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E.g. monoids and abelian groups rings

Question

What’s a distributive law for Lawvere theories?

• Lawvere theories correspond to finitary monads on Set.

• Lawvere theories are themselves monads in a certain
bicategory.

—So we can look for distributive laws between these monads.
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1. Introduction

• A monad on V only gives algebras in V.

• A Lawvere theory gives models in any finite-product category.

monadsLTs

algebrasmodels

Example

Distributive law for monoids over abelian groups
rings internal to any finite-product category V.
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Idea

Encapsulate an algebraic theory in a category L.

• The objects of L are the natural numbers, our arities.

• A morphism k 1 is an operation of arity k.

• A morphism k m is m operations of arity k.

We use F a skeleton of FinSet (finite sets and functions).

Definition

A Lawvere theory is a small category L with finite products,
equipped with a strict identity-on-objects functor

F
op

L.

Note: in Fop the object m is the product of m copies of 1.
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Note

We are allowed to forget and repeat variables.

Example
2-ary operations in the theory of monoids

• (non-Σ) operads: only one i.e. ab

• Lawvere theory: ab, a, a2, b, b2, aba, ab3a5, . . .

i.e. everything in the free monad on {a, b}.

A morphism 3 2 is two 3-ary operations e.g.

(ab, a3), (a2b, abc), . . .

Composition: 3 2 1
{ab, a3} x2y

︸ ︷︷ ︸

ab.ab.a3

6.
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2. Lawvere theories

We have many arities for the “same” operation.

arity operation

3 a, b, c abc

4 a, b, c, d abc

5 a, b, c, d, e abc
...

These are all related by forgetting variables
i.e. via projections in Fop.

13

4

5

6...
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2. Lawvere theories

Generalisations

• use F = FinSet instead of a skeleton

• put P = “free finite product category” 2-monad
note that FinSetop is P1
—could use PA to get “typed” theory

• could just say a Lawvere theory is any finite product
category C

• could do finite limits instead of just products.
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Models ≡ algebras

A model for L in a finite-product category C is a
finite-product preserving functor

L C

Idea
1 A ∈ C underlying data

k Ak

operation of arity k

k

1

Ak

A
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2. Lawvere theories

Lawvere theories vs monads

set of k elements

Lawvere theory monad

morphism

k 1

“k-ary

operation”

element of T ([k])

i.e. 1 T ([k]) ∈ Set

morphism

k m

“m operations

of arity k”

m elements of T ([k])

i.e. [m] T ([k]) ∈ Set

i.e. [m] [k] ∈ KlT

Idea

Lawvere theories are related to monads via the Kleisli category.
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Definition

Monad T on Set Lawvere theory LT

LT = full subcategory of (KlT )op

whose objects are finite sets.

Lawvere theory L monad TL on Set

TLX =

n∈F
op

∫

L(n, 1) × Xn.

Theorem

This gives a correspondence between Lawvere theories and
finitary monads on Set.
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Idea

Given monads S and T on C, can we make TS into a monad?

TSTS TTSS TS
? µT µS

Definition (Beck)

A distributive law of monads S over T consists of a natural
transformation

λ : ST ⇒ TS

satisfying some axioms.

• Formal theory of monads (Street)
Do this inside any bicategory, not just Cat.

• Iterated distributive laws (Cheng)
Combine n monads with distributive laws and
Yang-Baxter condition.
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Examples

monoid + abelian group ring

horizontal
composition

+
vertical
composition

2-category

Or combining more structures:

0-composition
+

1-composition
+
...
+

(n − 1)-composition







n-category
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A point of view

• The monad TS says we can express all structure as
“S-structure followed by T -structure”.

• The distributive law ST TS says “if we had it the
other way round we could switch it over”.

For Lawvere theories

We want a way of combining A and B to give BA

corresponding to a distributive law of monads

TATB TBTA

with
TBTA = TBA

14.
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—Rosebrugh and Wood, Distributive laws and
factorization (JPAA 2002)

2. Profunctors internal to Mon.

—Lack, Composing props (TAC 2004)

—Akhvlediani, Composing Lawvere theories (CT2010)

3. Kleisli bicategory of P on profunctors

—Hyland, Distributive laws (CLP 2010)
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4. Three ways to do it

1. Factorisation systems over Fop

In the composite theory BA every morphism can be
expressed as a composite

∈A ∈B

For example: × and +

The composite 3-ary operation a(b + c) can be expressed as

3 1

2
ab, ac x + y

3ab, ac, ab2c x + y

p1, p2

—factorisations are only unique up to morphisms in Fop.

16.
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Appealing fact (Rosebrugh and Wood)

Strict factorisation systems are distributive laws in Span.

• A and B are categories i.e. monads in Span.

• AB BA makes BA into a monad in Span
i.e. a category.

It is the pullback

obFobF

A B

obF

.
composable pairs

k
∈A

l
∈B

m

The distributive law tells us how to re-express a pair

k
∈B

l
∈A

m as k
∈A

l′
∈B

m

17.
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4. Three ways to do it

RW define distributive laws over I for I a groupoid
—ensures equivalence relation on composable pairs.

However instead we can generate an equivalence relation.

Idea

Our original pullback
B ⊗ A

A B

obFobF obF

ignored the fact that Fop is in both A and B.

So we want a coequaliser

B ⊗ Fop ⊗ A B ⊗ A B ⊗Fop A
absorb F

op into A

absorb F
op into B

—looks like bimodules.

18.
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Given categories C and D, a profunctor C
F

D is a functor

D
op × C

F
Set.

A monad C
A

C ∈ Prof corresponds to a category A

equipped with an identity-on-objects functor

C A.

So Lawvere theories arise as particular monads on F
op.
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op.

Definition 2

A distributive law of Lawvere theories A over B is a
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• A monad in ProfP is a profunctor 1 P1

i.e. P1op × 1 Set
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