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Codensity and double-dualization monads

It is known since 1970’s that the codensity monad of the embedding of finite sets

into Set is the ultrafilter monad. Leinster proved in [1] that the full embedding of

finite-dimensional vector spaces into K-V ec has the codensity monad given by the

double-dualization monad (−)∗∗. And he asked for generalizations covering the two

examples above. We present a solution working in categories K that are monoidal

closed and have a strong cogenerator D. The functor (−)∗ = [−, D] is left adjoint to

its dual, and the resulting monad (−)∗∗ is called the double-dualization monad.

Example. Varieties of algebras have a ’natural’ tensor product, representing bimor-

phisms. Monoidal closedness means precisely that the variety (or, equivalently, its

monad) is commutative, see [2]. Analogously, varieties of ordered algebras, presented

by operations and inequations, are monoidal closed iff they are commutative.

Definition. By the finite double-dualization monad is meant the largest sub-

monad of (−)∗∗ whose unit has invertible components at all finitely presentable ob-

jects.

Theorem. Let K be a commutative variety of (possibly ordered) algebras. Let D

be a strong cogenerator with Dn finitely presentable for all n ∈ N . Then the finite

double-dualization monad is the codensity monad of the full embedding of all finitely

presentable objects into K.

Examples. (a) K is a strong cogenerator of K-V ec. Since for finitely-dimensional

spaces the unit ηA : A → A∗∗ is invertible, we obtain Leinster’s result that the

codensity monad is all of (−)∗∗ .

(b) The category J SL of join semilattices has the two-element chain as a strong

cogenerator. Again, finite semilattices have invertible units, hence, the codensity

monad of their embedding is also (−)∗∗ .

(c) For Set the two-element set as a cogenerator yields X∗ = PX. The finite double-

dualization monad is the ultrafilter monad.

(d) Analogously for Pos: take the two-element chain as a strong cogenerator. Then

X∗ is the poset PuX of all up-sets of X, ordered by the dual of inclusion. The finite

double-dualization monad is the prime-filter monad on Pos.

Remark. We further study codensity monads of set functors. Every accessible func-

tors posseses a codensity monad. The converse does not hold:

Example. (1) For the power-set functor P the codensity monad assigns to X the

product
∏

Y⊆X
PY .
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(2) For the subfunctor P0 of all nonempty subsets the codensity monad is P0 itself.

(3) In contrast, the following modification P ′ of P does not posses a codensity monad:

on objects P ′X = PX, on morphisms f : X → Y , for every M ⊆ X put P ′f(M) =

Pf(M) in case f/M is monic, else ∅.
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