The canonical intensive quality of a pre-cohesive topos

In the context of Lawvere’s Axiomatic Cohesion [1], an essential and local geometric morphism \(p : \mathcal{E} \rightarrow \mathcal{S} \) between toposes is **cohesive** if

i) \(p_! : \mathcal{E} \rightarrow \mathcal{S} \) preserves finite products.

ii) (“Continuity”) for every \(E \in \mathcal{E} \) and \(S \in \mathcal{S} \) the induced morphism \(p_!(E^{(p^*S)}) \rightarrow (pE)^S \) is an isomorphism.

iii) (“Nullstellensatz”) the canonical map \(\theta : p_* \rightarrow p! \) is epi.

Without the continuity condition ii), we refer to \(p : \mathcal{E} \rightarrow \mathcal{S} \) as **pre-cohesive** [3]. For any pre-cohesive \(p : \mathcal{E} \rightarrow \mathcal{S} \), [1] constructs the associated canonical intensive quality as the full subcategory \(\mathcal{L} \) of \(\mathcal{E} \) of those objects \(X \) for which \(\theta_X : p_*X \rightarrow p!X \) is an isomorphism. We call \(\mathcal{L} \) the Leibniz category associated to \(p \).

In this talk we will review some of the basic properties of the category \(\mathcal{L} \), we will give elementary constructions of the left and right adjoints of the inclusion functor \(\mathcal{L} \rightarrow \mathcal{E} \), and we will determine sufficient conditions for a pieces preserving geometric morphism [2] \(g : \mathcal{F} \rightarrow \mathcal{E} \) between two pre-cohesive toposes over \(\mathcal{S} \) to restrict to a geometric morphism between the corresponding Leibniz categories.

Furthermore, we will produce a subcanonical site for the Leibniz category determined by the cohesive site over sets of piecewise linear functions constructed in [4].

References:

Joint work with Matías Menni.