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Crash course in computational
monads



Program

def f():

x = input(”Enter a number:”)

return 2*int(x)

def g(y):

return y*y

a = g(f())

b = g(f())

Modelization

f : 1 → N

g : N → N
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Program

def f(a,b):

if b == 0: raise Error

else: return a/b

def g(y):
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a = g(f(4,0))

b = g(f(4,2))
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Big picture (Moggi)

Side effects of a programming language can be encoded by a monad T .

Distinguish values (objects A) from computations (images TA).

Programs are interpreted by morphisms A → TB.

Composition of programs occurs in the Kleisli category of T .

(One wants good properties for T : strong, pullbacks preserving, etc.)
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Clubs



Clubs

α : T → S is cartesian when each

TX SX

TX SY
is a pullback square.

M : cartesian natural transformations in [A,A].

Definition (Clubs)

A monad (S, j, n) on A is a club whenever M/S is monoidal for:

(T
α→ S)⊗ (T ′

β→ S) = TT ′
αβ→ SS

n→ S

Remark: in particular, cartesian monads are clubs.

Idea
When A has a terminal 1, exploits the equivalence A/S1 ' M/S.
Clubs over S are now easily spotted as monoids in A/S1.
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Tensoring in A/S1

For K
f→ S1 and X

g→ S1, the tensor f ⊗ g is obtained as:

K ×S1 SX K

SX S1

SS1

S1

y
f

S(g)

n1

Warning

Highly non symmetric!

Remark
Reminiscent of the operadic

substitution product.
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Enriched clubs

V : “nice” cartesian closed category

Definition
A V-monad (S, j, n) on a V-category A is a enriched club whenever

(S0, j, n) is an ordinary one on A0.

Key feature

There is still a one-to-one correspondance between clubs over S and

monoids in A0/S01.
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Strong monads



Every category is canonically enriched

Fact
Every small category A with products is enriched over V = Psh(A), by
defining

A (A, B) : C 7→ A (A× C, B)

A V-monad is then an ordinary monad (T0, j, n) on A together with a

natural map σA,C : SA× C → S(A× C) that makes T0 a strong monad.

Conclusion
Cartesian strong monads are enriched clubs. Conversely, V-clubs are
good enough to be effects.
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Computational monads as clubs



Clubs over Error

Take A = Set for the following.

The monad S = −+ e : Set → Set is strong and cartesian.

Hence it is an enriched club, and clubs over S are easily spotted as

monoids in Set/1 + e.

Those are M+ Ke → 1 + e where M is a plain monoid, which induces

the club

T : X 7→ (M× X) + Ke
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What is this effect?

Program

MAX = 2147483647

def f(a,b):

print ”Computing a quotient ...”

print ”Div by 0 raise an error.”

if b == 0: raise DivisionByZero

else: return a/b

def g(y):

print ”Squaring ...”

print ”Too big numbers raise errors.”

if y > MAX: raise TooBigError

else: return y*y

a = g(f(4,0))

b = g(f(2**32 ,2))

c = g(f(4,2))

Modelization

A program is modelled as a map

A → TB

Composing programs is Kleisli-

composing functions: for f : A → TB

and g : B → TC, define g ◦ f (x) as

f (x) if f (x) ∈ Ke

g(y) if f (x) = (m, y) and g(y) ∈ Ke

(mm
′, z) if f (x) = (m, y) and g(y) = (m′, z)

Here : T = (M×−) + Ke with M monoid.
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Here : T = (M×−)+Ke with M the free monoid on the ASCII alphabet

and Ke = {e1, e2}.



Thank you!

http://www.normalesup.org/~cagne/

https://pierrecagne.github.io

http://www.normalesup.org/~cagne/
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