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Introduction

Definition (Lusternik Schnirelmann category)

LS-category (category) of a topological space X

cat(X) = n

if n is the least integer such that there exists an open covering

X =

n⋃
i=1

Ui

where each Ui is contractible to a point in X.

If no such a covering exists we write cat(X) =∞.
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Introduction

Group Action

G: Topological group

X: Hausdorff topological space

Θ : G×X −→ X is a map s.t.

1 Θ(g,Θ(h, x)) = Θ(gh, x), ∀g, h ∈ G, x ∈ X;

2 Θ(e, x) = x, ∀x ∈ X, e = 1G.

Θ is called an action of G on X, and X is called a G-space.
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Introduction

Definition

Let X be a G-space and x ∈ X. Then

Isotropy subgroup of G at x:

Gx =
{
g ∈ G

∣∣∣gx = x
}
.

Orbit of x:
O(x) =

{
gx
∣∣∣g ∈ G}.

Orbit space, X/G: Set of all equivalence classes of orbits,
endowed with the quotient topology.
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Introduction

Definition

Let X be a G-space and U ⊂ X.

U is called G-invariant if GU ⊆ U .

Let U be a G-invariant subset of X,

H : U × I → X

is called a G-homotopy if

gH(x, t) = H(gx, t) ∀g ∈ G, x ∈ U, t ∈ I.

5 / 34 Marzieh Bayeh Orbit Class and its Applications



Introduction

Definition

Let X be a G-space and U ⊂ X.

U is called G-invariant if GU ⊆ U .

Let U be a G-invariant subset of X,

H : U × I → X

is called a G-homotopy if

gH(x, t) = H(gx, t) ∀g ∈ G, x ∈ U, t ∈ I.

5 / 34 Marzieh Bayeh Orbit Class and its Applications



Introduction

Definition

G-contractible Let U and A be G-invariant subsets of X.
We say U is G-contractible to A and denote by

U B∼
G
A,

if there exists a G-homotopy H : U × I → X s.t:

H0 is the inclusion of U in X.

H1(U) ⊆ A

In this case we usually write,

H : U B∼
G
A.

6 / 34 Marzieh Bayeh Orbit Class and its Applications



Introduction

Definition

G-contractible Let U and A be G-invariant subsets of X.
We say U is G-contractible to A and denote by

U B∼
G
A,

if there exists a G-homotopy H : U × I → X s.t:

H0 is the inclusion of U in X.

H1(U) ⊆ A
In this case we usually write,

H : U B∼
G
A.

6 / 34 Marzieh Bayeh Orbit Class and its Applications



Introduction

Definition

X: A G-space

A G-invariant open subset U of X is called G-categorical if there
exists an orbit O(x) such that U B∼

G
O(x).
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Introduction

Definition

Equivariant LS-category of a topological space X

catG(X) = n

if n is the least integer such that there exists an open covering

X =

n⋃
i=1

Ui

where each Ui is a G-categorical subset.

If no such a covering exists we write catG(X) =∞.
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Introduction

Example

S1 × S2 −→ S2
t.(z, x) 7−→ (t.z, x)

catS1(S2) = 2.
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Introduction

Theorem (S. Hurder and D. Töben, 2015)

Let G be a Lie group acting properly on M . Let M0 be the set of
all locally minimal strata. Then∑

Mx∈M0

catG(Mx) ≤ catG(M)
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Introduction

M be a G-space.

H be a closed subgroup of G.

(H) be the conjugacy class of H in G.

Partial order

(H) ≤ (K)⇐⇒ gKg−1 ⊂ H

M(H) =
{
x ∈M

∣∣∣ Gx ∈ (H)
}

Mx
(H) : the connected component of M(H) containing x

The conjugacy class (Gx) is called the orbit type of x

Mx = O
(
Mx

(Gx)

)
= G.

(
Mx

(Gx)

)
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Introduction

locally minimal stratum

An orbit O(x) is locally minimal if Mx has a G-invariant open
neighborhood U that contains no smaller orbit type.

In this case Mx is called a locally minimal stratum.
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Introduction

Theorem (S. Hurder and D. Töben, 2015)

Let G be a Lie group acting properly on M . Let M0 be the set of
all locally minimal strata. Then∑
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Orbit Class

Definition

Definition Let X be a G-space.

O(x) ∼ O(y) iff

O(x) B∼
G
O(y) and O(y) B∼

G
O(x).

We denote the equivalence class of O(x) by [O(x)] and call it
the orbit class correspond to x.

[O(y)] ≤ [O(x)] iff O(x) B∼
G
O(y).

We call the Hasse diagram corresponding to this poset, an
orbit diagram of X and denote by OD(Gy X).
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Orbit Class

Example

Consider S1-action on S2.

S2 =
{

(z, x) ∈ C× R
∣∣∣ |z|2 + x2 = 1

}
t · (z, x) = (tz, x)

Orbit Classes:

α1 =
[
O(0, 1)

]
, α2 =

[
O(0,−1)

]
.

β =
[
O(1, 0)

]
.
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Orbit Class

Example

Consider S1-action on S2.
Orbit Classes:

α1 =
[
O(0, 1)

]
, α2 =

[
O(0,−1)

]
.

β =
[
O(1, 0)

]
.

Orbit Diagram:

OD(S1 y S2)
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Orbit Class

Example

Consider T2-action on CP2.

(t1, t2) · [z1 : z2 : z3] = [t1z1 : t2z2 : z3]

Orbit Classes:

α1 =
[
O
(
[z1 : 0 : 0]

)]
, α2 =

[
O
(
[0 : z2 : 0]

)]
,

α3 =
[
O
(
[0 : 0 : z3]

)]
.

β1 =
[
O
(
[z1 : z2 : 0]

)]
, β2 =

[
O
(
[z1 : 0 : z3

)]
,

β3 =
[
O
(
[0 : z2 : z3]

)]
.

δ =
[
O
(
[z1 : z2 : z3]

)]
where z1, z2, z3 ∈ C− {0}.
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Orbit Class

Example

Orbit Diagram:

OD(T2 y CP2)
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Orbit Class

Definition

O(m) is called minimal orbit if [O(m)] is minimal with
respect to ≤.

All minimal orbit classes of X are placed at the bottom of
OD(Gy X).

Any G-homotopy preserves the minimal orbits.
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Orbit Class

Theorem (M. Bayeh and S. Sarkar, 2015)

Let X be a G-space and
[
O(xi)

]
i∈A

be the minimal orbit classes

in X,
Xi =

⋃
O(y)∈[O(xi)]

O(y)

Then ∑
i∈A

catG(Xi) ≤ catG(X).

In particular

#A ≤
∑
i∈A

catG(Xi) ≤ catG(X),

where #A is the cardinal of A.
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Orbit Class

Definition (G-connected Space)

A G-space X is called G-connected if for any closed subgroup
H ≤ G, XH is path-connected.

Theorem (M. Bayeh and S. Sarkar, 2015)

If G is path-connected and X has a unique minimal orbit class,
then for any subgroup H of G, XH is path-connected. In
particular X is G-connected.
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Orbit Class

Orbit Class is very useful!!
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Orbit Class

Definition

stratification of a topological space X is a finite filtration by
closed subsets Xi, where Xi \Xi−1 is empty or a smooth
submanifold of dimension i. Connected components of
Xi \Xi−1 are strata.

Whitney’s condition A: U and W satisfy this condition if
considering a sequence x1, x2, · · · in U converges to y in W ,
s.t.
the sequence of tangent planes Tj to U at xj converges to T ,

then T contains the tangent plane to W at y.
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Orbit Class

Definition

stratification of a topological space X is a finite filtration by
closed subsets Xi, where Xi \Xi−1 is empty or a smooth
submanifold of dimension i. Connected components of
Xi \Xi−1 are strata.

Whitney’s condition B: U and W satisfy this condition if
considering a sequence x1, x2, · · · in U and a sequence
y1, y2, · · · in W both converge to y in W s.t.

the secant lines Lj = (xjyj) converges to a line L
the sequence of tangent planes Tj to U at xj converges to T

then T contains L.
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Orbit Class

Definition

stratification of a topological space X is a finite filtration by
closed subsets Xi, where Xi \Xi−1 is empty or a smooth
submanifold of dimension i. Connected components of
Xi \Xi−1 are strata.

Whitney stratification of X is a stratification that all the pairs
of strata satisfy the Whitney’s condition A and B.

Theorem

Let X be a G-space. Orbit classes of X from a Whitney
stratification of X.
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Orbit Class Category

Definition

Let X be a G-space. The orbit class category of, denoted by
OG(X), is a category whose

objects are orbits O(x),

morphisms are G-contractible maps; i.e.

O(x)→ O(y) ⇐⇒ O(x) B∼
G
O(y)

26 / 34 Marzieh Bayeh Orbit Class and its Applications



Orbit Class Category

Definition

Let X be a G-space. The orbit class category of, denoted by
OG(X), is a category whose

objects are orbits O(x),

morphisms are G-contractible maps; i.e.

O(x)→ O(y) ⇐⇒ O(x) B∼
G
O(y)

26 / 34 Marzieh Bayeh Orbit Class and its Applications



Orbit Class Category

Definition

Let X be a G-space. The orbit class category of, denoted by
OG(X), is a category whose

objects are orbits O(x),

morphisms are G-contractible maps; i.e.

O(x)→ O(y) ⇐⇒ O(x) B∼
G
O(y)

26 / 34 Marzieh Bayeh Orbit Class and its Applications



Orbit Class Category

There is a functor G from the orbit class category OG(X) to the
orbit category O∗G.

G : OG(X) −→ O∗G

O(x) 7→ (G/Gx)

O(x)→ O(y) 7→ (G/Gx)→ (G/Gy)

If X is G-connected, then the functor G is full.
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Orbit Class Category

Definition

Let F : C→ D be a functor.
A morphism f : c1 → c0 in C is
cartesian iff for any morphism
g : c2 → c0 in C and
ϕ : F (c2)→ F (c1) in D s.t.

F (c1)

F (c2) F (c0)

F (f)
ϕ

F (g)

then there exists a unique
morphism h : c2 → c1 s.t.
f ◦ h = g and F (h) = ϕ

c1

c2 c0

f
h

g
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Orbit Class Category

Grothendieck fibration

A functor F : C→ D is called Grothendieck fibration if for every
object c0 of C and morphism α : d→ F (c0) in D, there exists a
cartesian arrow f : c1 → c0 with F (f) = α.

Theorem

Let X be a G-connected space. Then the functor

G : OG(X)→ O∗G

is a Grothendieck fibration.
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Orbit Class Category

Definition

Let X and Y be two G-spaces. A map ϕ : X → Y is called special
G-map if for every g ∈ G and x ∈ X,

ϕ(gx) = gϕ(x)

Gϕ(x) = Gx
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Orbit Class Category

Theorem

Every special G-map ϕ : X → Y induces a functor

ϕ∗ : OG(X)→ OG(Y )

such that

OG(X) OG(Y )

O∗G

ϕ∗

GX GY
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Orbit Class Category

Theorem

Let ϕ,ψ : X → Y be two special G-maps. If ϕ and ψ are
G-homotopic, then there exists a natural transformation (natural
isomorphism)

η : ϕ∗ ⇒ ψ∗
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Thank you!
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In memory of

Maryam Mirzakhani

(the first woman who was awarded the Fields Medal)

“The beauty of mathematics only shows itself to more patient followers”
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