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o (X,a) is called representable if X — T  TX. Then a=ap- .
S—
(0%
e For X = (X, a) representable: X = (X, aj - a).

X = (X, a) representable = a- Ta = a- mx = X ®-exponentiable.



@ X injective = X representable.



@ X injective = X representable.
Yx
. . T o
o X inj. <= X totally cocomplete, i.e. X T V(TX)?P
N—
Sup



@ X injective = X representable.
Yx
o X inj. <= X totally cocomplete, i.e. X ~ T . VIX)".
N—
Sup
o f: X — Y left adjoint, (X, a), (Y, b) representable = f homom.



@ X injective = X representable.
Yx
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o f: X — Y left adjoint, (X, a), (Y, b) representable = f homom.

@ For f : X — Y and (X, a), (Y, b) representable:

f is V-functor,

fis (T, V)-functor <—
f(a(x)) > B(UF(r)).
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o X representable = Ax homomorphism.
@ @ is actually a functor; f homomorphism = Qf homomorphism.

X @ (QQX)P 2EL X @ VX 2y gives

WP (QRX)P — (QX)P, Wi 4 A%

@ w = (wx) is a nat. transform. when restricted to repres. cat's.

o Q3 =(Q,w,\) is a lax idemp. monad on V-Cat™ ~ (T, V)-Cat™.
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@ We have

V(TX)%P

in V-Cat.
@ (=) iseven a (T, V)-functor, but (—)* in general not.
@ For X repres.: X cocomplete <= X complete.

e However: [0, 00]°P (in (U, [0, 0c0])-Cat) is totally complete but not

totally cocomplete.
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Consider f : X — Y with (X, a), (Y, b) representable. TFAE:
Q@ Qf : QX — QY has a left adjoint (in (T, V)-Cat).
QO Vf: VY = VX is a homomorphism.

@ £ is weakly open, i.e. f°-b<a- Tf°- Thy.

Hence, for f : X — Y (T, V)-functor with X, Y totally complete:

.. . f preserves infima
f is right adjoint in (T, V)-Cat <=
and is “weakly open”.
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Let X = (X,a), Y =(Y,b) berepr, a=ap-«a, b=by-a.

V-module ¢ : X—e+Y where
TX —> TY
©: X — QY inV-Cat? =
T
X Y
Hence (V-Cat™)g ~ Q-Mod.
For Top:  Q-Mod hom(=1) DLat?®,
(- ) hom(—,2°P)
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@ hom(—,1) is induced by a monad morphism 4.
@ 0x iso <= X is Priestley. (Hence: X Priestley = QX Priestley)

o Priestg ~ DLat{", . (Hence: Stoney =~ Bool(’ )



