trees) to X means forming a new graph Xpg
as the pushout along a map of the roots to X.

Definition: A Whiskering is a graph mor-
phism formed by attaching some rooted forest.

For node z in graph X, let X(z,*) denote
the set of arcs with source x. Note that a
graph morphism f : X — Y gives a function
f:X(z,x) = Y(f(z),*), etc.

Definition: A Covering is a graph morphism
f: X — Y sothat f: X(z,%) — Y(f(x),*)
is bijective for all z € Xj.

They are important in algebraic graph theory
Also: A Surjecting is a graph morphism f :

X — Y sothat f: X(z,*) — Y(f(x),*) is
surjective for all x.






‘Homotopical Algebra” for Gph

e Quillen (1967) gave abstract axioms to work
with homotopy concepts in general categories.

But not necessarily homotopy as topological
deformation of structure.

e “Giving a model structure” means satisfying
these axioms.

e First choose a class of “weak equivalences”.

In most cases, they are chosen to preserve
some interesting invariant.

e For our “cycles” model structure we take the
Acyclic graph morphisms which neither create
nor destroy cycles.

e For our “walks” model structure we take the
graph morphisms which neither create nor de-

stroy walks.

e Goal: relevance to algebraic graph theory.






“Homotopy" factorization.

Definition: For morphisms £ and r, £ {7
(¢ is weakly orthogonal to ) means, for all f
and g,

X / - A
if /¢ r| commutes, then
Y Y
vy — 7 . B
X / - A
'\
/ r | commutes, some h.
4 Y
vy —9 . B

For a class F of morphisms, let

Ft={r:Fir}and TF={0: 01 F}






Definition: A weak factorization system Is
two classes £ and R such that £T = R and
L = "R and such that, for any morphism ¢,
thereexist /€ Land r € R withc=1ro0/.

The notion of weak factorization system has
become a part of homotopical algebra.

For a category with finite limits and colimits.
Quillen’s notion of “model category” can be
expressed via the following axioms

(learned from a paper of Joyal and Tierney).

Definition: A model structure is a triple
(C, W, F) of classes of morphisms satisfying

1) “three for two": if two of the three mor-
phisms a,b,a o b belong to W then so does
the third,

2) the pair (C,F) is a weak factorization sys-
tem (where C = CNW),

3) the pair (C,F) is a weak factorization sys-
tem (where £ =WnNF).



Two model structures for Gph

According to Hovey in Model Categories,

“It tends to be quite difficult to prove
that a category admits a model structure.
The axioms are always hard to check.”

Theorem: The “cycles’ model structure on
Gph has: W the Acyclics, C the Whiskerings,
and F the Surjectings.

Then F is Acyclic Surjectings, and C is T.F .

f Acylic means C,(f) : Cp(X) — Cn(Y) is
bijective for all n > 0, where C,(X) is the set
of graph morphisms from C,, — X.

Theorem: There is also a “walks’” model
structure on Gph with W inducing bijections
on walks, and with F = All.



Generating our “cycles” model

o F = J" where J = {s} with
s: D — A the “source” graph morphism.

o W= KT where K = {i,,j, : n > 0} with

i, : 0 — C,, the initial graph morphism, and
jn : C,, + C,, — C,, the natural morphism.

o F=I"withlI =JUK.
So F = Surjectings, and C = Whiskerings.

Cofibrations for our “cycles” model structure:

Proposition:
a) Whiskerings are cofibrations (and Acyclic).

b) If C is a sum of cycle graphs, then the in-
clusion X — X + C is a cofibration.

c) All graph morphisms between sums of cycle
graphs are cofibrations.

d) 0 — Z is not a cofibration.



Homotopy categories.

Definition: A homotopy functor on a model
category £ takes each weak equivalence to an
isomorphism.

Quillen describes a category and functor
v : & — Ho(€)

which is initial for homotopy functors on &.
Here, Ho(£) has the same objects as &£, and
so the universal definition determines Ho(€)
up to isomorphism of categories.

The universal definition of Ho(£) does not
involve the fibrations and cofibrations, but they

provide a kind of “scaffolding” to describe the
set of morphisms Ho(X,Y) for X and Y in €.

The function £(X,Y) — Ho(X,Y) is not
always surjective; general morphisms in Ho(€)
are zig-zag compositions of homotopy classes
of morphisms in £.

Two objects in £ are homotopy-equivalent
when they become isomorphic in Ho(&).



Fibrant/Cofibrant objects.

Object X in a model category £ is fibrant
when X — 1 is in F; dually, it is cofibrant
when 0 — X is in C.

A cofibrant replacement for X is f : X' — X
in W with X’ cofibrant. It is a full cofibrant
replacement when f is in  F. Dually for
fibrant and full fibrant replacements.

Each X has a full cofibrant and full fibrant
replacement. Also, a full fibrant replacement
of a cofibrant object is fibrant-cofibrant, etc.

Quillen uses cofibrant/fibrant replacements to
describe Ho(&).

Fibrant/Cofibrant in the “cycles” model:

Graph X is fibrant when X is walkable (every
node has at least one arc leaving).

Graph X is cofibrant when X is a sum of
whiskered cycles.

This seems related to certain sub-categories of
Gph which are equivalent to NSet and/or ZSet.



A model structure for ZSet

Let Z be the group of integers under addition.
Consider the presheaf topos ZSet; its objects
are (S, o) with set S and bijection o : S — S,
maps of Z-sets are those commuting with o.

There is a model structure on ZSet where:

e all Z-maps are fibrations

e cofibrations are generated by i,, : 0 — Z/n
and j, : Z/n+Z/n— Z/n.

e weak equivalences are Z-maps which are iso-
morphic on periodic elements.

In ZSet, every object is fibrant, but an object
is cofibrant iff every element has finite period.

The full subcategory of cofibrant objects in
/Set is cZSet, the category of periodic Z-sets.
Give cZSet the trivial model structure.



Relating Gph and ZSet and cZSet

We have a “presheaf triple” (F,G, H) relating
Gph and ZSet, made up of adjunctions

F:Gph=7Set: G G:ZSet+—= Gph: H
Here H(X) = [Z, X], bi-infinite walks with

shift o, and F'(X) = mp(Z x X), while G is a
Cayley graph construction.

Consider the functor j : ZSet — cZSet which
forgets non-periodic elements. It is half of a
further adjunction:

i : clSet = ZSet : j



Quillen equivalences and homotopy

Adjoint functors between model categories
induce derived functors between the homotopy
categories. Quillen gave conditions for these to
form an equivalence of homotopy categories.

A simple instance of this shows that
H : Gph — ZSet and jH : Gph — cZSet
are such Quillen equivalences.

So, the homotopy category for
our “cycles” model structure on Gph
has a simple description.

Theorem: Ho(Gph) is equivalent to cZSet.

This has a nice combinatorial interpretation.

Theorem: Two finite graphs are homotopy
equivalent for the ‘“cycles” model iff they are
almost isospectral.



Zeta series for Gph

Definition: A finite directed graph X (with
finitely many nodes and arcs) has zeta series

Z(u) = exp(Y em ),

where ¢, = |Cy,,(X)]| for m > 0.

Proposition: If X is a finite graph with n
nodes then the zeta series of X satisfies

1
u™a(u=1)

Z(u) = det(] —ud)~! =

where A is the adjacency operator of X and
a(x) is the characteristic polynomial of X.

Definition: Finite graphs X and Y with the
same characteristic polynomial are isospectral.
They are almost isospectral if they have the
same zeta series.



A “walks” model for Gph
o F = Al

o W= L' where L = {i,j} with

i:0 — N the initial graph morphism, and
j: N+ N — N the natural morphism.

So C =TWw.

Theorem: For the “walks” model, Ho(Gph)
is equivalent to NSet.

Corollary: Two finite graphs are

ﬁ homotopy equivalent for walks u

they are homotopy equivalent for cycles.

But: the walk space N (X) has a natural topol-
ogy, and many N-set maps are not continuous.

In our new paper on the arXiv we present some
results on when walk spaces are topologically
equivalent.
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