Towards a Characterization of the Double Category of Spans

Evangelia Aleiferi

Dalhousie University

Category Theory 2017 July, 2017

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 1 / 29

イロト イポト イヨト イヨト

- 3

Motivation Cartesian double categories Eilenberg-Moore Objects Towards the characterization of spans Further Questions

Motivation

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 2 / 29

◆□> ◆圖> ◆臣> ◆臣> □臣

Theorem (Lack, Walters, Wood 2010)

For a bicategory \mathcal{B} the following are equivalent:

- i. There is an equivalence $\mathcal{B} \simeq Span(\mathcal{E})$, for some finitely complete category \mathcal{E} .
- ii. *B* is Cartesian, each comonad in *B* has an Eilenberg-Moore object and every map in *B* is comonadic.
- iii. The bicategory $\mathcal{M}ap(\mathcal{B})$ is an essentially locally discrete bicategory with finite limits, satisfying in \mathcal{B} the Beck condition for pullbacks of maps, and the canonical functor $C : Span(\mathcal{M}ap(\mathcal{B})) \rightarrow \mathcal{B}$ is an equivalence of bicategories.

イロト イポト イヨト イヨト 二日

Cartesian Bicategories

Definition (Carboni, Kelly, Walters, Wood 2008)

A bicategory $\mathcal B$ is said to be **Cartesian** if:

- i. The bicategory $\mathcal{M}ap(\mathcal{B})$ has finite products
- ii. Each category $\mathcal{B}(A, B)$ has finite products.
- iii. Certain derived lax functors $\otimes : \mathcal{B} \times \mathcal{B} \to \mathcal{B}$ and $I : \mathbb{1} \to \mathcal{B}$, extending the product structure of $\mathcal{M}ap(\mathcal{B})$, are pseudo.

Cartesian Bicategories

Definition (Carboni, Kelly, Walters, Wood 2008)

A bicategory $\mathcal B$ is said to be **Cartesian** if:

- i. The bicategory $\mathcal{M}ap(\mathcal{B})$ has finite products
- ii. Each category $\mathcal{B}(A, B)$ has finite products.
- iii. Certain derived lax functors $\otimes : \mathcal{B} \times \mathcal{B} \to \mathcal{B}$ and $I : \mathbb{1} \to \mathcal{B}$, extending the product structure of $\mathcal{M}ap(\mathcal{B})$, are pseudo.

Examples

1. The bicategory $\mathcal{R}el(\mathcal{E})$ of relations over a regular category \mathcal{E} .

Cartesian Bicategories

Definition (Carboni, Kelly, Walters, Wood 2008)

A bicategory $\mathcal B$ is said to be **Cartesian** if:

- i. The bicategory $\mathcal{M}ap(\mathcal{B})$ has finite products
- ii. Each category $\mathcal{B}(A, B)$ has finite products.
- iii. Certain derived lax functors $\otimes : \mathcal{B} \times \mathcal{B} \to \mathcal{B}$ and $I : \mathbb{1} \to \mathcal{B}$, extending the product structure of $\mathcal{M}ap(\mathcal{B})$, are pseudo.

Examples

- 1. The bicategory $\mathcal{R}el(\mathcal{E})$ of relations over a regular category \mathcal{E} .
- 2. The bicategory $Span(\mathcal{E})$ of spans over a finitely complete category \mathcal{E} .

Question

For a finitely complete category \mathcal{E} , can we characterize the double category $\mathbb{S}pan(\mathcal{E})$ of

- objects of ${\ensuremath{\mathcal E}}$
- arrows of ${\mathcal E}$ vertically
- spans in ${\mathcal E}$ horizontally
- as a Cartesian double category?

イロト 人間ト イヨト イヨト

- 3

Motivation Cartesian double categories Eilenberg-Moore Objects Towards the characterization of spans Further Questions

Cartesian double categories

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 6 / 29

(日) (四) (王) (王) (王)

A (pseudo) double category \mathbb{D} consists of:

- i. A category D_0 , representing the objects and the vertical arrows.
- ii. A category D_1 , representing the horizontal arrows and the cells written as

$$\begin{array}{c} A \xrightarrow{M} B \\ f \downarrow \alpha \qquad \downarrow g \\ C \xrightarrow{N} D \end{array}$$

iii. Functors $D_1 \xrightarrow{S,T} D_0$, $D_0 \xrightarrow{U} D_1$ and $D_1 \times_{D_0} D_1 \xrightarrow{\odot} D_1$ such that $S(U_A) = A = T(U_A)$, $S(M \odot N) = SN$ and $T(M \odot N) = TM$.

iv. Natural isomorphisms $(M \odot N) \odot P \stackrel{a}{\longrightarrow} M \odot (N \odot P)$,

 $U_{TM} \odot M \xrightarrow{l} M$ and $M \odot U_{SM} \xrightarrow{r} M$, satisfying the pentagon and triangle identities.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

The objects, the horizontal arrows and the cells with source and target identities form a bicategory $% \left({{\left[{{{\rm{c}}} \right]}_{{\rm{c}}}}_{{\rm{c}}}} \right)$

 $\mathcal{H}(\mathbb{D}).$

The objects, the horizontal arrows and the cells with source and target identities form a bicategory

$\mathcal{H}(\mathbb{D}).$

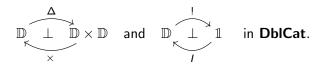
The double categories together with the double functors and the vertical natural transformations form a 2-category

DblCat.

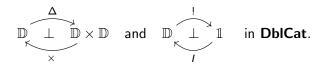
Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 8 / 29

・ロン ・四 ・ ・ ヨン ・ ヨン

A double category \mathbb{D} is said to be **Cartesian** if there are adjunctions



A double category $\mathbb D$ is said to be $\mbox{Cartesian}$ if there are adjunctions

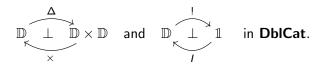


Examples

1. The double category $\mathbb{R}el(\mathcal{E})$ of relations over a regular category \mathcal{E}

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 9 / 29

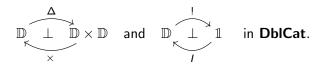
A double category $\mathbb D$ is said to be $\mbox{Cartesian}$ if there are adjunctions



Examples

- 1. The double category $\mathbb{R}el(\mathcal{E})$ of relations over a regular category \mathcal{E}
- The double category Span(E) of spans over a finitely complete category E

A double category $\mathbb D$ is said to be $\mbox{Cartesian}$ if there are adjunctions



Examples

- 1. The double category $\mathbb{R}el(\mathcal{E})$ of relations over a regular category \mathcal{E}
- The double category Span(E) of spans over a finitely complete category E
- 3. The double category V Mat, for a Cartesian monoidal category V with coproducts such that the tensor distributes over them

A double category is called fibrant if for every niche of the form

$$\begin{array}{cc} A & C \\ {}_{f\downarrow} & {}_{\downarrow g} \\ B \xrightarrow{}_{M} D \end{array}$$

there is a horizontal arrow g^*Mf_* : $A \rightarrow C$ and a cell

so that every cell $\begin{array}{c} A' \xrightarrow{M'} C' \\ fh \downarrow \qquad \qquad \downarrow_{\mathcal{G}^k} \text{ can be factored uniquely through } \zeta. \\ B \xrightarrow{\longrightarrow} D, \end{array}$

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 10 / 29

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 11 / 29

1. $\mathbb{R}el(\mathcal{E})$, \mathcal{E} a regular category

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

- 1. $\mathbb{R}el(\mathcal{E})$, \mathcal{E} a regular category
- 2. $\mathbb{S}pan(\mathcal{E})$, \mathcal{E} finitely complete category

(日) (四) (王) (王) (王)

- 1. $\mathbb{R}el(\mathcal{E})$, \mathcal{E} a regular category
- 2. $\mathbb{S}pan(\mathcal{E})$, \mathcal{E} finitely complete category
- 3. $V \mathbb{M}at$, V a Cartesian monoidal category with coproducts such that the tensor distributes over them

Theorem

Consider a fibrant double category $\mathbb D$ such that:

- i. the vertical category D_0 has finite products \times, p, r, I and
- ii. every $\mathcal{H}(\mathbb{D})(A, B)$ has finite products \wedge, \top .

Then the formula $M \times N = (p^*Mp_*) \wedge (r^*Nr_*)$ and the terminal horizontal arrow $\top_{I,I}$ extend the product of D_0 to lax double functors

 $\times : \mathbb{D} \times \mathbb{D} \to \mathbb{D}$ and $I : \mathbb{1} \to \mathbb{D}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Theorem

Consider a fibrant double category $\mathbb D$ such that:

- i. the vertical category D_0 has finite products \times, p, r, I and
- ii. every $\mathcal{H}(\mathbb{D})(A, B)$ has finite products \wedge, \top .

Then the formula $M \times N = (p^*Mp_*) \wedge (r^*Nr_*)$ and the terminal horizontal arrow $\top_{I,I}$ extend the product of D_0 to lax double functors

 $\times : \mathbb{D} \times \mathbb{D} \to \mathbb{D}$ and $I : \mathbb{1} \to \mathbb{D}$.

Theorem

Consider a fibrant double category \mathbb{D} such that:

- i. the vertical category D_0 has finite products \times , p, r, l,
- ii. every $\mathcal{H}(\mathbb{D})(A, B)$ has finite products \wedge, \top and
- iii. the lax double functors \times and I are pseudo.

Then \mathbb{D} is Cartesian.

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 12 / 29

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Motivation Cartesian double categories Eilenberg-Moore Objects Towards the characterization of spans Further Questions

Eilenberg-Moore Objects

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 13 / 29

Consider the double category $\mathbb{C}om(\mathbb{D})$ with:

Objects the comonads in D: (X, P : X → X), equipped with globular cells δ : P → P ⊙ P and ε : P → U_X satisfying the usual conditions.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Consider the double category $\mathbb{C}om(\mathbb{D})$ with:

- Objects the comonads in D: (X, P : X → X), equipped with globular cells δ : P → P ⊙ P and ε : P → U_X satisfying the usual conditions.
- Vertical arrows the comonad morphisms, i.e. vertical arrows $f: X \rightarrow Y$ together with a cell ψ :

$$\begin{array}{c} X \xrightarrow{P} X \\ f \downarrow \\ Y \xrightarrow{P} R \end{array} \xrightarrow{\downarrow f} Y$$

which is compatible with the comonad structure.

• Horizontal arrows the horizontal comonad maps, i.e. horizontal arrows $F: X \rightarrow X'$, together with a cell α :

$$\begin{array}{c} X \xrightarrow{P} X \xrightarrow{F} X' \\ \parallel \\ X \xrightarrow{F} X' \xrightarrow{H} X', \end{array}$$

compatible with the counit and the comultiplication.

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 14 / 29

• Cells that are compatible with the horizontal and the vertical structure.

• Cells that are compatible with the horizontal and the vertical structure.

Definition

We say that the double category $\mathbb D$ has Eilenberg-Moore objects for comonads if the inclusion double functor

 $J: \mathbb{D} \to \mathbb{C}om(\mathbb{D})$

has a right adjoint.

Example

The double category $\mathbb{S}pan(\mathcal{E})$, for a finitely complete category \mathcal{E} , has Eilenberg-Moore objects for comonads.

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 15 / 29

If a double category \mathbb{D} has Eilenberg-Moore objects, then for every comonad (X, P) there is an object *EM* and a universal comonad morphism

If \mathbb{D} is fibrant and $P \cong e^* e_*$, we say that \mathbb{D} has strong Eilenberg-Moore objects.

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 16 / 29

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

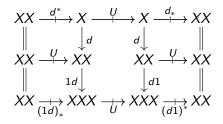
Towards the characterization of spans

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 17 / 29

(日) (四) (王) (王) (王)

We say that a fibrant and Cartesian double category has the **Frobenius property** if for every object X and its pullback diagram of vertical arrows

the cell



is invertible.

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 18 / 29

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Definition (Pare, Grandis)

A fibrant double category \mathbb{D} has tabulators if for every horizontal arrow $F: X \rightarrow Y$ there is an object T and a cell

such that for every other object H and every cell $\beta : U_H \to F$, there is a unique vertical arrow $f : H \to T$ such that $\beta = \tau U_f$. We say that the tabulators are **strong** if $F \cong t_{2*}t_1^*$.

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 19 / 29

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

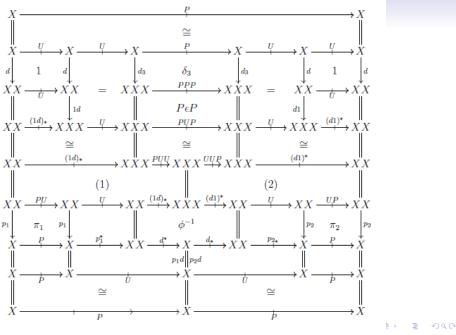
Conjecture

If a double category is fibrant, Cartesian and it satisfies the Frobenius property, then for every cell of the form

there exists a comonad structure (P, ϵ, δ) , unique up to isomorphism.

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 20 / 29

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで



Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 21 / 29

Corollary (of the conjecture)

In a fibrant and Cartesian double category \mathbb{D} , that satisfies the Frobenius property, for every horizontal arrow $F : X \to Y$, the cartesian filling of the niche

admits a comonad structure, unique up to isomorphism.

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 22 / 29

Corollary (of the conjecture)

A fibrant and Cartesian double category \mathbb{D} that satisfies the Frobenius property and has Eilenberg-Moore objects, has tabulators.

Corollary (of the conjecture)

A fibrant and Cartesian double category \mathbb{D} that satisfies the Frobenius property and has Eilenberg-Moore objects, has tabulators. Moreover, if the Eilenberg-Moore objects are strong, the tabulators are strong.

If a double category \mathbb{D} satisfies all of the following, then $\mathbb{D} \simeq \mathbb{S}pan(\mathbb{D})$:

イロト 不得 トイヨト イヨト 二日

If a double category \mathbb{D} satisfies all of the following, then $\mathbb{D} \simeq \mathbb{S}pan(\mathbb{D})$:

• D is fibrant and Cartesian.

イロト 不得 トイヨト イヨト 二日

If a double category \mathbb{D} satisfies all of the following, then $\mathbb{D} \simeq \mathbb{S}pan(\mathbb{D})$:

- D is fibrant and Cartesian.
- \mathbb{D} satisfies the Frobenius property

イロト 不得下 イヨト イヨト 二日

If a double category \mathbb{D} satisfies all of the following, then $\mathbb{D} \simeq \mathbb{S}pan(\mathbb{D})$:

- D is fibrant and Cartesian.
- \mathbb{D} satisfies the Frobenius property
- D has strong Eilenberg-Moore objects

イロト 不得下 イヨト イヨト 二日

If a double category \mathbb{D} satisfies all of the following, then $\mathbb{D} \simeq \mathbb{S}pan(\mathbb{D})$:

- D is fibrant and Cartesian.
- \mathbb{D} satisfies the Frobenius property
- $\mathbb D$ has strong Eilenberg-Moore objects
- D₀ has pullbacks

イロト イポト イヨト イヨト 二日

If a double category \mathbb{D} satisfies all of the following, then $\mathbb{D} \simeq \mathbb{S}pan(\mathbb{D})$:

- D is fibrant and Cartesian.
- D satisfies the Frobenius property
- D has strong Eilenberg-Moore objects
- *D*₀ has pullbacks
- For every composable horizontal arrows F and G, the tabulator of G ⊙ F is given by the pullback of the tabulators of F and G.

イロト 不得下 イヨト イヨト

If a double category \mathbb{D} satisfies all of the following, then $\mathbb{D} \simeq \mathbb{S}pan(\mathbb{D})$:

- D is fibrant and Cartesian.
- D satisfies the Frobenius property
- D has strong Eilenberg-Moore objects
- D₀ has pullbacks
- For every composable horizontal arrows F and G, the tabulator of G ⊙ F is given by the pullback of the tabulators of F and G.
- For every pair of vertical arrows r₀ : R → A and r₁ : R → B, the tabulator of r_{1*}r₀^{*} is R.

イロト 不得下 イヨト イヨト 二日

Motivation Cartesian double categories Eilenberg-Moore Objects Towards the characterization of spans Further Questions

Further Questions

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 25 / 29

FbrCat $^{\mathcal{Q}}$: The full sub-2-category of **DblCat** determined by the fibrant double categories \mathbb{D} in which every category $\mathcal{H}(\mathbb{D})(A, B)$ has coequalizers and \odot preserves them in both variables.

If \mathbb{D} is a double category in $\mathbf{FbrCat}^{\mathcal{Q}}$, then we can define the double category $\mathbb{M}\mathbf{od}(\mathbb{D})$ of

- monads,
- monad morphisms vertically,
- modules horizontally and
- equivariant maps.

Moreover, \mathbb{M} **od** (\mathbb{D}) is fibrant.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Theorem (Shulman 2007) Mod defines a 2-functor $\mathbf{FbrCat}^{\mathcal{Q}} \to \mathbf{FbrCat}^{\mathcal{Q}}$.

Theorem (Shulman 2007)

\mathbb{M} od defines a 2-functor $\mathbf{FbrCat}^{\mathcal{Q}} \to \mathbf{FbrCat}^{\mathcal{Q}}$.

Since every 2-functor preserves adjunctions, we have the following:

Corollary

If \mathbb{D} is a fibrant Cartesian double category in which every category $\mathcal{H}(\mathbb{D})(A, B)$ has coequalizers and \odot preserves them in both variables, then $\mathbb{M}od(\mathbb{D})$ is a fibrant Cartesian double category too.

イロト 不得 トイヨト イヨト 二日

Theorem (Shulman 2007)

 \mathbb{M} od defines a 2-functor $\mathbf{FbrCat}^{\mathcal{Q}} \to \mathbf{FbrCat}^{\mathcal{Q}}$.

Since every 2-functor preserves adjunctions, we have the following:

Corollary

If \mathbb{D} is a fibrant Cartesian double category in which every category $\mathcal{H}(\mathbb{D})(A, B)$ has coequalizers and \odot preserves them in both variables, then $\mathbb{M}od(\mathbb{D})$ is a fibrant Cartesian double category too.

In particular, for a finitely complete and cocomplete category $\ensuremath{\mathcal{E}}$, since

 $\mathsf{Prof}(\mathcal{E}) \simeq \mathsf{Mod}(\mathsf{Span}(\mathcal{E})),$

the double category $Prof(\mathcal{E})$ is Cartesian.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Theorem (Shulman 2007)

 \mathbb{M} od defines a 2-functor $\mathbf{FbrCat}^{\mathcal{Q}} \to \mathbf{FbrCat}^{\mathcal{Q}}$.

Since every 2-functor preserves adjunctions, we have the following:

Corollary

If \mathbb{D} is a fibrant Cartesian double category in which every category $\mathcal{H}(\mathbb{D})(A, B)$ has coequalizers and \odot preserves them in both variables, then $\mathbb{M}od(\mathbb{D})$ is a fibrant Cartesian double category too.

In particular, for a finitely complete and cocomplete category $\ensuremath{\mathcal{E}}$, since

 $\mathsf{Prof}(\mathcal{E}) \simeq \mathsf{Mod}(\mathsf{Span}(\mathcal{E})),$

the double category $Prof(\mathcal{E})$ is Cartesian.

Question

By using the above construction of modules, can we characterize the double category of profunctors as a Cartesian double category?

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 27 / 29

M Grandis and R Paré.

Limits in double categories.

Cahiers de topologie et géométrie différentielle catégoriques, 40(3):162–220, 1999.

Stephen Lack, R. F C Walters, and R. J. Wood. Bicategories of spans as cartesian bicategories. Theory and Applications of Categories, 24(1):1–24, 2010.

Susan Niefield.

Span, Cospan, and other double categories. Theory and Applications of Categories, 26(26):729–742, 2012.

Michael Shulman.

Framed bicategories and monoidal fibrations. 20(18):80, 2007.

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 28 / 29

(日) (同) (日) (日) (日)

Motivation Cartesian double categories Eilenberg-Moore Objects Towards the characterization of spans Further Questions

Thank you!

Evangelia Aleiferi (Dalhousie University) Towards a Characterization of the Double Category of Spans July, 2017 29 / 29