María Emilia Descotte * Universidad de Buenos Aires - CONICET

On flat 2-functors

The main theorem of the theory of flat functors ([1], [4]) states that $A \xrightarrow{P} \mathcal{E}ns$ is flat if and only if P is a filtered colimit of representable functors, i.e. there is a filtered category I and a diagram $I \xrightarrow{X} A$ such that P is the colimit of the composition $I^{op} \xrightarrow{X} A^{op} \xrightarrow{h} Hom(A, \mathcal{E}ns)$ where h is the Yoneda embedding. For an arbitrary base category \mathcal{V} instead of $\mathcal{E}ns$, Kelly ([3]) has developed a theory of flat \mathcal{V} -enriched functors $A \xrightarrow{P} \mathcal{V}$, but there is no known generalization of the theorem above for any \mathcal{V} other than $\mathcal{E}ns$.

In [2] we have established a 2-dimensional version of this theorem, i.e. for a 2-functor $\mathcal{A} \xrightarrow{P} \mathcal{C}at$, where \mathcal{A} is a 2-category and $\mathcal{C}at$ is the 2-category of categories. As it is usually the case for 2-categories, the $\mathcal{C}at$ -enriched notions are not adequate for most purposes and the *relaxed* bi and pseudo notions are the important ones.

We define a 2-functor $\mathcal{A} \xrightarrow{P} \mathcal{C}at$ to be *flat* when its *left bi-Kan extension* $\mathcal{H}om_s(\mathcal{A}^{op}, \mathcal{C}at) \xrightarrow{P^*} \mathcal{C}at$ along the Yoneda 2-functor $\mathcal{A} \xrightarrow{h} \mathcal{H}om_s(\mathcal{A}^{op}, \mathcal{C}at)$ is *left exact.* $\mathcal{H}om_s(\mathcal{A}^{op}, \mathcal{C}at)$ denotes the 2-category of 2-functors, 2-natural transformations and modifications. By left bi-Kan extension we understand the bi-universal pseudonatural transformation $P \Longrightarrow P^*h$, and by left exact we understand preservation of finite weighted bilimits. Let (\mathcal{A}, Σ) be a pair where \mathcal{A} is a 2-category and Σ a distinguished 1-subcategory. A σ -cone for a 2-functor $\mathcal{A} \xrightarrow{F} \mathcal{B}$ is a lax cone such that the 2-cells corresponding to the distinguished arrows are invertible. The σ -*limit* of F is a universal σ -cone (characterized up to isomorphism). We introduce a notion of 2-filteredness of \mathcal{A} with respect to Σ , which we call σ -*filtered*. Our main result states the following:

A 2-functor $\mathcal{A} \xrightarrow{P} \mathcal{C}at$ is flat if and only if there is a σ -filtered pair $(\mathcal{I}^{op}, \Sigma)$ and a 2-diagram $\mathcal{I} \xrightarrow{X} \mathcal{A}$ such that P is pseudo-equivalent to the σ -bicolimit of the composition $\mathcal{I}^{op} \xrightarrow{X} \mathcal{A}^{op} \xrightarrow{h} \mathcal{H}om_s(\mathcal{A}, \mathcal{C}at)$. As in the 1-dimensional case, X can be chosen as the 2-fibration associated to P.

References:

- Artin M., Grothendieck A., Verdier J., SGA 4, Springer Lecture Notes in Mathematics 269 (1972) Ch. IV.
- [2] Descotte M.E., Dubuc E., Szyld M., On the notion of flat 2-functor, *submitted*, arXiv:1610.09429v2 (2016).
- [3] Kelly G. M., Structures defined by finite limits in the enriched context I, Cahiers de Topologie et Géométrie Différentielle Catégoriques 23 (1982).
- [4] Mac Lane S., Moerdijk I, Sheaves in Geometry and Logic: a First Introduction to Topos Theory, Springer (1992).

^{*}Joint work with E. Dubuc and M. Szyld.