On *On the operads of J. P. May* of G. M. Kelly

Simon Cho

University of Pennsylvania

July 17, 2017

Let \mathcal{V} be a cosmos, i.e. a complete and cocomplete symmetric monoidal closed category, with unit I and internal hom [-, -].

Let \mathcal{V} be a cosmos, i.e. a complete and cocomplete symmetric monoidal closed category, with unit I and internal hom [-, -].

We want to make sense of endomorphism composition:

$$[A^m, A] \otimes ([A^{n_1}, A] \otimes \cdots \otimes [A^{n_m}, A]) \to [A^{n_1 + \cdots + n_m}, A]$$

Let \mathcal{V} be a cosmos, i.e. a complete and cocomplete symmetric monoidal closed category, with unit I and internal hom [-, -].

We want to make sense of endomorphism composition:

$$[A^m, A] \otimes ([A^{n_1}, A] \otimes \cdots \otimes [A^{n_m}, A]) \to [A^{n_1 + \cdots + n_m}, A]$$

There are morally two ideas to codify:

- That the *m* different n_i -ary objects combine to give a single $n_1 + \cdots + n_m$ -ary object, and
- That this composition respects the internal symmetry of each n_i-ary object (more on this symmetry in the next slide)

Let **P** denote the category with objects the natural numbers, and morphisms P(m, n) given by $P(n, n) = \sum_{n}$ for m = n and \emptyset otherwise.

Let **P** denote the category with objects the natural numbers, and morphisms P(m, n) given by $P(n, n) = \Sigma_n$ for m = n and \emptyset otherwise.

For each n, $[A^n, A]$ has internal symmetry given by permutation on n, thus we can regard $\{A, A\} : n \mapsto [A^n, A]$ as an object of $\mathcal{F} = [\mathbf{P}, \mathcal{V}]$.

Let **P** denote the category with objects the natural numbers, and morphisms P(m, n) given by $P(n, n) = \Sigma_n$ for m = n and \emptyset otherwise.

For each n, $[A^n, A]$ has internal symmetry given by permutation on n, thus we can regard $\{A, A\} : n \mapsto [A^n, A]$ as an object of $\mathcal{F} = [\mathbf{P}, \mathcal{V}]$.

Thus $[A^{n_1}, A] \otimes \cdots \otimes [A^{n_m}, A]$ inherits the internal symmetry of each of its n_i -ary components. This is concisely formalized by the following:

Day convolution

Let $T, S \in \mathcal{F}$. We write:

$$T\otimes S=\int^{m,n}\mathbf{P}(m+n,-)\otimes Tm\otimes Sn$$

• Associativity:

$$T \otimes (S \otimes R) \simeq (T \otimes S) \otimes R \simeq \int^{m,n,k} \mathbf{P}(m+n+k,-) \otimes Tm \otimes Sn \otimes Rk$$

イロト イロト イヨト

• Associativity:

$$T \otimes (S \otimes R) \simeq (T \otimes S) \otimes R \simeq \int^{m,n,k} \mathbf{P}(m+n+k,-) \otimes Tm \otimes Sn \otimes Rk$$

• Symmetry:

$$T_{1} \otimes \cdots \otimes T_{m} = \int^{n_{1},\dots,n_{m}} \mathbf{P}(n_{1} + \dots + n_{m}, -) \otimes T_{1}n_{1} \otimes \dots \otimes T_{m}n_{m}$$

$$\langle \xi \rangle \downarrow \qquad \qquad \qquad \downarrow \mathbf{P}(\langle \xi \rangle, -) \otimes \langle \xi \rangle$$

$$T_{\xi 1} \otimes \cdots \otimes T_{\xi m} = \int^{n_{1},\dots,n_{m}} \mathbf{P}(n_{\xi 1} + \dots + n_{\xi m}, -) \otimes T_{\xi 1}n_{\xi 1} \otimes \dots \otimes T_{\xi m}n_{\xi m}$$

• where $\langle \xi \rangle$ denotes either a contravariant action $n_{\xi 1} + \cdots + n_{\xi m} \rightarrow n_1 + \cdots + n_m$ on **P** or a covariant action $T_1 n_1 \otimes \cdots \otimes T_m n_m \rightarrow T_{\xi 1} n_{\xi 1} \otimes \cdots \otimes T_{\xi m} n_{\xi m}$ on \mathcal{V} . Some technical details to keep in mind:

 The last point of the previous slide shows us that (m, T) → T^m gives us a functor P^{op} × F → F Some technical details to keep in mind:

- The last point of the previous slide shows us that (m, T) → T^m gives us a functor P^{op} × F → F
- \mathcal{F} is a \mathcal{V} -category, with \mathcal{V} -hom objects given by $[T, S] = \int_n [Tn, Sn]$ for $T, S \in \mathcal{F}$
- ${\mathcal V}$ includes into ${\mathcal F}$ as a full coreflective subcategory, preserving monoidal structure
 - We can therefore write $\mathcal{F}(A \otimes T, S) \simeq \mathcal{V}(A, [T, S])$

The above describes a framework for formalizing the internal symmetry of $[A^n, A]$, simultaneously for all n.

The above describes a framework for formalizing the internal symmetry of $[A^n, A]$, simultaneously for all *n*.

It remains to formalize the actual composition map

$$[A^m, A] \otimes ([A^{n_1}, A] \otimes \cdots \otimes [A^{n_m}, A]) \to [A^{n_1 + \cdots + n_m}, A]$$

in a way that respects the aforementioned framework.

The above describes a framework for formalizing the internal symmetry of $[A^n, A]$, simultaneously for all *n*.

It remains to formalize the actual composition map

$$[A^m, A] \otimes ([A^{n_1}, A] \otimes \cdots \otimes [A^{n_m}, A]) \to [A^{n_1 + \cdots + n_m}, A]$$

in a way that respects the aforementioned framework.

Substitution product

Let $T, S \in \mathcal{F}$. We define:

$$T \circ S = \int^n Tn \otimes S^n$$

The substitution product $T \circ S = \int^n Tn \otimes S^n$ has the following properties:

- If $S \in \mathcal{V}$ then $T \circ S \in \mathcal{V}$
- It is nonsymmetric, but associative (one uses that $(T \circ S)^n \simeq T^n \circ S$)
- $J = \mathbf{P}(1, -) \otimes I$ is the identity for \circ

The substitution product $T \circ S = \int^n Tn \otimes S^n$ has the following properties:

- If $S \in \mathcal{V}$ then $T \circ S \in \mathcal{V}$
- It is nonsymmetric, but associative (one uses that $(T \circ S)^n \simeq T^n \circ S$)
- $J = \mathbf{P}(1, -) \otimes I$ is the identity for \circ
- \bullet For ${\cal S} \in {\cal F}$, $\circ {\cal S} : {\cal F} \to {\cal F}$ has the right adjoint $\{{\cal S}, -\}$ given by

 $\{S,R\}m = [S^m,R]$

• If $A \in \mathcal{V}$ then $\mathcal{V}(T \circ A, B) \simeq \mathcal{F}(T, \{A, B\})$

This notation for the right adjoint agrees with our previous choice to denote $n \mapsto [A^n, A]$ by $\{A, A\}$.

Definition: operads

An *operad* is a monoid for \circ .

- That is, some $T \in \mathcal{F}$ with data $\mu : T \circ T \to T$ and $\eta : J \to T$ satisfying the monoid axioms.
- Operad morphisms are morphisms $T \rightarrow T'$ that respect μ and η .

Definition: operads

An *operad* is a monoid for \circ .

- That is, some $T \in \mathcal{F}$ with data $\mu : T \circ T \to T$ and $\eta : J \to T$ satisfying the monoid axioms.
- Operad morphisms are morphisms $T \rightarrow T'$ that respect μ and η .

Recall that $\{A, A\} \in \mathcal{F}$ is given by $\{A, A\}n = [A^n, A]$.

The composite {A, A} ◦ {A, A} ◦ A → {A → A gives us, by adjunction:

$$\mu: \{A, A\} \circ \{A, A\} \rightarrow \{A, A\}$$

• $J \circ A \simeq A$ corresponds by adjunction to $\eta : J \rightarrow \{A, A\}$

Thus $\{A, A\}$ is an operad (the *endomorphism operad*)!

イロト イポト イヨト イヨト

A closer look

We explicitly describe

$$[A^m, A] \otimes ([A^{n_1}, A] \otimes \cdots \otimes [A^{n_m}, A]) \rightarrow [A^{n_1 + \cdots + n_m}, A]$$

in terms of the operad structure on $\{A, A\}$ (for tidiness we assume m = 2):

A closer look

We explicitly describe

$$[A^m,A]\otimes([A^{n_1},A]\otimes\cdots\otimes[A^{n_m},A])\rightarrow[A^{n_1+\cdots+n_m},A]$$

in terms of the operad structure on $\{A, A\}$ (for tidiness we assume m = 2):

gives us

$$[A^2,A]\otimes([A^{n_1},A]\otimes[A^{n_2},A])\otimes A^{n_1+n_2}\to A$$

which corresponds by adjunction to

$$[A^2,A]\otimes ([A^{n_1},A]\otimes [A^{n_2},A])\rightarrow [A^{n_1+n_2},A]$$

This is exactly the construction of the operad map for $\{A, A\}$.

Simon Cho (UPenn)

 $\{A, A\}$ is the "universal" operad, in the following sense:

- Every operad $T \in \mathcal{F}$ gives a monad $T \circ -$ on \mathcal{F} (or on \mathcal{V} by restriction).
- Given A ∈ F, algebra structures h': T ∘ A → A for the monad T ∘ − on A correspond precisely to operad morphisms h: T → {A, A}

In the above case we say that h gives an algebra structure on A for the operad T.

Thank you!

I would like to thank Emily Riehl, Alexander Campbell, and Brendan Fong for organizing KES2, and the other participants for the wonderful discussions we had.