Dense generators of algebraic categories

José Siqueira jose.siqueira@cantab.net

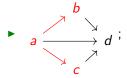
Definition

We say a full small subcategory $\mathcal{A}\hookrightarrow\mathcal{C}$ is a dense generator of \mathcal{C} if its associated nerve functor $\nu_{\mathcal{A}}:\mathcal{C}\to PSh(\mathcal{A})$ is fully faithful, where $\nu_{\mathcal{A}}(X)=\mathcal{C}(\imath_{\mathcal{A}}(-),X)$ for each $X\in\mathcal{C}.$

Definition

We say a full small subcategory $\mathcal{A}\hookrightarrow\mathcal{C}$ is a dense generator of \mathcal{C} if its associated nerve functor $\nu_{\mathcal{A}}:\mathcal{C}\to PSh(\mathcal{A})$ is fully faithful, where $\nu_{\mathcal{A}}(X)=\mathcal{C}(\imath_{\mathcal{A}}(-),X)$ for each $X\in\mathcal{C}.$

Example



- $ightharpoonup
 angle_0 \hookrightarrow \mathbf{Set};$
- ► KHaus has no dense generator (Gabriel, Ulmer 1971);
- ▶ The full subcategory containing only $\mathbb{R} \oplus \mathbb{R}$ is dense in $Vect_{\mathbb{R}}$.

The nerve functor associated to $\mathcal{A} \hookrightarrow \mathcal{C}$ has a left adjoint $PSh(\mathcal{A}) \to \mathcal{C}$, which takes F to the weighted colimit of $i_{\mathcal{A}}$ with weight F. If \mathcal{A} is a dense generator, this canonically makes every object X of \mathcal{C} a colimit of objects in \mathcal{A} .

The nerve functor associated to $\mathcal{A}\hookrightarrow\mathcal{C}$ has a left adjoint $PSh(\mathcal{A})\to\mathcal{C}$, which takes F to the weighted colimit of $i_{\mathcal{A}}$ with weight F. If \mathcal{A} is a dense generator, this canonically makes every object X of \mathcal{C} a colimit of objects in \mathcal{A} .

Compare this to the fact that presheaves $F: \mathcal{D}^{op} \to \mathbf{Set}$ over small categories are canonically colimits of representables, as in the coend identity

$$F(-) = \int^{d \in \mathcal{D}} F(d) \times \mathcal{D}(-, d).$$

Theories with arity

<u>Motivation:</u> if $I:\aleph_0\to\mathcal{L}$ is a Lawvere theory, the restriction functor $I^*:PSh(L)\to PSh(\aleph_0)$ induces a monad $I^*I_!$ that preserves the essential image of the nerve functor.

Theories with arity

<u>Motivation:</u> if $I:\aleph_0\to\mathcal{L}$ is a Lawvere theory, the restriction functor $I^*:PSh(L)\to PSh(\aleph_0)$ induces a monad $I^*I_!$ that preserves the essential image of the nerve functor.

Definition

Let $\mathcal C$ be a category with a dense generator $\mathcal A$. A theory with arities $\mathcal A$ on $\mathcal C$ is a is a pair (Θ,j) , where $j:\mathcal A\to\Theta$ is a bijective-on-objects functor such that the induced monad $j^*j_!$ on $PSh(\mathcal A)$ preserves the essential image of $\nu_{\mathcal A}$. A Θ -model is a presheaf on Θ whose restriction along j is isomorphic to some $\mathcal A$ -nerve.

Theories with arity

<u>Motivation:</u> if $I:\aleph_0\to\mathcal{L}$ is a Lawvere theory, the restriction functor $I^*:PSh(L)\to PSh(\aleph_0)$ induces a monad $I^*I_!$ that preserves the essential image of the nerve functor.

Definition

Let $\mathcal C$ be a category with a dense generator $\mathcal A$. A theory with arities $\mathcal A$ on $\mathcal C$ is a is a pair (Θ,j) , where $j:\mathcal A\to\Theta$ is a bijective-on-objects functor such that the induced monad $j^*j_!$ on $PSh(\mathcal A)$ preserves the essential image of $\nu_{\mathcal A}$. A Θ -model is a presheaf on Θ whose restriction along j is isomorphic to some $\mathcal A$ -nerve.

For $\mathcal{A} = \aleph_0 \hookrightarrow \mathbf{Set}$, this requirement on models says a Θ -model M restricts to powers of some object: $Mj(-) \cong X^{|-|}$ for some set X.

Monads with arities

Let T be a monad on a category $\mathcal C$ with a dense generator $\mathcal A$. Then it is a monad with arities $\mathcal A$ if the composite $\nu_{\mathcal A} T$ maps the $\mathcal A$ -cocones of $\mathcal C$ into colimits in $PSh(\mathcal A)$.

Main results

► Theories with arities A are equivalent to monads with arities A, and models are equivalent to E-M algebras;

Main results

- ► Theories with arities A are equivalent to monads with arities A, and models are equivalent to E-M algebras;
- ▶ The Nerve Theorem: if \mathcal{C} has a dense generator \mathcal{A} and T is a monad with arities \mathcal{A} , then \mathcal{C}^T has a dense generator consisting of the free T-algebras on objects of \mathcal{A} ;

Main results

- ► Theories with arities A are equivalent to monads with arities A, and models are equivalent to E-M algebras;
- ▶ The Nerve Theorem: if \mathcal{C} has a dense generator \mathcal{A} and \mathcal{T} is a monad with arities \mathcal{A} , then $\mathcal{C}^{\mathcal{T}}$ has a dense generator consisting of the free \mathcal{T} -algebras on objects of \mathcal{A} ;
- ▶ Gabriel-Ulmer/Adámek-Rosický Theorem: if T is a monad on an α -accessible category that preserves α -filtered colimits, then its category of algebras is α -accessible and has a dense generator given by the free T-algebras on α -presentable objects.

Consequences

 Classical Lawvere theories are equivalent to finitary monads on Set;

Consequences

- Classical Lawvere theories are equivalent to finitary monads on Set;
- ► The free algebraic objects on finitely many generators give a dense generator of the corresponding algebraic category;

Thanks for your time!

▶ Both dagger categories and groupoids are models for algebraic theories over the category *i*Grph of involutive graphs;

- ▶ Both dagger categories and groupoids are models for algebraic theories over the category *i*Grph of involutive graphs;
- ➤ The free dagger categories/groupoids on (finite, connected) acyclic graphs form a dense generator: a cocontinuous functor is thus determined by the images of the free objects on acyclic graphs.

► The subcategory of graphs of the form $0 \stackrel{\smile}{\searrow} 1 \stackrel{\smile}{\searrow} ... \stackrel{\smile}{\searrow} n$ is another dense generator of $i\mathbf{Grph}$;

- ► The subcategory of graphs of the form $0 \subseteq 1 \subseteq n$ is another dense generator of $i\mathbf{Grph}$;
- The free dagger categories on such sequences form a dense generator of DagCat. Any cocontinuous functor on DagCat is thus determined by the images of dagger categories of the form

