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Coherently closed tangent categories

and the link between SDG and the differential λ-calculus

Type theories for smooth maps have been independently studied by two schools

of thought with different motivations. The first is synthetic differential geometry

(SDG) [1, 2, 3]. Here, one uses the type theory of a topos to reason about microlinear

spaces. The motivation is the development of a rigorous foundation for synthetic

arguments used in differential geometry. The second is the differential λ-calculus, an

explicit type theory for reasoning in smooth models of linear logic (Köthe sequence

spaces, convenient vector spaces) [4, 5, 6, 7]. The motivation is to provide a syntax

for resource sensitive proofs/computations [8].

The type theories are linked in a simple manner: categorical models of either are

always tangent categories [9, 10]. Surprisingly, they are more intimately related as

well. This talk will develop a direct relationship between Euclidean vector bundles in

SDG, and the differential λ-calculus.

More generally, we will show that the differential bundles over a fixed base B

(the analog of vector bundles in a tangent category) of any coherent, locally cartesian

closed tangent category are a model of the differential λ-calculus. Thus, in SDG, the

local reasoning in the category of vector bundles over B is captured by the differential

λ-calculus. Having an explicit logic for vector bundles makes lifting certain parts

of classical differential geometry, for example, Lagrangian systems and symplectic

geometry, more direct.

References:

[1] Lawvere, W. Categorical dynamics, Topos Theoretic Methods in Geometry (1967) 1–28.
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