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Goal

This talk will introduce differential Turing categories and their basic
structural properties.



Background



Resource Calculus

1992 Milner: Λ translated to Π; asked “What is the semantics induced by
this translation?”[10]

1993 Boudol: Λ refined: terms in the ”argument position” are bags of
terms [3] [5].

1999 Boudol et al : The “lambda calculus with multiplicities” further refined
[4].

2009 Pagani and Tranquilli: The resource lambda calculus; resource
control and nondeterminism [11].



Differential Calculus

2002 Ehrhard: Models of linear logic where all functions can be
differentiated [8].

2003 Ehrhard and Regnier: Formalized the above notion syntactically;
differential Λ [9].

2006 Blute et al : The (monoidal) categorical setting for differential
structure [2].

2009 Blute et al : The Cartesian categorical setting for differential structure
[1].

2010 Bucciarelli et al : The connection between resource Λ and differential
Λ made exact. Models of differential Λ are models of resource Λ.
Main source of models: “linear” reflexive objects in a Cartesian
closed differential category [6].



Turing Categories

• Differential structure has been proposed as a Curry-Howard-Lambek
style correspondence for distributed computation. However, the role
differential structure plays in computability theory has not been
worked out.

• Turing categories give a way to view computability theory in terms of
categorical structure [7]. They also give a categorical framework we
can use to combine differential structure with computability theoretic
structure.



Differential Turing Categories



Structures involved

• Restriction structure (for partiality)

• Differential structure

• Turing structure



Restriction structure

A restriction category X has a combinator

f : A −→ B

f : A −→ A,

that satisfies the following four axioms
R.1 f f = f R.3 f g = f g

R.2 f g = g f R.4 fh = fh f

Product diagrams in a restriction category should not commute on the
nose; e.g.,

〈f, g〉π0 = g f.



Differential Structure

A differential restriction category is a Cartesian restriction category X,
with each X(A,B) a commutative monoid that is preserved by products,
and with a differential combinator

f : A −→ B

D[f ] : A×A −→ B

which satisfies nine axioms.
A key definition is:

Definition 1. A linear map in a differential restriction category is f such
that D[f ] ⌣ π0f

1.

Proposition 1. The linear maps of a differential restriction category form
a subcategory.

1
a ⌣ b means a b = b a



Turing Categories

Turing Categories generalize computable functions on N.

• Programs assigned natural numbers

• There is a program φ which “compiles and runs” natural numbers

• A function f is computable when f(x1, . . . , xn) = φ(n, x1, . . . , xn)

Definition 2. A Turing category is a Cartesian restriction category, with
an object T where for every B,C there is a map φ : T ×B −→ C such that
for any f : A×B −→ C there is a total map f̂ such that the following
diagram commutes.

T ×B
φ // C

A×B

f̂×1

OO

f

;;
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The maps φ are called Turing morphisms , and the maps f̂ are called
codes .



1 View on Turing Categories

Proposition 2. Let X be a Cartesian restriction category. Then X is a
Turing category iff there is an object T such that all other objects A are
retracts of T and φ : T × T −→ T is universal.

The proof of the above theorem involves splitting certain idempotents, and
also using these splittings to construct Turing morphisms.



Another View on Turing Categories

Let X be a Cartesian restriction category. An applicative system is a pair
(A,• : A×A −→ A). Combinatory completeness means that every (A, •)
word can be represented by a total point.

Theorem 1 (Curry-Schonfinkel). An applicative system (A, •) is
combinatory complete (aka a PCA) iff the computable maps with respect
to A form a Turing category.

Further, we have the following:

Y

F

��

(A, •,V)
_

��
X (F (A), •,V)

with F faithful, V = {F (a) : 1 −→ FA|a ∈ Total(1, A)}, so that
Split(Comp(FA,•,V) is equivalent to Y.



Combining differential and Turing structure

Interested in differential structure and computability; i.e. the PCA’s...
How can these two structures be combined?

(A, •, s, k, 0,+, D[•])

3 views:
Do nothing  Differential restriction category

with a Turing subcategory
Assume that D[•] has a code  Differential restriction category

with Turing object
Let D[ ] have a code  Structure goes outside

the differential category



The Middle Road

Rationale: in the differential lambda models, we have a code for D[•].
Sanity Check: the linear, additively closed maps can be split in a
differential restriction category, but not all idempotents can be split
Also, differential lambda models have split, linear idempotents.

Definition 3. Let X be a Turing category and a differential restriction
category. X is a uniform differential Turing category when φ is linear in
its first argument and there is a code for π0 that is linear in its first
argument.



Uniform Differential Turing Categories

Proposition 3.

• X is a differential Turing category iff π0 has a code that is linear in its
first variable, φ : T × T −→ T is linear in its first argument and
universal, and every object is a linear retract of T .

• Uniform differential PCAs and uniform differential Turing categories
correspond.

• Linear reflexive objects in Cartesian closed differential categories
generate (total) uniform differential Turing categories.



Conclusion
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