Fierre Cagne for Kan Extension Seminar II

Université Paris Diderot

When computational monads go clubbing

Category Theory 2017 – Vancouver

I. Crash course in computational monads

2. Clubs

3. Strong monads

4. Computational monads as clubs

Crash course in computational monads

Program

```
def f():
  x = input("Enter a number:")
  return 2*int(x)
def g(y):
  return y*y
a = g(f())
```

```
b = g(f())
```

b = g(f())

Modelization

 $f:1\to\mathbb{N}$

 $g:\mathbb{N}\to\mathbb{N}$

Hence f is just a constant integer $n \in \mathbb{N}$, and we should get a = b = g(n)...

b = g(f())

Modelization $f: 1 \to \mathbb{N}^{\mathbb{N}}$ $g: \mathbb{N} \to \mathbb{N}$

Now f is not constant anymore.

b = g(f())

Modelization $f: 1 \rightarrow \mathbb{N}^{\mathbb{N}}$ $g: \mathbb{N} \rightarrow \mathbb{N}$

Now f is not constant anymore. But how to compose g with f now?

b = g(f())

Modelization $f: 1 \rightarrow \mathbb{N}^{\mathbb{N}}$

 $g:\mathbb{N}\to\mathbb{N}$

Now f is not constant anymore. But how to compose g with f now?

Use Kleisli composition of the monad

 $(-)^{\mathbb{N}}: \mathsf{Set} \to \mathsf{Set}$

Program

```
def f(a,b):
    if b == 0: raise Error
    else: return a/b
def g(y):
    return y*y
a = g(f(4,0))
```

```
b = g(f(4,2))
```

Program def f(a,b): if b == 0: raise Error else: return a/b def g(y): return y*y a = g(f(4,0))

```
b = g(f(4,2))
```

$\begin{array}{l} \mathsf{Modelization}\\ f:\mathbb{N}^2\to\mathbb{N} \end{array}$

$g:\mathbb{N}\to\mathbb{N}$

Hence a as well as b should have a defined value in $\mathbb{N} ...$

Program def f(a,b): if b == 0: raise Error else: return a/b def g(y): return y*y a = g(f(4,0))

```
b = g(f(4,2))
```

Modelization

 $f: \mathbb{N}^2 \to \mathbb{N} + \mathbf{e}$

 $g:\mathbb{N}\to\mathbb{N}$

 \mathbf{e} is a singleton Now f is only partially defined.

Program

```
def f(a,b):
    if b == 0: raise Error
    else: return a/b
def g(y):
    return y*y
```

a = g(f(4,0))
b = g(f(4,2))

Modelization

 $f: \mathbb{N}^2 \to \mathbb{N} + \mathbf{e}$

 $g:\mathbb{N}\to\mathbb{N}$

e is a singletonNow f is only partially defined.But how to compose g with f now?

Program

```
def f(a,b):
    if b == 0: raise Error
    else: return a/b
def g(y):
    return y*y
```

a = g(f(4,0))
b = g(f(4,2))

Modelization

 $f: \mathbb{N}^2 \to \mathbb{N} + \mathbf{e}$

 $g:\mathbb{N}\to\mathbb{N}$

e is a singletonNow f is only partially defined.But how to compose g with f now?

Use Kleisli composition of the monad

 $-+\,e:\mathsf{Set}\to\mathsf{Set}$

Distinguish values (objects A) from computations (images TA).

Distinguish values (objects A) from computations (images TA).

Programs are interpreted by morphisms $A \rightarrow TB$. Composition of programs occurs in the Kleisli category of T.

Distinguish values (objects A) from computations (images TA).

Programs are interpreted by morphisms $A \rightarrow TB$. Composition of programs occurs in the Kleisli category of T.

(One wants good properties for T: strong, pullbacks preserving, etc.)

 \mathcal{M} : cartesian natural transformations in $[\mathcal{A}, \mathcal{A}]$.

 \mathcal{M} : cartesian natural transformations in $[\mathcal{A}, \mathcal{A}]$.

$$[I]. \begin{array}{c} \alpha: T \to S \text{ is cartesian when each} \\ TX \longrightarrow SX \\ \downarrow \qquad \downarrow \\ TX \longrightarrow SY \\ \text{is a pullback square.} \end{array}$$

 \mathcal{M} : cartesian natural transformations in $[\mathcal{A}, \mathcal{A}]$.

Definition (Clubs)

A monad (S, j, n) on \mathcal{A} is a club whenever \mathcal{M}/S is monoidal for:

$$(T \xrightarrow{\alpha} S) \otimes (T' \xrightarrow{\beta} S) = TT' \xrightarrow{\alpha\beta} SS \xrightarrow{n} S$$

 \mathcal{M} : cartesian natural transformations in $[\mathcal{A}, \mathcal{A}]$.

Definition (Clubs)

A monad (S, j, n) on \mathcal{A} is a club whenever \mathcal{M}/S is monoidal for:

$$(T \xrightarrow{\alpha} S) \otimes (T' \xrightarrow{\beta} S) = TT' \xrightarrow{\alpha\beta} SS \xrightarrow{n} S$$

Remark: in particular, cartesian monads are clubs.

 \mathcal{M} : cartesian natural transformations in $[\mathcal{A}, \mathcal{A}]$.

Definition (Clubs)

A monad (S, j, n) on \mathcal{A} is a club whenever \mathcal{M}/S is monoidal for:

$$(T \xrightarrow{\alpha} S) \otimes (T' \xrightarrow{\beta} S) = TT' \xrightarrow{\alpha\beta} SS \xrightarrow{n} S$$

Remark: in particular, cartesian monads are clubs.

Idea

When \mathcal{A} has a terminal 1, exploits the equivalence $\mathcal{A}/S1 \simeq \mathcal{M}/S$. Clubs over S are now *easily* spotted as monoids in $\mathcal{A}/S1$. Tensoring in $\mathcal{A}/S1$

For $K \xrightarrow{f} S1$ and $X \xrightarrow{g} S1$, the tensor $f \otimes g$ is obtained as:

Tensoring in $\mathcal{A}/S1$

For $K \xrightarrow{f} S1$ and $X \xrightarrow{g} S1$, the tensor $f \otimes g$ is obtained as:

Warning

Highly non symmetric!

Remark

Reminiscent of the operadic substitution product.

Enriched clubs

 \mathcal{V} : "nice" cartesian closed category

Enriched clubs

 \mathcal{V} : ''nice'' cartesian closed category

Definition

A \mathcal{V} -monad (S, j, n) on a \mathcal{V} -category \mathcal{A} is a enriched club whenever (S_0, j, n) is an ordinary one on \mathcal{A}_0 .

Enriched clubs

 \mathcal{V} : ''nice'' cartesian closed category

Definition

A \mathcal{V} -monad (S, j, n) on a \mathcal{V} -category \mathcal{A} is a enriched club whenever (S_0, j, n) is an ordinary one on \mathcal{A}_0 .

Key feature

There is still a one-to-one correspondance between clubs over S and monoids in $\mathcal{A}_0/\mathsf{S}_0\mathbf{1}.$

Strong monads

Every category is canonically enriched

Fact

Every small category ${\cal A}$ with products is enriched over ${\cal V}={\sf Psh}({\cal A}),$ by defining

 $\mathcal{A}(A,B): C \mapsto \mathcal{A}(A \times C,B)$

Every category is canonically enriched

Fact

Every small category ${\cal A}$ with products is enriched over ${\cal V}={\sf Psh}({\cal A}),$ by defining

$$\mathcal{A}(A,B): C \mapsto \mathcal{A}(A \times C,B)$$

A \mathcal{V} -monad is then an ordinary monad (T_0, j, n) on \mathcal{A} together with a natural map $\sigma_{A,C} : SA \times C \to S(A \times C)$ that makes T_0 a strong monad.

Every category is canonically enriched

Fact

Every small category ${\cal A}$ with products is enriched over ${\cal V}={\sf Psh}({\cal A}),$ by defining

$$\mathcal{A}\left(A,B\right): C \mapsto \mathcal{A}\left(A \times C,B\right)$$

A \mathcal{V} -monad is then an ordinary monad (T_0, j, n) on \mathcal{A} together with a natural map $\sigma_{A,C} : SA \times C \to S(A \times C)$ that makes T_0 a strong monad.

Conclusion

Cartesian strong monads are enriched clubs. Conversely, \mathcal{V} -clubs are good enough to be effects.

Computational monads as clubs

Take $\mathcal{A} = \text{Set}$ for the following.

Take $\mathcal{A} =$ Set for the following.

The monad $S = - + \mathbf{e}$: Set \rightarrow Set is strong and cartesian.

Take $\mathcal{A} =$ Set for the following.

The monad $S = - + \mathbf{e}$: Set \rightarrow Set is strong and cartesian.

Hence it is an enriched club, and clubs over S are easily spotted as monoids in $\text{Set}/1 + \mathbf{e}$.

Take $\mathcal{A} =$ Set for the following.

The monad $S = - + \mathbf{e}$: Set \rightarrow Set is strong and cartesian.

Hence it is an enriched club, and clubs over S are easily spotted as monoids in $\text{Set}/1 + \mathbf{e}$.

Those are $M+K_{\rm e} \to 1+{\rm e}$ where M is a plain monoid, which induces the club

 $T: X \mapsto (M \times X) + K_{\mathbf{e}}$

What is this effect?

Program

Here : $T = (M \times -) + K_e$ with M monoid.

```
What is this effect?
          Program
MAX = 2147483647
def f(a,b):
  print "Computing a guotient..."
  print "Div by 0 raise an error."
 if b == 0: raise DivisionByZero
  else: return a/b
def q(v):
  print "Squaring..."
  print "Too big numbers raise errors."
  if y > MAX: raise TooBigError
  else: return v*v
a = g(f(4,0))
```

```
a = g(f(4,0))

b = g(f(2**32,2))

c = g(f(4,2))
```


Here : $T = (M \times -) + K_e$ with M the free monoid on the ASCII alphabet and $K_e = \{e_1, e_2\}$.

http://www.normalesup.org/~cagne/
 https://pierrecagne.github.io