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E.g. monoids and abelian groups rings

Question

What’s a distributive law for Lawvere theories?

• Lawvere theories correspond to finitary monads on Set.

• Lawvere theories are themselves monads in a certain
bicategory.

—So we can look for distributive laws between these monads.
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1. Introduction

• A monad on V only gives algebras in V.

• A Lawvere theory gives models in any finite-product category.

monadsLTs

algebrasmodels

Example

Distributive law for monoids over abelian groups
rings internal to any finite-product category V.
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Idea

Encapsulate an algebraic theory in a category L.

• The objects of L are the natural numbers, our arities.

• A morphism k 1 is an operation of arity k.

• A morphism k m is m operations of arity k.

We use F a skeleton of FinSet (finite sets and functions).

Definition

A Lawvere theory is a small category L with finite products,
equipped with a strict identity-on-objects functor

F
op

L.

Note: in Fop the object m is the product of m copies of 1.
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Note

We are allowed to forget and repeat variables.

Example
2-ary operations in the theory of monoids

• (non-Σ) operads: only one i.e. ab

• Lawvere theory: ab, a, a2, b, b2, aba, ab3a5, . . .

i.e. everything in the free monad on {a, b}.

A morphism 3 2 is two 3-ary operations e.g.

(ab, a3), (a2b, abc), . . .

Composition: 3 2 1
{ab, a3} x2y

︸ ︷︷ ︸

ab.ab.a3

6.
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2. Lawvere theories

We have many arities for the “same” operation.

arity operation

3 a, b, c abc

4 a, b, c, d abc

5 a, b, c, d, e abc
...

These are all related by forgetting variables
i.e. via projections in Fop.

13

4

5

6...
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2. Lawvere theories

Generalisations

• use F = FinSet instead of a skeleton

• put P = “free finite product category” 2-monad
note that FinSetop is P1
—could use PA to get “typed” theory

• could just say a Lawvere theory is any finite product
category C

• could do finite limits instead of just products.
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Models ≡ algebras

A model for L in a finite-product category C is a
finite-product preserving functor

L C

Idea
1 A ∈ C underlying data

k Ak

operation of arity k

k

1

Ak

A
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2. Lawvere theories

Lawvere theories vs monads

set of k elements

Lawvere theory monad

morphism

k 1

“k-ary

operation”

element of T ([k])

i.e. 1 T ([k]) ∈ Set

morphism

k m

“m operations

of arity k”

m elements of T ([k])

i.e. [m] T ([k]) ∈ Set

i.e. [m] [k] ∈ KlT

Idea

Lawvere theories are related to monads via the Kleisli category.
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Definition

Monad T on Set Lawvere theory LT

LT = full subcategory of (KlT )op

whose objects are finite sets.

Lawvere theory L monad TL on Set

TLX =

n∈F
op

∫

L(n, 1) × Xn.

Theorem

This gives a correspondence between Lawvere theories and
finitary monads on Set.
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Idea

Given monads S and T on C, can we make TS into a monad?

TSTS TTSS TS
? µT µS

Definition (Beck)

A distributive law of monads S over T consists of a natural
transformation

λ : ST ⇒ TS

satisfying some axioms.

• Formal theory of monads (Street)
Do this inside any bicategory, not just Cat.

• Iterated distributive laws (Cheng)
Combine n monads with distributive laws and
Yang-Baxter condition.
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3. Distributive laws for monads

Examples

monoid + abelian group ring

horizontal
composition

+
vertical
composition

2-category

Or combining more structures:

0-composition
+

1-composition
+
...
+

(n − 1)-composition







n-category

13.



3. Distributive laws for monads

A point of view

• The monad TS says we can express all structure as
“S-structure followed by T -structure”.

14.



3. Distributive laws for monads

A point of view

• The monad TS says we can express all structure as
“S-structure followed by T -structure”.

• The distributive law ST TS says “if we had it the
other way round we could switch it over”.

14.



3. Distributive laws for monads

A point of view

• The monad TS says we can express all structure as
“S-structure followed by T -structure”.

• The distributive law ST TS says “if we had it the
other way round we could switch it over”.

For Lawvere theories

We want a way of combining A and B to give BA

corresponding to a distributive law of monads

TATB TBTA

14.



3. Distributive laws for monads

A point of view

• The monad TS says we can express all structure as
“S-structure followed by T -structure”.

• The distributive law ST TS says “if we had it the
other way round we could switch it over”.

For Lawvere theories

We want a way of combining A and B to give BA

corresponding to a distributive law of monads

TATB TBTA

with
TBTA = TBA

14.
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—Rosebrugh and Wood, Distributive laws and
factorization (JPAA 2002)

2. Profunctors internal to Mon.

—Lack, Composing props (TAC 2004)

—Akhvlediani, Composing Lawvere theories (CT2010)

3. Kleisli bicategory of P on profunctors

—Hyland, Distributive laws (CLP 2010)
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4. Three ways to do it

1. Factorisation systems over Fop

In the composite theory BA every morphism can be
expressed as a composite

∈A ∈B

For example: × and +

The composite 3-ary operation a(b + c) can be expressed as

3 1

2
ab, ac x + y

3ab, ac, ab2c x + y

p1, p2

—factorisations are only unique up to morphisms in Fop.

16.
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Appealing fact (Rosebrugh and Wood)

Strict factorisation systems are distributive laws in Span.

• A and B are categories i.e. monads in Span.

• AB BA makes BA into a monad in Span
i.e. a category.

It is the pullback

obFobF

A B

obF

.
composable pairs

k
∈A

l
∈B

m

The distributive law tells us how to re-express a pair

k
∈B

l
∈A

m as k
∈A

l′
∈B

m

17.
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4. Three ways to do it

RW define distributive laws over I for I a groupoid
—ensures equivalence relation on composable pairs.

However instead we can generate an equivalence relation.

Idea

Our original pullback
B ⊗ A

A B

obFobF obF

ignored the fact that Fop is in both A and B.

So we want a coequaliser

B ⊗ Fop ⊗ A B ⊗ A B ⊗Fop A
absorb F

op into A

absorb F
op into B

—looks like bimodules.

18.
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2. Prof(Mon) —internal profunctors in monoids

A monad C C is now a monoidal category A equipped
with an identity-on-objects monoidal functor C A.

So again Lawvere theories arise as particular monads on F
op.

Definition 2

A distributive law of Lawvere theories A over B is a
distributive law in the bicategory Prof(Mon).

Theorem

Such a distributive law makes B⊗F
opA into a Lawvere theory.

i.e. if A and B are finite-product categories, so is B ⊗F
op A.

A ⊗F
op B

λ
B ⊗F

op A

20.



4. Three ways to do it

2. Prof(Mon) —internal profunctors in monoids

A monad C C is now a monoidal category A equipped
with an identity-on-objects monoidal functor C A.

So again Lawvere theories arise as particular monads on F
op.

Definition 2

A distributive law of Lawvere theories A over B is a
distributive law in the bicategory Prof(Mon).

Theorem

Such a distributive law makes B⊗F
opA into a Lawvere theory.

i.e. if A and B are finite-product categories, so is B ⊗F
op A.

A ⊗F
op B

λ
B ⊗F

op A

Proof • Bare hands, or

20.



4. Three ways to do it

2. Prof(Mon) —internal profunctors in monoids

A monad C C is now a monoidal category A equipped
with an identity-on-objects monoidal functor C A.

So again Lawvere theories arise as particular monads on F
op.

Definition 2

A distributive law of Lawvere theories A over B is a
distributive law in the bicategory Prof(Mon).

Theorem

Such a distributive law makes B⊗F
opA into a Lawvere theory.

i.e. if A and B are finite-product categories, so is B ⊗F
op A.

A ⊗F
op B

λ
B ⊗F

op A

Proof • Bare hands, or

• The free finite-product category 2-monad on Prof.
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Then monads on 1 in ProfP are precisely Lawvere theories.

• A monad in ProfP is a profunctor 1 P1

i.e. P1op × 1 Set

i.e. FinSet Set a finitary monad.

Definition 3

A distributive law of Lawvere theories A over B is a distributive
law in the bicategory ProfP.

21.



5. Comparison

22.



5. Comparison

Claim
These three methods all give the same answer as a distributive
law between the associated monads.

22.



5. Comparison

Claim
These three methods all give the same answer as a distributive
law between the associated monads.

Idea

22.



5. Comparison

Claim
These three methods all give the same answer as a distributive
law between the associated monads.

Idea

Compare

• Finitary monads Set Set in CAT

22.



5. Comparison

Claim
These three methods all give the same answer as a distributive
law between the associated monads.

Idea

Compare

• Finitary monads Set Set in CAT

• Lawvere theories as

1. monads F F in Prof

2. monads F F in Prof(Mon)

3. monads 1 1 in ProfP.

22.



5. Comparison

Claim
These three methods all give the same answer as a distributive
law between the associated monads.

Idea

Compare

• Finitary monads Set Set in CAT

• Lawvere theories as

1. monads F F in Prof

2. monads F F in Prof(Mon)

3. monads 1 1 in ProfP.

Set
T

Set

22.



5. Comparison

Claim
These three methods all give the same answer as a distributive
law between the associated monads.

Idea

Compare

• Finitary monads Set Set in CAT

• Lawvere theories as

1. monads F F in Prof

2. monads F F in Prof(Mon)

3. monads 1 1 in ProfP.

Set
T

Set

F
I∗

Set
T∗

Set
I∗

F

22.



5. Comparison

23.



5. Comparison

Prof(F, F)

ProfP(1, 1)

Prof(Mon)(F, F)

23.



5. Comparison

Prof(F, F)

ProfP(1, 1)

Prof(Mon)(F, F)

Monads

23.



5. Comparison

Prof(F, F)

ProfP(1, 1)

Prof(Mon)(F, F)

Monads

Lawvere theories

23.



5. Comparison

Prof(F, F)

ProfP(1, 1)

Prof(Mon)(F, F)

Monads

Lawvere theories

id-on-objects functors

F −→ A

23.



5. Comparison

Prof(F, F)

ProfP(1, 1)

Prof(Mon)(F, F)

Monads

Lawvere theories

id-on-objects functors

F −→ A

id-on-objects

monoidal functors

F −→ A

23.



5. Comparison

Prof(F, F)

ProfP(1, 1)

Prof(Mon)(F, F)

Monads

Lawvere theories

id-on-objects functors

F −→ A

id-on-objects

monoidal functors

F −→ A

CATf (Set,Set)

23.



5. Comparison

Prof(F, F)

ProfP(1, 1)

Prof(Mon)(F, F)

Monads

Lawvere theories

id-on-objects functors

F −→ A

id-on-objects

monoidal functors

F −→ A

CATf (Set,Set)
f+f

23.



5. Comparison

Prof(F, F)

ProfP(1, 1)

Prof(Mon)(F, F)

Monads

Lawvere theories

id-on-objects functors

F −→ A

id-on-objects

monoidal functors

F −→ A

CATf (Set,Set)
f+f

equivalence

23.



5. Comparison

Prof(F, F)

ProfP(1, 1)

Prof(Mon)(F, F)

Monads

Lawvere theories

id-on-objects functors

F −→ A

id-on-objects

monoidal functors

F −→ A

CATf (Set,Set)
f+f

equivalence

≃

Prof(P1, P1)

forgetful

23.



5. Comparison

Prof(F, F)

ProfP(1, 1)

Prof(Mon)(F, F)

Monads

Lawvere theories

id-on-objects functors

F −→ A

id-on-objects

monoidal functors

F −→ A

CATf (Set,Set)
f+f

equivalence

≃

Prof(P1, P1)

forgetful

forgetful
f+f

23.



5. Comparison

Key points

24.



5. Comparison

Key points

• The functors send T to LT .

24.



5. Comparison

Key points

• The functors send T to LT .

• By pseudo-functoriality distributive laws map to
distributive laws, and

LT ◦ LS
∼= LTS

24.



5. Comparison

Key points

• The functors send T to LT .

• By pseudo-functoriality distributive laws map to
distributive laws, and

LT ◦ LS
∼= LTS

• Moreover the functors are full and faithful, so given
Lawvere theories on the right, any distributive law
between them corresponds to one on the left.

So we have three equivalent notions of distributive laws for

Lawvere theories, which correspond to distributive laws

between the associated monads.

24.



5. Comparison

Prof(F, F)

ProfP(1, 1)

Prof(Mon)(F, F)

Monads

Lawvere theories

id-on-objects functors

F −→ A

id-on-objects

monoidal functors

F −→ A

CATf (Set,Set)

equivalence

f+f ≃

Prof(P1, P1)

forgetful

forgetful
f+f

25.



5. Comparison

Key points

• The functors are monoidal, and send T to LT .

• By pseudo-functoriality distributive laws map to
distributive laws, and

LT ◦ LS
∼= LTS

• Moreover the functors are full and faithful, so given
Lawvere theories on the right, any distributive law
between them corresponds to one on the left.

26.



5. Comparison

Key points

• The functors are monoidal, and send T to LT .

• By pseudo-functoriality distributive laws map to
distributive laws, and

LT ◦ LS
∼= LTS

• Moreover the functors are full and faithful, so given
Lawvere theories on the right, any distributive law
between them corresponds to one on the left.

So we have three equivalent notions of distributive laws for

Lawvere theories, which correspond to distributive laws

between the associated monads.

26.


