Orbit Class and its Applications

Marzieh Bayeh

Dalhousie University

CT 2017 - UBC

July 21, 2017

Definition (Lusternik Schnirelmann category)

LS-category (category) of a topological space X

$$cat(X) = n$$

if n is the least integer such that there exists an open covering

$$X = \bigcup_{i=1}^{n} U_i$$

where each U_i is contractible to a point in X.

Definition (Lusternik Schnirelmann category)

LS-category (category) of a topological space X

$$cat(X) = n$$

if n is the least integer such that there exists an open covering

$$X = \bigcup_{i=1}^{n} U_i$$

where each U_i is contractible to a point in X.

If no such a covering exists we write $cat(X) = \infty$.

Group Action

- $\bullet~G:$ Topological group
- X: Hausdorff topological space
- $\Theta: G \times X \longrightarrow X$ is a map s.t.

$$\label{eq:second} \Theta(g,\Theta(h,x)) = \Theta(gh,x), \qquad \forall g,h \in G, x \in X;$$

$$\Theta(e, x) = x, \quad \forall x \in X, \ e = 1_G.$$

 Θ is called an **action** of G on X, and X is called a G-space.

Definition

Let X be a G-space and $x \in X$. Then

• Isotropy subgroup of G at x:

$$G_x = \Big\{ g \in G \Big| gx = x \Big\}.$$

Definition

Let X be a G-space and $x \in X$. Then

• Isotropy subgroup of G at x:

$$G_x = \Big\{ g \in G \Big| gx = x \Big\}.$$

• **Orbit** of *x*:

$$\mathcal{O}(x) = \Big\{ gx \Big| g \in G \Big\}.$$

Definition

Let X be a G-space and $x \in X$. Then

• Isotropy subgroup of G at x:

$$G_x = \Big\{ g \in G \Big| gx = x \Big\}.$$

• Orbit of x:

$$\mathcal{O}(x) = \Big\{ gx \Big| g \in G \Big\}.$$

• Orbit space, X/G: Set of all equivalence classes of orbits, endowed with the quotient topology.

Definition

Let X be a G-space and $U \subset X$.

• U is called G-invariant if $GU \subseteq U$.

Definition

Let X be a G-space and $U \subset X$.

- U is called **G-invariant** if $GU \subseteq U$.
- Let U be a G-invariant subset of X,

 $H:U\times I\to X$

is called a G-homotopy if

gH(x,t) = H(gx,t) $\forall g \in G, x \in U, t \in I.$

Definition

G-contractible Let U and A be G-invariant subsets of X. We say U is **G**-contractible to **A** and denote by

 $U \mathrel{\widetilde{\succ_{\mathsf{G}}}}_{\mathsf{G}} A,$ if there exists a $G\text{-homotopy } H: U \times I \to X \text{ s.t:}$

- H_0 is the inclusion of U in X.
- $H_1(U) \subseteq A$

Definition

G-contractible Let U and A be G-invariant subsets of X. We say U is **G**-contractible to **A** and denote by

if there exists a G-homotopy $H: U \times I \to X$ s.t:

- H_0 is the inclusion of U in X.
- $H_1(U) \subseteq A$

In this case we usually write,

$$H: U \Join_{\mathsf{G}} A.$$

 $U \stackrel{\sim}{\succ} A,$

Definition

X: A G-space

A G-invariant open subset U of X is called G-categorical if there exists an orbit $\mathcal{O}(x)$ such that $U \underset{G}{\sim} \mathcal{O}(x)$.

Definition

Equivariant LS-category of a topological space \boldsymbol{X}

$$cat_G(X) = n$$

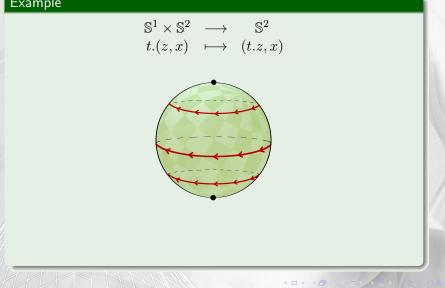
if \boldsymbol{n} is the least integer such that there exists an open covering

$$X = \bigcup_{i=1}^{n} U_i$$

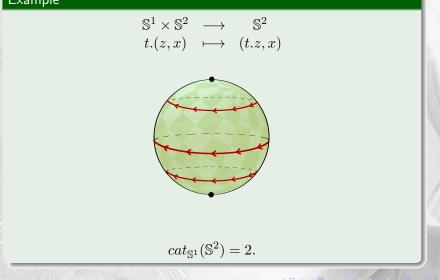
where each U_i is a *G*-categorical subset.

If no such a covering exists we write $cat_G(X) = \infty$.

Example



Example



Theorem (S. Hurder and D. Töben, 2015)

Let G be a Lie group acting properly on M. Let \mathfrak{M}_0 be the set of all locally minimal strata. Then

$$\sum_{\mathcal{M}_x \in \mathfrak{M}_0} cat_G(\mathcal{M}_x) \le cat_G(M)$$

• M be a G-space.

- M be a G-space.
- H be a closed subgroup of G.

- M be a G-space.
- H be a closed subgroup of G.
- (H) be the conjugacy class of H in G.

- M be a G-space.
- H be a closed subgroup of G.
- (H) be the conjugacy class of H in G.
- Partial order

$$(H) \le (K) \Longleftrightarrow gKg^{-1} \subset H$$

- M be a G-space.
- H be a closed subgroup of G.
- (H) be the conjugacy class of H in G.
- Partial order

$$(H) \le (K) \Longleftrightarrow gKg^{-1} \subset H$$

•
$$M_{(H)} = \left\{ x \in M \mid G_x \in (H) \right\}$$

- M be a G-space.
- H be a closed subgroup of G.
- (H) be the conjugacy class of H in G.
- Partial order

$$(H) \le (K) \Longleftrightarrow gKg^{-1} \subset H$$

•
$$M_{(H)} = \left\{ x \in M \mid G_x \in (H) \right\}$$

• $M^x_{(H)}$: the connected component of $M_{(H)}$ containing x

- M be a G-space.
- H be a closed subgroup of G.
- (H) be the conjugacy class of H in G.
- Partial order

$$(H) \le (K) \Longleftrightarrow gKg^{-1} \subset H$$

•
$$M_{(H)} = \left\{ x \in M \mid G_x \in (H) \right\}$$

- $M^x_{(H)}$: the connected component of $M_{(H)}$ containing x
- The conjugacy class (G_x) is called the orbit type of x

•
$$\mathcal{M}_x = \mathcal{O}\left(M^x_{(G_x)}\right) = G.\left(M^x_{(G_x)}\right)$$

locally minimal stratum

An orbit $\mathcal{O}(x)$ is locally minimal if $\overline{\mathcal{M}_x}$ has a *G*-invariant open neighborhood *U* that contains no smaller orbit type.

locally minimal stratum

An orbit $\mathcal{O}(x)$ is locally minimal if $\overline{\mathcal{M}_x}$ has a *G*-invariant open neighborhood *U* that contains no smaller orbit type.

In this case \mathcal{M}_x is called a locally minimal stratum.

Theorem (S. Hurder and D. Töben, 2015)

Let G be a Lie group acting properly on M. Let \mathfrak{M}_0 be the set of all locally minimal strata. Then

$$\sum_{\mathcal{M}_x \in \mathfrak{M}_0} cat_G(\mathcal{M}_x) \le cat_G(M)$$

Definition

Definition Let X be a G-space.

Definition

Definition Let X be a G-space.

 $\bullet \ \mathcal{O}(x) \sim \mathcal{O}(y) \text{ iff }$

$$\mathcal{O}(x) \mathrel{\widetilde{\succ}_{\mathsf{G}}} \mathcal{O}(y) \quad \text{ and } \quad \mathcal{O}(y) \mathrel{\widetilde{\succ}_{\mathsf{G}}} \mathcal{O}(x).$$

Definition

Definition Let X be a G-space.

 $\bullet \ \mathcal{O}(x) \sim \mathcal{O}(y) \text{ iff }$

$$\mathcal{O}(x) \mathrel{\widetilde{\succ}_{\mathsf{G}}} \mathcal{O}(y) \quad \text{ and } \quad \mathcal{O}(y) \mathrel{\widetilde{\sim}_{\mathsf{G}}} \mathcal{O}(x).$$

• We denote the equivalence class of $\mathcal{O}(x)$ by $[\mathcal{O}(x)]$ and call it the **orbit class** correspond to x.

Definition

۲

Definition Let X be a G-space.

 $\bullet \ \mathcal{O}(x) \sim \mathcal{O}(y) \text{ iff }$

$$\mathcal{O}(x) \mathrel{\widetilde{\succ}_{\mathsf{G}}} \mathcal{O}(y) \quad \text{ and } \quad \mathcal{O}(y) \mathrel{\widetilde{\sim}_{\mathsf{G}}} \mathcal{O}(x).$$

• We denote the equivalence class of $\mathcal{O}(x)$ by $[\mathcal{O}(x)]$ and call it the **orbit class** correspond to x.

$$[\mathcal{O}(y)] \leq [\mathcal{O}(x)] \quad \text{iff} \quad \mathcal{O}(x) \mathrel{\widetilde{\bowtie}}_{\mathsf{G}} \mathcal{O}(y).$$

Definition

۲

Definition Let X be a G-space.

 $\bullet \ \mathcal{O}(x) \sim \mathcal{O}(y) \text{ iff }$

$$\mathcal{O}(x) \mathrel{\widetilde{\succ}_{\mathsf{G}}} \mathcal{O}(y) \quad \text{ and } \quad \mathcal{O}(y) \mathrel{\widetilde{\sim}_{\mathsf{G}}} \mathcal{O}(x).$$

• We denote the equivalence class of $\mathcal{O}(x)$ by $[\mathcal{O}(x)]$ and call it the **orbit class** correspond to x.

$$[\mathcal{O}(y)] \leq [\mathcal{O}(x)] \quad \text{iff} \quad \mathcal{O}(x) \stackrel{\sim}{\succ}_{\mathsf{G}} \mathcal{O}(y).$$

We call the Hasse diagram corresponding to this poset, an orbit diagram of X and denote by OD(G へ X).

Example

Consider $\mathbb{S}^1\text{-}{\rm action}$ on $\mathbb{S}^2.$

$$\mathbb{S}^{2} = \left\{ (z, x) \in \mathbb{C} \times \mathbb{R} \mid |z|^{2} + x^{2} = 1 \right\}$$

$$t \cdot (z, x) = (tz, x)$$

Example

Consider $\mathbb{S}^1\text{-}{\rm action}$ on $\mathbb{S}^2.$

$$\mathbb{S}^{2} = \left\{ (z, x) \in \mathbb{C} \times \mathbb{R} \mid |z|^{2} + x^{2} = 1 \right\}$$

$$t \cdot (z, x) = (tz, x)$$

Orbit Classes:

•
$$\alpha_1 = \left[\mathcal{O}(0,1)\right], \quad \alpha_2 = \left[\mathcal{O}(0,-1)\right].$$

• $\beta = \left[\mathcal{O}(1,0)\right].$

Example

Consider \mathbb{S}^1 -action on \mathbb{S}^2 . **Orbit Classes:**

•
$$\alpha_1 = [\mathcal{O}(0,1)], \quad \alpha_2 = [\mathcal{O}(0,-1)].$$

• $\beta = [\mathcal{O}(1,0)].$

Orbit Diagram:

Example

Consider \mathbb{T}^2 -action on \mathbb{CP}^2 .

Example

Consider \mathbb{T}^2 -action on \mathbb{CP}^2 .

$$(t_1, t_2) \cdot [z_1 : z_2 : z_3] = [t_1 z_1 : t_2 z_2 : z_3]$$

Example

Consider \mathbb{T}^2 -action on \mathbb{CP}^2 .

$$(t_1, t_2) \cdot [z_1 : z_2 : z_3] = [t_1 z_1 : t_2 z_2 : z_3]$$

Orbit Classes:

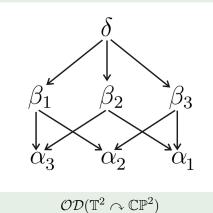
•
$$\alpha_1 = \left[\mathcal{O}([z_1:0:0])\right], \ \alpha_2 = \left[\mathcal{O}([0:z_2:0])\right], \ \alpha_3 = \left[\mathcal{O}([0:0:z_3])\right].$$

• $\beta_1 = \left[\mathcal{O}([z_1:z_2:0])\right], \ \beta_2 = \left[\mathcal{O}([z_1:0:z_3)\right], \ \beta_3 = \left[\mathcal{O}([0:z_2:z_3])\right].$
• $\delta = \left[\mathcal{O}([z_1:z_2:z_3])\right].$
• $\delta = \left[\mathcal{O}([z_1:z_2:z_3])\right].$
where $z_1, z_2, z_3 \in \mathbb{C} - \{0\}.$

w

Example

Orbit Diagram:



Marzieh Bayeh Orbit Class and its Applications

Definition

• $\mathcal{O}(m)$ is called **minimal orbit** if $[\mathcal{O}(m)]$ is minimal with respect to \leq .

Definition

- $\mathcal{O}(m)$ is called **minimal orbit** if $[\mathcal{O}(m)]$ is minimal with respect to <.
- All minimal orbit classes of X are placed at the bottom of $\mathcal{OD}(G \curvearrowright X).$

Definition

- $\mathcal{O}(m)$ is called **minimal orbit** if $[\mathcal{O}(m)]$ is minimal with respect to \leq .
- All minimal orbit classes of X are placed at the bottom of $\mathcal{OD}(G \curvearrowright X)$.
- Any G-homotopy preserves the minimal orbits.

Theorem (M. Bayeh and S. Sarkar, 2015)

Let X be a G-space and $\left[\mathcal{O}(x_i)\right]_{i\in\mathcal{A}}$ be the minimal orbit classes in X,

$$X_i = \bigcup_{\mathcal{O}(y) \in [\mathcal{O}(x_i)]} \mathcal{O}(y)$$

Then

$$\sum_{i \in \mathcal{A}} cat_G(X_i) \le cat_G(X).$$

Theorem (M. Bayeh and S. Sarkar, 2015)

Let X be a G-space and $\left[\mathcal{O}(x_i)\right]_{i\in\mathcal{A}}$ be the minimal orbit classes in X,

$$X_i = \bigcup_{\mathcal{O}(y) \in [\mathcal{O}(x_i)]} \mathcal{O}(y)$$

Then

$$\sum_{i \in \mathcal{A}} cat_G(X_i) \le cat_G(X).$$

In particular

$$#\mathcal{A} \le \sum_{i \in \mathcal{A}} cat_G(X_i) \le cat_G(X),$$

where #A is the cardinal of A.

Definition (*G*-connected Space)

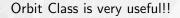
A G-space X is called G-connected if for any closed subgroup $H\leq G,~X^H$ is path-connected.

Definition (G-connected Space)

A G-space X is called G-connected if for any closed subgroup $H\leq G,~X^H$ is path-connected.

Theorem (M. Bayeh and S. Sarkar, 2015)

If G is path-connected and X has a unique minimal orbit class, then for any subgroup H of G, X^H is path-connected. In particular X is G-connected.



Definition

• stratification of a topological space X is a finite filtration by closed subsets X_i , where $X_i \setminus X_{i-1}$ is empty or a smooth submanifold of dimension *i*. Connected components of $X_i \setminus X_{i-1}$ are strata.

Definition

- stratification of a topological space X is a finite filtration by closed subsets X_i , where $X_i \setminus X_{i-1}$ is empty or a smooth submanifold of dimension *i*. Connected components of $X_i \setminus X_{i-1}$ are strata.
- Whitney's condition A: U and W satisfy this condition if considering a sequence x_1, x_2, \cdots in U converges to y in W, s.t.

the sequence of tangent planes T_j to U at x_j converges to T,

then T contains the tangent plane to W at y.

Definition

• stratification of a topological space X is a finite filtration by closed subsets X_i , where $X_i \setminus X_{i-1}$ is empty or a smooth submanifold of dimension *i*. Connected components of $X_i \setminus X_{i-1}$ are strata.

Definition

- stratification of a topological space X is a finite filtration by closed subsets X_i, where X_i \ X_{i-1} is empty or a smooth submanifold of dimension i. Connected components of X_i \ X_{i-1} are strata.
- Whitney's condition B: U and W satisfy this condition if considering a sequence x₁, x₂, · · · in U and a sequence y₁, y₂, · · · in W both converge to y in W s.t.

the secant lines $L_j = (x_j y_j)$ converges to a line Lthe sequence of tangent planes T_j to U at x_j converges to T

then T contains L.

Definition

stratification of a topological space X is a finite filtration by closed subsets X_i, where X_i \ X_{i-1} is empty or a smooth submanifold of dimension i. Connected components of X_i \ X_{i-1} are strata.

Definition

- stratification of a topological space X is a finite filtration by closed subsets X_i, where X_i \ X_{i−1} is empty or a smooth submanifold of dimension i. Connected components of X_i \ X_{i−1} are strata.
- Whitney stratification of X is a stratification that all the pairs of strata satisfy the Whitney's condition A and B.

Definition

- stratification of a topological space X is a finite filtration by closed subsets X_i , where $X_i \setminus X_{i-1}$ is empty or a smooth submanifold of dimension *i*. Connected components of $X_i \setminus X_{i-1}$ are strata.
- Whitney stratification of X is a stratification that all the pairs of strata satisfy the Whitney's condition A and B.

Theorem

Let X be a G-space. Orbit classes of X from a Whitney stratification of X.

Definition

Let X be a G-space. The orbit class category of, denoted by $\mathcal{O}_{\mathbf{G}}(\mathbf{X}),$ is a category whose

Definition

Let X be a G-space. The orbit class category of, denoted by $\mathcal{O}_{\bf G}({\bf X}),$ is a category whose

• objects are orbits $\mathcal{O}(x)$,

Definition

Let X be a G-space. The orbit class category of, denoted by $\mathcal{O}_{\bf G}({\bf X}),$ is a category whose

- objects are orbits $\mathcal{O}(x)$,
- morphisms are G-contractible maps; i.e.

$$\mathcal{O}(x) \to \mathcal{O}(y) \iff \mathcal{O}(x) \stackrel{\sim}{\succ} \mathcal{O}(y)$$

There is a functor \mathfrak{G} from the orbit class category $\mathcal{O}_G(X)$ to the orbit category $\mathcal{O}_G^*.$

 $\mathfrak{G}:\mathcal{O}_{\mathbf{G}}(\mathbf{X}) \longrightarrow \mathcal{O}_{\mathbf{G}}^{*}$

 $\mathcal{O}(x) \mapsto (G/G_x)$

 $\mathcal{O}(x) \to \mathcal{O}(y) \quad \mapsto (G/G_x) \to (G/G_y)$

There is a functor \mathfrak{G} from the orbit class category $\mathcal{O}_G(X)$ to the orbit category $\mathcal{O}_G^*.$

 $\mathfrak{G}:\mathcal{O}_{\mathbf{G}}(\mathbf{X}) \longrightarrow \mathcal{O}_{\mathbf{G}}^{*}$

 $\mathcal{O}(x) \mapsto (G/G_x)$

 $\mathcal{O}(x) \to \mathcal{O}(y) \quad \mapsto (G/G_x) \to (G/G_y)$

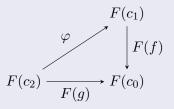
If X is G-connected, then the functor \mathfrak{G} is full.

Definition

Let $F : \mathfrak{C} \to \mathfrak{D}$ be a functor. A morphism $f : c_1 \to c_0$ in \mathfrak{C} is **cartesian** iff for any morphism $g : c_2 \to c_0$ in \mathfrak{C} and $\varphi : F(c_2) \to F(c_1)$ in \mathfrak{D} s.t.

Definition

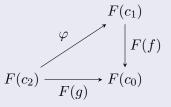
Let $F : \mathfrak{C} \to \mathfrak{D}$ be a functor. A morphism $f : c_1 \to c_0$ in \mathfrak{C} is **cartesian** iff for any morphism $g : c_2 \to c_0$ in \mathfrak{C} and $\varphi : F(c_2) \to F(c_1)$ in \mathfrak{D} s.t.



Definition

Let $F : \mathfrak{C} \to \mathfrak{D}$ be a functor. A morphism $f : c_1 \to c_0$ in \mathfrak{C} is **cartesian** iff for any morphism $g : c_2 \to c_0$ in \mathfrak{C} and $\varphi : F(c_2) \to F(c_1)$ in \mathfrak{D} s.t.

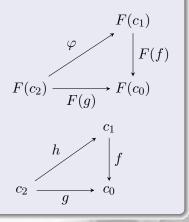
then there exists a unique morphism $h: c_2 \rightarrow c_1$ s.t. $f \circ h = g$ and $F(h) = \varphi$



Definition

Let $F : \mathfrak{C} \to \mathfrak{D}$ be a functor. A morphism $f : c_1 \to c_0$ in \mathfrak{C} is **cartesian** iff for any morphism $g : c_2 \to c_0$ in \mathfrak{C} and $\varphi : F(c_2) \to F(c_1)$ in \mathfrak{D} s.t.

then there exists a unique morphism $h: c_2 \rightarrow c_1$ s.t. $f \circ h = g$ and $F(h) = \varphi$



Grothendieck fibration

A functor $F : \mathfrak{C} \to \mathfrak{D}$ is called **Grothendieck fibration** if for every object c_0 of \mathfrak{C} and morphism $\alpha : d \to F(c_0)$ in \mathfrak{D} , there exists a cartesian arrow $f : c_1 \to c_0$ with $F(f) = \alpha$.

Grothendieck fibration

A functor $F : \mathfrak{C} \to \mathfrak{D}$ is called **Grothendieck fibration** if for every object c_0 of \mathfrak{C} and morphism $\alpha : d \to F(c_0)$ in \mathfrak{D} , there exists a cartesian arrow $f : c_1 \to c_0$ with $F(f) = \alpha$.

Theorem

Let X be a G-connected space. Then the functor

$$\mathfrak{G}: \mathcal{O}_{\mathbf{G}}(\mathbf{X}) \to \mathcal{O}_{\mathbf{G}}^*$$

is a Grothendieck fibration.

Definition

Let X and Y be two G-spaces. A map $\varphi: X \to Y$ is called special G-map if for every $g \in G$ and $x \in X$,

 $\bullet \ \varphi(gx) = g\varphi(x)$

•
$$G_{\varphi(x)} = G_x$$

Theorem

Every special G-map $\varphi: X \to Y$ induces a functor

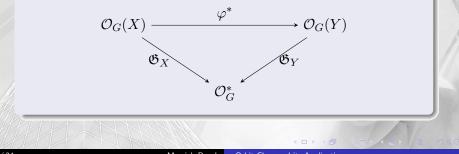
 $\varphi^*: \mathcal{O}_G(X) \to \mathcal{O}_G(Y)$

Theorem

Every special G-map $\varphi: X \to Y$ induces a functor

 $\varphi^*: \mathcal{O}_G(X) \to \mathcal{O}_G(Y)$

such that



Theorem

Let $\varphi, \psi: X \to Y$ be two special *G*-maps. If φ and ψ are G-homotopic, then there exists a natural transformation (natural isomorphism)

$$\eta:\varphi^* \Rightarrow \psi^*$$

In memory of

Maryam Mirzakhani

(the first woman who was awarded the Fields Medal)

"The beauty of mathematics only shows itself to more patient followers"