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Classical Tannaka duality

e T — | Categories equipped with J

suitable structures

Reconstruction problem

Can a group-like object be reconstructed from its category of
representations?

| A

Recognition problem

Which categories are equivalent to categories of representations for some
group-like object?

§
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dimensional comodules.
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Tannaka duality for Hopf algebras over fields

Every Hopf algebra can be reconstructed from the category of finite
dimensional comodules. )

Theorem (Saavedra Rivano, Deligne)
Let k be a field. If
@ &7 is an abelian autonomous symmetric monoidal k-linear category

e w: o/ — Vecty is a faithful exact symmetric strong monoidal k-linear
functor
then there exists a Hopf algebra H such that &/ ~ Rep(H).

N
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The classical proof

Deligne's proof
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The classical proof

Deligne's proof

o o/ abelian, w: &/ — Vecty, faithful & exact ~» & ~ Comod(C)
@ symmetric monoidal structure ~»  bialgebra structure on C
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.

Theorem (Street)
There is a biadjunction between k-linear categories over Vecty and
coalgebras.
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The classical proof

Deligne's proof
o o/ abelian, w: &/ — Vecty, faithful & exact ~» & ~ Comod(C)
@ symmetric monoidal structure ~»  bialgebra structure on C

@ &/ autonomous ~» Hopf algebra structure on C

.

Theorem (Street)

There is a biadjunction between k-linear categories over Vecty and
coalgebras.

A

Reconstruction problem: when is the counit an isomorphism?
Recognition problem: when is the unit an equivalence?
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Finding the right environment

Definition

A cosmos is a complete and cocomplete symmetric monoidal closed
category 7.
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Definition

A cosmos is a complete and cocomplete symmetric monoidal closed
category 7.

Definition

| \

A profunctor (also known as distributor or module) & - £ is a
cocontinuous functor [27°P, ¥ | — [#°P, ¥]. The category of profunctors
is denoted by Prof (7).
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Finding the right environment

Definition

A cosmos is a complete and cocomplete symmetric monoidal closed
category 7.

Definition

| A

A profunctor (also known as distributor or module) & - £ is a
cocontinuous functor [27°P, ¥ | — [#°P, ¥]. The category of profunctors
is denoted by Prof (7).

A\

Observation

Coalgebras are precisely comonads .# + .# in Prof (7).
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Finding the right environment

Definition

A left adjoint 1-cell in a bicategory is called a map.

Maps &/ + 2 in Prof(7) are in bijection with #-functors &/ — %.

Proof.
o Let L: [o/°P V] — [#°P, V] be cocontinuous.
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Finding the right environment

Definition
A left adjoint 1-cell in a bicategory is called a map.

Maps &7 + % in Prof(?) are in bijection with ¥-functors &/ — 2.

Proof.
o Let L: [o/°P V] — [#°P, V] be cocontinuous.
@ Then there exists w: & — [#°P, ¥] such that L = Lany w.
e Lany w has a right adjoint X — Hom(w—, X).
@ The right adjoint is cocontinuous < w(A) € % for all A € /.

Observation

The Cauchy completion of .# is the full subcategory of dualizable objects
in V.
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Finding the right environment

Can we characterize Comod(C') in terms of a 2-categorical universal
property in Prof(7)?
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Tannaka-Krein objects

@ A coaction of a comonad ¢: B — B is a morphism v: A — B,

together with a 2-cell p: v = c.v, compatible with the comonad
structure.
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@ A coaction of a comonad ¢: B — B is a morphism v: A — B,
together with a 2-cell p: v = c.v, compatible with the comonad
structure.

@ A coaction (v, p) is called a map coaction if v is a map (left adjoint).

@ A morphism of (map) coactions (v, p) = (w,0) is a 2-cell a: v = w
compatible with p and o.
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compatible with p and o.
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A Tannaka-Krein object is a universal map coaction, i.e., a map coaction
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Definition
A Tannaka-Krein object is a universal map coaction, i.e., a map coaction
(v, p) such that

@ Every map coaction is isomorphic to v.f for some map f.
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Tannaka-Krein objects

@ A coaction of a comonad ¢: B — B is a morphism v: A — B,
together with a 2-cell p: v = c.v, compatible with the comonad
structure.

@ A coaction (v, p) is called a map coaction if v is a map (left adjoint).

@ A morphism of (map) coactions (v, p) = (w,0) is a 2-cell a: v = w
compatible with p and o.

Definition
A Tannaka-Krein object is a universal map coaction, i.e., a map coaction
(v, p) such that

| A

@ Every map coaction is isomorphic to v.f for some map f.

@ For all maps f and all 1-cells g, whiskering with v induces a bijection
between 2-cells g = f and morphisms of coactions v.g — v.f.

v
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Tannaka-Krein objects in Prof(7")

Definition

Let C be a cocontinuous comonad on [#°P,#]. A Cauchy comodule of C
is a comodule whose underlying object lies in Z.
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Tannaka-Krein objects in Prof(7")

Definition

Let C be a cocontinuous comonad on [#°P,#]. A Cauchy comodule of C
is a comodule whose underlying object lies in Z. The ¥ -category of
Cauchy comodules of C' is denoted by Rep(C).

The forgetful functor Rep(C') — 4 is a Tannaka-Krein object in Prof (%)
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Tannakian biadjunction
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Tannakian biadjunction

Theorem (S.)
If A is a 2-category with Tannaka-Krein objects, then the functor

L: Map(.#)/B — Comon(B)

given by w — w.w has a right biadjoint Rep(—) (which sends a comonad
¢ to the Tannaka-Krein object of c).
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L: Map(.#)/B — Comon(B)

given by w — w.w has a right biadjoint Rep(—) (which sends a comonad
¢ to the Tannaka-Krein object of c).

v

@ The category Map(.#)/B has morphisms the triangles that commute
up to invertible 2-cell.
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Tannakian biadjunction

Theorem (S.)
If A is a 2-category with Tannaka-Krein objects, then the functor

L: Map(.#)/B — Comon(B)

given by w — w.w has a right biadjoint Rep(—) (which sends a comonad
¢ to the Tannaka-Krein object of c).

v

@ The category Map(.#)/B has morphisms the triangles that commute
up to invertible 2-cell.

@ This theorem does not require the full strength of the definition of
Tannaka-Krein objects.
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Monoidal structure on the slice category

Let .# be a monoidal 2-category, and (B, m,u) € .# a map
pseudomonoid.
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Monoidal structure on the slice category

Let .# be a monoidal 2-category, and (B, m,u) € .# a map

pseudomonoid. Given w and w’ in Map(.Z)/B, let w e w' be the
composite
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Monoidal structure on the slice category

Let .# be a monoidal 2-category, and (B, m,u) € .# a map

pseudomonoid. Given w and w’ in Map(.Z)/B, let w e w' be the
composite

A A Bo BT+ B

Proposition

The above assignment endows Map(.#)/B with the structure of a
monoidal 2-category.
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Convolution monoidal structure

Let .# be a monoidal 2-category, let (A, d,e) be a pseudocomonoid in .Z,
and let (B, m,u) be pseudomonoid in .Z .
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Convolution monoidal structure

Let .# be a monoidal 2-category, let (A, d,e) be a pseudocomonoid in .Z,
and let (B, m,u) be pseudomonoid in .Z .

Definition
The convolution product f x g of two 1-cells f,g € .# (A, B) is given by

A4 A4 BgB-"-B
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Convolution monoidal structure

Let .# be a monoidal 2-category, let (A, d,e) be a pseudocomonoid in .Z,
and let (B, m,u) be pseudomonoid in .Z .

Definition
The convolution product f * g of two 1-cells f,g € .# (A, B) is given by

A4 A4 BgB-"-B

| A\

Proposition

Let (B, m,u) be a map pseudomonoid in .#. Then (B,m,u) is a
pseudocomonoid, and the convolution product on .Z (B, B) lifts to the
category Comon(B) of comonads on B.
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Convolution monoidal structure

Let .# be a monoidal 2-category, let (A, d,e) be a pseudocomonoid in .Z,
and let (B, m,u) be pseudomonoid in .Z .

Definition

The convolution product f * g of two 1-cells f,g € .# (A, B) is given by

A4 A4 BgB-"-B

| A\

Proposition

Let (B, m,u) be a map pseudomonoid in .#. Then (B,m,u) is a
pseudocomonoid, and the convolution product on .Z (B, B) lifts to the
category Comon(B) of comonads on B.

A monoid in Comon(B) is precisely a monoidal comonad.
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The Tannakian biadjunction is monoidal

If .# is a monoidal 2-category and (B, m,u) is a map pseudomonoid in
A, then the left adjoint of the Tannakian biadjunction is strong monoidal.
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The Tannakian biadjunction is monoidal

If .# is a monoidal 2-category and (B, m,u) is a map pseudomonoid in
A, then the left adjoint of the Tannakian biadjunction is strong monoidal.

Proof. Let w: A — B, w’': A’ — B be two objects in the domain of L.
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The Tannakian biadjunction is monoidal

If .# is a monoidal 2-category and (B, m,u) is a map pseudomonoid in
A, then the left adjoint of the Tannakian biadjunction is strong monoidal.

Proof. Let w: A — B, w’': A’ — B be two objects in the domain of L.
Since ® is a pseudofunctor, we have

wRw'

Lwew)=B-"-BaB ™ A A “*L BeB-">B
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The Tannakian biadjunction is monoidal

If .# is a monoidal 2-category and (B, m,u) is a map pseudomonoid in
A, then the left adjoint of the Tannakian biadjunction is strong monoidal.

Proof. Let w: A — B, w’': A’ — B be two objects in the domain of L.
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The Tannakian biadjunction is monoidal

If .# is a monoidal 2-category and (B, m,u) is a map pseudomonoid in
A, then the left adjoint of the Tannakian biadjunction is strong monoidal.

Proof. Let w: A — B, w’': A’ — B be two objects in the domain of L.
Since ® is a pseudofunctor, we have

wWRW

Lwew)= B—">BoB "% Ac A **Y By BB
By definition, L(w) x L(w') is given by

w.wRQW' w'

B-™-B®B B®B-"-~B

Thus L(w) x L(w') & L(w e w').
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Braiding, syllepsis and symmetry

If 4 is braided and B is a braided map pseudomonoid, then
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Braiding, syllepsis and symmetry

If 4 is braided and B is a braided map pseudomonoid, then
@ Map(.#)/B is a braided 2-category.
e Comon(B) is a braided category.

@ The left adjoint of the Tannakian biadjunction is a braided strong
monoidal 2-functor.
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If 4 is braided and B is a braided map pseudomonoid, then
@ Map(.#)/B is a braided 2-category.
e Comon(B) is a braided category.

@ The left adjoint of the Tannakian biadjunction is a braided strong
monoidal 2-functor.

Analogous facts hold for sylleptic and symmetric monoidal 2-categories.
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Braiding, syllepsis and symmetry

If 4 is braided and B is a braided map pseudomonoid, then
@ Map(.#)/B is a braided 2-category.
e Comon(B) is a braided category.

@ The left adjoint of the Tannakian biadjunction is a braided strong
monoidal 2-functor.

Analogous facts hold for sylleptic and symmetric monoidal 2-categories.

If .4 is (braided, sylleptic) monoidal, then the Tannakian biadjunction lifts
to (braided, symmetric) pseudomonoids.
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Braiding, syllepsis and symmetry

If 4 is braided and B is a braided map pseudomonoid, then
@ Map(.#)/B is a braided 2-category.
e Comon(B) is a braided category.

@ The left adjoint of the Tannakian biadjunction is a braided strong
monoidal 2-functor.

Analogous facts hold for sylleptic and symmetric monoidal 2-categories.

If .4 is (braided, sylleptic) monoidal, then the Tannakian biadjunction lifts
to (braided, symmetric) pseudomonoids.

If A and B are autonomous map pseudomonoids, and w: A — B is a
strong monoidal map, then L(w) = w.w is a Hopf monoidal comonad.
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Hopf algebroids over an arbitrary commutative ring R
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Hopf algebroids over an arbitrary commutative ring R

Theorem (S.)

Let B be a commutative R-algebra, and let &/ be an additive autonomous
symmetric monoidal R-linear category.

Daniel Schappi (University of Chicago) Generalized Tannakian duality CT 2011 Vancouver 16 / 17



Hopf algebroids over an arbitrary commutative ring R

Theorem (S.)

Let B be a commutative R-algebra, and let &/ be an additive autonomous
symmetric monoidal R-linear category. Let w: o/ — Modp be a
symmetric strong monoidal R-linear functor. Suppose that:
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Hopf algebroids over an arbitrary commutative ring R

Theorem (S.)

Let B be a commutative R-algebra, and let &/ be an additive autonomous
symmetric monoidal R-linear category. Let w: o/ — Modp be a
symmetric strong monoidal R-linear functor. Suppose that:

@ w is faithful and reflects isomorphisms;
Q w is flat;

© whenever the cokernel of w(f) is finitely generated projective, then
the cokernel of f exists and is preserved by w.
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Hopf algebroids over an arbitrary commutative ring R

Theorem (S.)

Let B be a commutative R-algebra, and let &/ be an additive autonomous
symmetric monoidal R-linear category. Let w: o/ — Modp be a
symmetric strong monoidal R-linear functor. Suppose that:

@ w is faithful and reflects isomorphisms;
Q w is flat;

© whenever the cokernel of w(f) is finitely generated projective, then
the cokernel of f exists and is preserved by w.

Then there exists a Hopf algebroid (H, B) and an equivalence
o/ ~ Rep(H, B).
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Summary

@ The category of Cauchy comodules has the universal property of a
TK-object in Prof(¥).
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Summary

@ The category of Cauchy comodules has the universal property of a
TK-object in Prof(¥).

@ The existence of TK-objects in .# implies that the Tannakian
biadjunction exists.

o If .# is monoidal, then the Tannakian biadjunction is monoidal.

@ The same is true for braided, sylleptic and symmetric .Z .

@ This explains why the Tannakian biadjunction lifts to (braided or
symmetric) pseudomonoids.
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Summary

@ The category of Cauchy comodules has the universal property of a
TK-object in Prof(¥).

@ The existence of TK-objects in .# implies that the Tannakian
biadjunction exists.

o If .# is monoidal, then the Tannakian biadjunction is monoidal.

@ The same is true for braided, sylleptic and symmetric .Z .

@ This explains why the Tannakian biadjunction lifts to (braided or
symmetric) pseudomonoids.

Thanks!
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