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Abstract: Double Interchange Semigroups

• We extend work of Kock (2007), Bremner & Madariaga (2016) on
commutativity in DI semigroups to relations with 10 arguments.

• DI = double interchange. Our methods involve:

the free symmetric operad generated by two binary operations,

its quotient by the two associative laws,

its quotient by the interchange law relating the operations,

its quotient by all three laws (the operad for DI semigroups).

• We also consider a geometric realization of free DI magmas (no
associativity) by dyadic rectangular partitions of the unit square.

• We define morphisms between these operads which allow us to
represent free DI semigroups both algebraically and geometrically.

• With these morphisms we reason diagrammatically about free DI
semigroups and prove our new commutativity relations.
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Motivation: Kock’s Surprising Observation

• Joachim Kock:
Commutativity in double semigroups and two-fold monoidal categories.
Journal of Homotopy and Related Structures 2 (2007) no. 2, 217–228.
• Relation of arity 16: associativity and the interchange law combine to

imply a commutativity relation, the equality of two monomials with:
− same skeleton (placement of parentheses and operation symbols),
− different permutations of arguments (transposition of f , g).

(a2 b2 c 2 d)� (e 2 f 2 g 2 h)� (i 2 j 2 k 2 `)� (m2 n2 p2 q) ≡
(a2 b2 c 2 d)� (e 2 g 2 f 2 h)� (i 2 j 2 k 2 `)� (m2 n2 p2 q)

a b c d

e f g h

i j k `

m n p q

≡

a b c d

e g f h

i j k `

m n p q

• The symbol ≡ indicates that the equation holds for all arguments.
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Nine is the Least Arity for a Commutativity Relation

• Murray Bremner, Sara Madariaga:
Permutation of elements in double semigroups.
Semigroup Forum 92 (2016) 335–360.

• Computer algebra proof that nine arguments is the smallest number
for which such a commutativity relation holds.

• One of their commutativity relations of arity 9 (transposition of e, g):

((a2 b)2 c)� (((d 2 (e � f ))2 (g � h))2 i) ≡
((a2 b)2 c)� (((d 2 (g � f ))2 (e � h))2 i)

a b c

d
e

f

g

h
i

≡

a b c

d
e

f

g

h
i
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Goal of This Talk, and Background Reading

• We begin the classification of commutativity relations for ten variables
which do not follow from known results for nine variables.

• operad = symmetric operad, two binary operations, no symmetry
(neither commutative nor anticommutative).

• set operad = operad in symmetric monoidal category of sets
(disjoint union, Cartesian product).

• algebraic operad = operad in symmetric monoidal category of
vector spaces over field F (direct sum, tensor product).

• Monographs on algebraic operads:

Markl, Shnider, Stasheff (2002): Operads in Algebra, Topology
and Physics. Set, algebraic, topological) operads.

Loday, Vallette (2012): Algebraic Operads. Comprehensive.

Bremner, Dotsenko (2016): Algebraic Operads: An Algorithmic
Companion. Gröbner bases for algebraic operads.

5 / 31



Three Monographs on (Mostly Algebraic) Operads

Markl, Loday, Bremner,
Shnider, Vallette Dotsenko
Stasheff (2012) (2016)
(2002)
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Four Nonassociative Operads: Free, Inter, BP, DBP

Definition

• Free: free symmetric operad, two binary operations with no symmetry,
denoted M (horizontal) and N (vertical).

• Basis in arity n ≥ 1 is the set Bn of all tree monomials consisting of all
rooted complete binary plane trees with n leaves which are labelled:

choose operation symbol for each internal node (including root)

choose bijection between leaves and argument symbols x1, . . . , xn

• n = 1: exceptional case, only one tree, no root, one leaf labelled x1.

• Partial compositions: T1 ◦i T2 is the tree constructed by identifying
the root of T2 with the i-th leaf of T1 (enumerated left to right).

Definition

Inter: quotient of Free by ideal I = 〈�〉 generated by interchange law:

� : (a M b) N (c M d)− (a N c) M (b N d) ≡ 0
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Definition

• BP: set operad of block partitions of open unit square I 2, I = (0, 1).

• Block partition P: finite set of cuts (open line segments) C ⊂ I 2 where

A cut is horizontal H = (x1, x2)×{y0} or vertical V = {x0}×(y1, y2).

P = I 2 \
⋃

C is disjoint union of empty blocks (x1, x2)× (y1, y2).

if two cuts intersect then one H is horizontal, the other V is vertical,
and H ∩ V is a point (a maximality condition on C )

• horizontal composition x → y (vertical composition x ↑ y):

translate y one unit east (north) to get y + ei (i = 1, 2)

form x ∪ (y + ei ) to get a partition of width (height) two

scale horizontally (vertically) by one-half to get a partition of I 2

This is a double interchange magma since → and ↑ are related by

(a→ b) ↑ (c → d)≡
a b

c d
≡

a b

c d
≡

a b

c d
≡ (a ↑ c)→ (b ↑ d)
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Operadic analogues are as follows:

• If x is a block partition with ordered empty blocks x1, . . . , xm then . . .

• for a block partition y with n parts, the partial composition x ◦i y is:

scale y to have the same size as xi and replace xi by scaled y

produce a new block partition with m+n−1 parts

iteration of this makes x into an m-ary operation

• � and � denote the block partitions with two equal parts:

the first (second) has a vertical (horizontal) bisection

the first (second) represents horizontal (vertical) composition

the parts are labelled 1, 2 in the positive direction, east (north)

• The double magma operations are defined as follows:

x → y = ( � ◦1 x ) ◦m+1 y = ( � ◦2 y ) ◦1 x ,
x ↑ y = (� ◦1 x ) ◦m+1 y = (� ◦2 y ) ◦1 x .

• Hence BP is a set operad; it becomes an algebraic operad by defining
operations on elements and extending to linear combinations.
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Algorithm

In dimension d , to get a dyadic block partition of I d (unit d-cube):

Set P1 ← {I d}. Do these steps for i = 1, . . . , k−1 (k parts):

Choose an empty block B ∈ Pi and an axis j ∈ {1, . . . , d}.
If (aj , bj) is projection of B onto axis j then set c ← 1

2 (aj+bj).

Set {B ′,B ′′} ← B \ { x ∈ B | xj = c } (hyperplane bisection).

Set Pi+1 ← (Pi \ {B} ) t {B ′,B ′′} (replace B by B ′, B ′′).

Definition

• DBP: unital suboperad of BP generated by � and �

• Unital: include unary operation I 2 (block partition with one empty block)

• DBP consists of dyadic block partitions:

every P ∈ DBP with n+1 parts is obtained from some Q ∈ DBP
with n parts by bisection of a part of Q horizontally or vertically.
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Geometric Realization Map

Definition

The geometric realization map denoted Γ: Free→ BP is the morphism
of operads defined recursively on tree monomials as follows:

Γ( | ) = I 2 where | is the tree with one leaf (and no root)

Γ(T1MT2 ) = Γ(T1) Γ(T2) = Γ(T1)→ Γ(T2)

Γ(T1NT2 ) =
Γ(T1)

Γ(T2)
= Γ(T1) ↑ Γ(T2)

Lemma

The image of Γ is the operad Γ(Free) = DBP.

The kernel of Γ is the ideal ker(Γ) = 〈�〉 generated by interchange.

Hence there is an operad isomorphism Inter ∼= DBP.
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Three Associative Operads: AssocB, AssocNB, DIA

Definition

AssocB: quotient of Free by ideal A = 〈AM ,AN 〉 generated by

AM (a, b, c) = ( a M b ) M c − a M ( b M c ) (horizontal associativity)

AN (a, b, c) = ( a N b ) N c − a N ( b N c ) (vertical associativity)

AssocNB: isomorphic copy of AssocB with following change of basis.

ρ : AssocB→ AssocNB represents rewriting a coset representative
(binary tree) as a nonbinary (= not necessarily binary) tree.

new basis consists of disjoint union {x1} t TM t TN
isolated leaf x1 and two copies of T
T = all labelled rooted plane trees with at least one internal node

TM : root r of every tree has label M , labels alternate by level

TN : labels of internal nodes (including root) are reversed
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Algorithm for Converting Binary Tree to Nonbinary Tree

We write Assoc if convenient for AssocB ∼= AssocNB:

M

M M

T1T2T3T4

α−−−→

M

T1T2T3T4

M

M N

T1T2T3T4

α−−−→

M

NT1T2

T3T4

M

N M

T1T2T3T4

α−−−→

M

N

T1T2

T3T4

M

N N

T1T2T3T4

α−−−−−−→
no change

M

N N

T1T2T3T4

Switching M , N throughout defines α for subtrees with roots labelled N .
Generalizing this isomorphism α to three or more operations is one main
obstacle to understanding d-tuple interchange semigroups for d ≥ 3.
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Associativity =⇒ Interchange Applies Almost Everywhere!

After converting a binary tree to a nonbinary (not necessarily binary) tree,
if the root is white (horizontal) then all of its children are black (vertical),
all of its grandchildren are white, all of its great-grandchildren are black,
etc. . . . , alternating white and black according to the level:

M

N · · · N · · · N

M · · · M · · · M M · · · M · · · M M · · · M · · · M

N · · ·N N · · ·N N · · ·N N · · ·N N · · ·N N · · ·N N · · ·N N · · ·N N · · ·N

M · · ·M M · · ·M M · · ·M M · · ·M M · · ·M M · · ·M M · · ·M M · · ·M M · · ·M
If the root is black then we simply transpose white and black throughout.
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Definition

DIA: quotient of Free by ideal 〈AM ,AN ,�〉.
This is the algebraic operad governing double interchange algebras,
which possess two associative operations satisfying the interchange law.

• Inter, AssocB, AssocNB, DIA are defined by relations v1 − v2 ≡ 0
(equivalently v1 ≡ v2) where v1, v2 are cosets of monomials in Free.
• We could work with set operads (we never need linear combinations).
• Vector spaces and sets are connected by a pair of adjoint functors:

the forgetful functor sending a vector space V to its underlying set,
the left adjoint sending a set S to the vector space with basis S .
• Corresponding relation between Gröbner bases and rewrite systems:

if we compute a syzygy for two tree polynomials v1 − v2 and w1 − w2,
then the common multiple of the leading terms cancels,
and we obtain another difference of tree monomials;
similarly, from a critical pair of rewrite rules v1 7→ v2 and w1 7→ w2,
we obtain another rewrite rule.
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Motivation: Two Compositions in a Double Category

Horizontal and vertical compositions related by the interchange law:

A C E

B D F

u

OO
v

OO
w

OO

h
//

k
//

` // m //

α

KS

β

KS
horizontal−−−−−−→

A E

B F

u

OO
w

OO

k◦h
//

m◦` //

α �β

KS

A

B

C

D

E

F

u

OO

v

OO

w

OO

x

OO

h
//

//

` //

α

KS

β

KS

vertical−−−−→
A

C

D

F

h
//

` //

v◦u
OO

x◦w
OO

α�β

KS
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Morphisms between Operads

• Our goal is to understand the operad DIA.
• We have no convenient normal form for the basis monomials of DIA.
• There is a normal form if we factor out associativity but not interchange.
• There is a normal form if we factor out interchange but not associativity.
• We use the monomial basis of the operad Free.
• We apply rewrite rules which express associativity of each operation

(right to left, or reverse) and interchange between the operations
(black to white, or reverse).
• These rewritings convert one monomial in Free to another monomial

which is equivalent to the first modulo associativity and interchange.
• Given an element X of DIA represented by a monomial T in Free,

we convert T to another monomial T ′ in the same inverse image as T
with respect to the natural surjection Free� DIA.
• We use undirected rewriting: to pass from T to T ′, we may need to

reassociate left to right, apply interchange, reassociate right to left.
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Commutative Diagram of Operads and Morphisms

Free

BP

DBP

Inter

AssocB

AssocNB

DIA

−/〈AM ,AN 〉
α

33 33

−/〈�〉
χ

++ ++

Γ

**

γ isomorphism
��

−/〈AM+I,AN+I〉

α

33 33

ρ isomorphism

OO

−/〈�+A〉
χ ++ ++

inclusionι
��

(We were very pleased with ourselves when we finally figured out this picture.)
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Geometric Realization Map: Interchange Generates Kernel

Notation

For monomials m1,m2 ∈ Free(n) with n ≥ 4, we write
• m1 ≡ m2 if and only if m1 and m2 can be obtained from the two sides

of the interchange law by the same sequence of partial compositions
• m1 ∼ m2 if and only if Γ(m1) = Γ(m2) (geometric realization map)

Lemma

(Fatemeh Bagherzadeh) The equivalence relations ∼ and ≡ coincide.
That is, ∼ is generated by the consequences of the interchange law.

• For n = 1, 2, 3, the map Γ is injective, so there is nothing to prove.
• Now suppose that n ≥ 4 and that m1,m2 ∈ Free(n) satisfy m1 ∼ m2.
• Thus for some P ∈ DBP(n) we have m1,m2 ∈ Γ−1(P).
• For n = 4, dihedral group of the square acts on 40 (= 5 · 23) monomials;

3 generators: replace M (N ) by opposite operation, switch operations.
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• For each orbit, we choose a representative and display its image under Γ:

• Except for the first, the size of the orbit generated by the block partition
equals the size of the orbit generated by the tree monomial.
• The two monomials in Γ−1(�) are the two terms of the interchange law.
• This is only failure of injectivity for n = 4; rest of proof: induction on n.

• Generalization to all dimensions, proof by homological algebra:
Murray Bremner, Vladimir Dotsenko: arXiv:1705.04573[math.KT]

Boardman–Vogt tensor products of absolutely free operads.
(We just got a positive report from Proc. A, Royal Soc. Edinburgh.)
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Cuts and Slices

Definition

• Subrectangle: any union of empty blocks forming a rectangle.
• Let P be a block partition of I 2, and let R be a subrectangle of P.
• A main cut in R is a horizontal or vertical bisection of R.
• Every subrectangle has at most two main cuts (horizontal, vertical).
• Suppose that a main cut partitions R into subrectangles R1 and R2.
• If either R1 or R2 has a main cut parallel to the main cut of R, we call

this a primary cut in R; we also call the main cut of R a primary cut.
• In general, if a subrectangle S of R is obtained by a sequence of cuts

parallel to a main cut of R then a main cut of S is a primary cut of R.
• Let C1, . . . ,C` be the primary cuts of R parallel to a given main cut Ci

(1 ≤ i ≤ `) in positive order (left to right, or bottom to top) so that
there is no primary cut between Cj and Cj+1 for 1 ≤ j ≤ `−1.
• Define “cuts” C0, C`+1 to be left, right (bottom, top) sides of R.
• Write Sj for the j-th slice of R parallel to the given main cut.
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Commutativity Relations

Definition

Suppose that for some monomial m of arity n in the operad Free, and
for some transposition (ij) ∈ Sn, the corresponding cosets in DIA satisfy:

m(x1, . . . , xi , . . . , xj , . . . , xn) ≡ m(x1, . . . , xj , . . . , xi , . . . , xn).

In this case we say that m admits a commutativity relation.

Proposition

(Fatemeh Bagherzadeh) Assume that m is a monomial in Free admitting
a commutativity relation which is not a consequence of a commutativity
relation holding in (i) a proper factor of m, or (ii) a proper quotient of m.
(Quotient refers to substitution of a decomposable factor for the same
indecomposable argument on both sides of a relation of lower arity).
Then the dyadic block partition P = Γ(m) contains both main cuts.
In other words, it must be possible to apply the interchange law as a
rewrite rule at the root of the monomial m (regarded as a binary tree).
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Border Blocks and Interior Blocks

Definition

Let P be a block partition of I 2 consisting of empty blocks R1, . . . , Rk .
If the closure of Ri has nonempty intersection with the four sides of the
closure I 2 then Ri is a border block, otherwise Ri is an interior block.

Lemma

Suppose that P1 = Γ(m1) and P2 = Γ(m2) are two labelled dyadic block
partitions of I 2 such that m1 ≡ m2 in every double interchange semigroup.
Then any interior (border) block of P1 is an interior (border) block of P2.

Lemma

If m admits a commutativity relation then in the corresponding block
partition P = Γ(m) the two commuting empty blocks are interior blocks.

Basic idea of the proofs: neither associativity nor the interchange law can
change an interior block to a border block or conversely.
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Lower Bounds on the Arity of a Commutativity Relation

Lemma

If m admits a commutativity relation then P = Γ(m) has both main cuts;
hence P is the union of 4 subsquares A1, . . . , A4 (NW, NE, SW, SE).
If a subsquare has 1 (2) empty interior block(s) then that subsquare has
at least 3 (4) empty blocks. Hence P contains at least 7 empty blocks.

Proposition

(Fatemeh Bagherzadeh) If the monomial m of arity n in the operad Free
admits a commutativity relation then P = Γ(m) has n ≥ 8 empty blocks.

Reflecting P in the horizontal and/or vertical axes if necessary, we may
assume that the NW subsquare A1 has two empty interior blocks and has
only the horizontal main cut (otherwise we reflect in the NW-SE diagonal).
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We display the 3 partitions with 7 empty blocks satisfying these conditions:

a b

e
c d

f
g

a b

c d e

f
g

a b

c d e

f
g

None of these configurations admits a commutativity relation.

The method used for the proof of the last proposition can be extended to
show that a monomial of arity 8 cannot admit a commutativity relation,
although the proof is rather long owing to the large number of cases:
(a) 1 square Ai has 5 empty blocks, and the other 3 squares are empty;
(b) 1 square Ai has 4 empty blocks, another square Aj has 2, and the
other 2 squares are empty (2 subcases: Ai , Aj share edge or only corner);
(c) 2 squares Ai , Aj each have 3 empty blocks, other 2 empty (2 subcases).
This provides a different proof, independent of machine computation, of
the minimality result of Bremner and Madariaga.
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Commutative Block Partitions in Arity 10

Lemma

Let m admit a commutativity relation in arity 10. Then P = Γ(m) has at
least two and at most four parallel slices in either direction.

Proof.

By the lemmas, P contains both main cuts. Since P contains 10 empty
blocks, it has at most 5 parallel slices (4 primary cuts) in either direction.
If there are 4 primary cuts in one direction and the main cut in the other
direction, then there are 10 empty blocks, and all are border blocks.

In what follows, m has arity 10 and admits a commutativity relation.
Hence P = Γ(m) is a dyadic block partition with 10 empty blocks.
Commuting blocks are interior; P has either 2, 3, or 4 parallel slices.
If P has 3 (resp. 4) parallel slices, then commuting blocks are in middle
slice (resp. middle 2 slices). Interchanging H and V if necessary, we may
assume parallel slices are vertical.

26 / 31



Four Parallel Vertical Slices

We have H and V main cuts, and 2 more vertical primary cuts.

Applying horizontal associativity gives 2 rows of 4 equal empty blocks.

This configuration has 8 empty blocks, all of which are border blocks.

We need 2 more cuts to create 2 interior blocks.

Applying vertical associativity in the second slice from the left, and
applying a dihedral symmetry of the square (if necessary), reduces
the number of configurations to the following A, B, C :

A : B : C :
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Configuration A: Geometric Proof of New Commutativity

a b
f

g
h

c
d

e
i j

a b f

g

h

c
d

e i
j

a b f

g

h

c
d

e i
j

a
b

f

g

h

c

d

e
i

j

a
b

f

g

h

c

d

e
i

j

a
b

f

g

h

c

d

e
i

j

a
b

f

g

h

c

d

e
i

j

a
b

f

g

h

c

d

e i j

a
b

f

g

h

c

d

e i j

a
b

f

g

h

c

d

e i j

a
b

f

g

h

c

d

e i j

a
b

f

g

h

c

d

e
i j

a
b

f

g

h

c

d

e
i j

a b f

g

h

c

d

e
i j

a
b

c

d

e

f

g

h

i j

a b f

g

h

c
d

e i
j

a b f

g

h

c
d

e i
j

a b f

d

h

c
g

e i
j

a b f

d

h

c
g

e i
j

a b
f

d
h

c
g

e
i j
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Theorem

Configuration A: In every double interchange semigroup, the following
commutativity relation holds for all values of the arguments a, . . . , j :

((aM b)N (c M (d N e)))M (((f N g)M h)N (i M j)) ≡
((aM b)N (c M (g N e)))M (((f N d)M h)N (i M j))

For configuration B we label only the two blocks which transpose.
Applications of associativity and interchange can easily be recovered:

c
g

c
g cg cg c

g

g

c

g
c

g
c

g

c
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Theorem

Configuration B: In every double interchange semigroup, the following
commutativity relation holds for all values of the arguments a, . . . , j :

((aM (bN c))N (f M (g N h)))M ((d M e)N (i M j)) ≡
((aM (bN g))N (f M (c N h)))M ((d M e)N (i M j))

For configuration C we obtain no new commutativity relations.

For further details, see our preprint: arXiv:1706.04693[math.RA].

Concluding remarks: higher dimensions

We have studied structures with two operations, representing orthogonal
(horizontal and vertical) compositions in two dimensions.

Most of our constructions make sense for any number of dimensions d ≥ 2.

Major obstacle for d ≥ 3: monomial basis for AssocNB consisting of
nonbinary trees with alternating white and black internal nodes does not
generalize in a straightforward way.
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Thanks for Your Attention!
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