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Motivating example

Let V be a cosmos, i.e. a complete and cocomplete symmetric monoidal
closed category, with unit I and internal hom [−,−].

We want to make sense of endomorphism composition:

[Am,A]⊗ ([An1 ,A]⊗ · · · ⊗ [Anm ,A])→ [An1+···+nm ,A]

There are morally two ideas to codify:

That the m different ni -ary objects combine to give a single
n1+· · ·+nm-ary object, and

That this composition respects the internal symmetry of each ni -ary
object (more on this symmetry in the next slide)
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Functors on the permutation category

Let P denote the category with objects the natural numbers, and
morphisms P(m, n) given by P(n, n) = Σn for m = n and ∅ otherwise.

For each n, [An,A] has internal symmetry given by permutation on n, thus
we can regard {A,A} : n 7→ [An,A] as an object of F = [P,V].

Thus [An1 ,A]⊗ · · · ⊗ [Anm ,A] inherits the internal symmetry of each of its
ni -ary components. This is concisely formalized by the following:

Day convolution

Let T , S ∈ F . We write:

T ⊗ S =

ˆ m,n

P(m + n,−)⊗ Tm ⊗ Sn
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Day convolution

Associativity:

T ⊗ (S⊗R) ' (T ⊗S)⊗R '
ˆ m,n,k

P(m+n+k,−)⊗Tm⊗Sn⊗Rk

Symmetry:

T1 ⊗ · · · ⊗ Tm =

ˆ n1,...,nm

P(n1 + · · ·+ nm,−)⊗ T1n1 ⊗ · · · ⊗ Tmnm

Tξ1 ⊗ · · · ⊗ Tξm

〈ξ〉
?

=

ˆ n1,...,nm

P(nξ1 + · · ·+ nξm,−)⊗ Tξ1nξ1 ⊗ · · · ⊗ Tξmnξm

P(〈ξ〉,−)⊗ 〈ξ〉?

where 〈ξ〉 denotes either a contravariant action
nξ1 + · · ·+ nξm → n1 + · · ·+ nm on P or a covariant action
T1n1 ⊗ · · · ⊗ Tmnm → Tξ1nξ1 ⊗ · · · ⊗ Tξmnξm on V.
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Day convolution, cont’d

Some technical details to keep in mind:

The last point of the previous slide shows us that (m,T ) 7→ Tm gives
us a functor Pop ×F → F

F is a V-category, with V-hom objects given by [T ,S ] =
´
n[Tn,Sn]

for T ,S ∈ F
V includes into F as a full coreflective subcategory, preserving
monoidal structure

We can therefore write F(A⊗ T ,S) ' V(A, [T ,S ])
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Combining arities

The above describes a framework for formalizing the internal symmetry of
[An,A], simultaneously for all n.

It remains to formalize the actual composition map

[Am,A]⊗ ([An1 ,A]⊗ · · · ⊗ [Anm ,A])→ [An1+···+nm ,A]

in a way that respects the aforementioned framework.

Substitution product

Let T , S ∈ F . We define:

T ◦ S =

ˆ n

Tn ⊗ Sn
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Substitution product

The substitution product T ◦ S =
´ n

Tn⊗ Sn has the following properties:

If S ∈ V then T ◦ S ∈ V
It is nonsymmetric, but associative (one uses that (T ◦ S)n ' T n ◦ S)

J = P(1,−)⊗ I is the identity for ◦

For S ∈ F , − ◦ S : F → F has the right adjoint {S ,−} given by

{S ,R}m = [Sm,R]

If A ∈ V then V(T ◦ A,B) ' F(T , {A,B})

This notation for the right adjoint agrees with our previous choice to
denote n 7→ [An,A] by {A,A}.
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The endomorphism operad

Definition: operads

An operad is a monoid for ◦.

That is, some T ∈ F with data µ : T ◦ T → T and η : J → T
satisfying the monoid axioms.

Operad morphisms are morphisms T → T ′ that respect µ and η.

Recall that {A,A} ∈ F is given by {A,A}n = [An,A].

The composite {A,A} ◦ {A,A} ◦ A 1◦e−−→ {A,A} ◦ A e−→ A gives us, by
adjunction:

µ : {A,A} ◦ {A,A} → {A,A}

J ◦ A ' A corresponds by adjunction to η : J → {A,A}

Thus {A,A} is an operad (the endomorphism operad)!
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A closer look

We explicitly describe

[Am,A]⊗ ([An1 ,A]⊗ · · · ⊗ [Anm ,A])→ [An1+···+nm ,A]

in terms of the operad structure on {A,A} (for tidiness we assume m = 2):

([An1 ,A]⊗ An1) ([An2 ,A]⊗ An2)

⊗ ⊗ [A2,A]
e
- A

A

e
?

A

e
?

gives us
[A2,A]⊗ ([An1 ,A]⊗ [An2 ,A])⊗ An1+n2 → A

which corresponds by adjunction to

[A2,A]⊗ ([An1 ,A]⊗ [An2 ,A])→ [An1+n2 ,A]

This is exactly the construction of the operad map for {A,A}.
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Operad algebras

{A,A} is the “universal” operad, in the following sense:

Every operad T ∈ F gives a monad T ◦ − on F (or on V by
restriction).

Given A ∈ F , algebra structures h′ : T ◦ A→ A for the monad T ◦ −
on A correspond precisely to operad morphisms h : T → {A,A}

In the above case we say that h gives an algebra structure on A for the
operad T .
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Thank you!
I would like to thank Emily Riehl, Alexander Campbell, and Brendan Fong
for organizing KES2, and the other participants for the wonderful
discussions we had.
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