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Abstract: Double Interchange Semigroups

e We extend work of Kock (2007), Bremner & Madariaga (2016) on
commutativity in DI semigroups to relations with 10 arguments.

e DI = double interchange. Our methods involve:
o the free symmetric operad generated by two binary operations,
@ its quotient by the two associative laws,
@ its quotient by the interchange law relating the operations,
e its quotient by all three laws (the operad for DI semigroups).
e We also consider a geometric realization of free DI magmas (no
associativity) by dyadic rectangular partitions of the unit square.

e We define morphisms between these operads which allow us to
represent free DI semigroups both algebraically and geometrically.

e With these morphisms we reason diagrammatically about free DI
semigroups and prove our new commutativity relations.
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Motivation: Kock’s Surprising Observation

e Joachim Kock:
Commutativity in double semigroups and two-fold monoidal categories.
Journal of Homotopy and Related Structures 2 (2007) no. 2, 217-228.
¢ Relation of arity 16: associativity and the interchange law combine to
imply a commutativity relation, the equality of two monomials with:
— same skeleton (placement of parentheses and operation symbols),
— different permutations of arguments (transposition of f, g).
(a0bOcOd)M(eOfOgON)M(I0j0kO¢/)M(mOn0OpOq) =
(20b0cOd)M(e0gOfOAM(I0j0kO/)M(mOnOpOq)

a|lb|lc|d a|b|lc|d
el f|8|h e|8|f|h
ilJ| k| - i J | k|
m|n|p|aq m|n|p|aq

e The symbol = indicates that the equation holds for all arguments.
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-
Nine is the Least Arity for a Commutativity Relation

e Murray Bremner, Sara Madariaga:
Permutation of elements in double semigroups.
Semigroup Forum 92 (2016) 335-360.

e Computer algebra proof that nine arguments is the smallest number
for which such a commutativity relation holds.

e One of their commutativity relations of arity 9 (transposition of e, g):

((2a0b)Oc)M(((dO(eMf))O(gMh))Oi) =
((20b)Oc)M(((dO(gMf))D(eMh)) D)

fl h fl h

el 8 8| e
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Goal of This Talk, and Background Reading

e We begin the classification of commutativity relations for ten variables
which do not follow from known results for nine variables.

e operad = symmetric operad, two binary operations, no symmetry
(neither commutative nor anticommutative).

e set operad = operad in symmetric monoidal category of sets
(disjoint union, Cartesian product).

e algebraic operad = operad in symmetric monoidal category of
vector spaces over field F (direct sum, tensor product).

e Monographs on algebraic operads:

e Markl, Shnider, Stasheff (2002): Operads in Algebra, Topology
and Physics. Set, algebraic, topological) operads.

o Loday, Vallette (2012): Algebraic Operads. Comprehensive.

@ Bremner, Dotsenko (2016): Algebraic Operads: An Algorithmic
Companion. Grobner bases for algebraic operads.
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Three Monographs on (Mostly Algebraic) Operads

Markl,
Shnider,
Stasheff

(2002)

Grundiehren der mathematischen Wissenschaften 346
A Series of Comprehensive Studies in Mathematic

Jean-Louis Loday
Bruno Vallette

Algebraic Operads

) springer

Loday,
Vallette
(2012)

Bremner,
Dotsenko
(2016)

Algebraichpérads 3

An Algorithmic Companion

ol
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R
Four Nonassociative Operads: Free, Inter, BP, DBP

Definition

e Free: free symmetric operad, two binary operations with no symmetry,
denoted A (horizontal) and A (vertical).

e Basis in arity n > 1 is the set B, of all tree monomials consisting of all
rooted complete binary plane trees with n leaves which are labelled:

@ choose operation symbol for each internal node (including root)
@ choose bijection between leaves and argument symbols xi, ..., x,
e n = 1: exceptional case, only one tree, no root, one leaf labelled x;.

e Partial compositions: T; o; T, is the tree constructed by identifying
the root of T, with the i-th leaf of T; (enumerated left to right).

Definition

Inter: quotient of Free by ideal I = () generated by interchange law:
B:(aab)a(card)—(aac)r(bad)=0

~
w
=



]

e BP: set operad of block partitions of open unit square /2, | = (0, 1).

e Block partition P: finite set of cuts (open line segments) C C /2 where
o A cut is horizontal H = (x1,x2)x{yo} or vertical V = {xo}x(y1, y2).
e P =12\ JC is disjoint union of empty blocks (x1,x2) x (y1,2).

@ if two cuts intersect then one H is horizontal, the other V is vertical,
and HN V is a point (a maximality condition on C)

e horizontal composition x — y (vertical composition x 1 y):
@ translate y one unit east (north) to get y + ¢ (i = 1,2)
e form x U (y + €;) to get a partition of width (height) two

@ scale horizontally (vertically) by one-half to get a partition of /2

This is a double interchange magma since — and 1 are related by

b
i d EE(&TC)—)(de)
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Operadic analogues are as follows:

e If x is a block partition with ordered empty blocks x1,...,x, then ...

e for a block partition y with n parts, the partial composition x o; y is:

@ scale y to have the same size as x; and replace x; by scaled y
@ produce a new block partition with m+n—1 parts
@ iteration of this makes x into an m-ary operation
e [0 and H denote the block partitions with two equal parts:
o the first (second) has a vertical (horizontal) bisection
o the first (second) represents horizontal (vertical) composition
@ the parts are labelled 1, 2 in the positive direction, east (north)
e The double magma operations are defined as follows:
x—=y=(Moyx)omp1y=(Mozy)oyx,
xty=(Boix)omp1y=(Bozy)orx
e Hence BP is a set operad; it becomes an algebraic operad by defining
operations on elements and extending to linear combinations.
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|
Algorithm

In dimension d, to get a dyadic block partition of /¢ (unit d-cube):
o Set Py «+ {/9}. Do these steps for i = 1,..., k—1 (k parts):
@ Choose an empty block B € P; and an axis j € {1,...,d}.

o If (aj, bj) is projection of B onto axis j then set ¢ < 3(a;+b;).
o Set {B',B"} <~ B\ {x € B| xj = c} (hyperplane bisection).
@ Set Py« (P \{B})U{B',B"} (replace B by B’, B").

Definition

e DBP: unital suboperad of BP generated by M and H
e Unital: include unary operation /2 (block partition with one empty block)
e DBP consists of dyadic block partitions:

@ every P € DBP with n+1 parts is obtained from some Q € DBP
with n parts by bisection of a part of @ horizontally or vertically.
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Geometric Realization Map

Definition

The geometric realization map denoted I: Free — BP is the morphism
of operads defined recursively on tree monomials as follows:

@ I'(|) = I? where | is the tree with one leaf (and no root)

() F( T1 A T2) = = F(Tl) — r(Tg)

o [(T1ATy)= ) =T(T1) 1 T(T2)

Lemma
@ The image of I is the operad I'(Free) = DBP.
@ The kernel of T is the ideal ker(I") = (H) generated by interchange.

@ Hence there is an operad isomorphism Inter = DBP.
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Three Associative Operads: AssocB, AssocNB, DIA

AssocB: quotient of Free by ideal A = (A o, A 4 ) generated by
Ap(a,b,c)=(asb)Arc—an(bac) (horizontal associativity)
Aa(a,b,c)=(aAb)Ac—ah(bac) (vertical associativity)

AssocNB: isomorphic copy of AssocB with following change of basis.

@ p: AssocB — AssocNB represents rewriting a coset representative
(binary tree) as a nonbinary (= not necessarily binary) tree.

new basis consists of disjoint union {x;} LT A UT 4
isolated leaf x; and two copies of T
T = all labelled rooted plane trees with at least one internal node

T A : root r of every tree has label A, labels alternate by level

e 6 66 o6 o

T 4 : labels of internal nodes (including root) are reversed




-
Algorithm for Converting Binary Tree to Nonbinary Tree

We write Assoc if convenient for AssocB = AssocNB:

A i A /A
A A e //\\ A A . 1T, A
AEA T TTaT, AEA /\
T1T2T3T4 1r2i3fe T1T2T3T, T3Ts

A A A A
A/ \A « A/ \T\T A/ \A « A/ \A
N T N N e VN
T1T2T3T4 1T, T1T2T3T4 T1T2T3T,

Switching A, A throughout defines « for subtrees with roots labelled A .
Generalizing this isomorphism « to three or more operations is one main
obstacle to understanding d-tuple interchange semigroups for d > 3.
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-
Associativity = Interchange Applies Almost Everywhere!

After converting a binary tree to a nonbinary (not necessarily binary) tree,
if the root is white (horizontal) then all of its children are black (vertical),
all of its grandchildren are white, all of its great-grandchildren are black,
etc. ..., alternating white and black according to the level:

A//A\\
= TN \\\\
/\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\

‘A A ‘A A --AAAA

AN AN A CAA AN A A A “A

If the root is black then we simply transpose white and black throughout.
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Definition

DIA: quotient of Free by ideal (A o, A 4 ,H).
This is the algebraic operad governing double interchange algebras,
which possess two associative operations satisfying the interchange law.

e Inter, AssocB, AssocNB, DIA are defined by relations v; — v» =0

(equivalently v; = v») where vy, v, are cosets of monomials in Free.

e We could work with set operads (we never need linear combinations).

e Vector spaces and sets are connected by a pair of adjoint functors:
the forgetful functor sending a vector space V to its underlying set,
the left adjoint sending a set S to the vector space with basis S.

e Corresponding relation between Grobner bases and rewrite systems:
if we compute a syzygy for two tree polynomials vi — v» and wy — wp,
then the common multiple of the leading terms cancels,
and we obtain another difference of tree monomials;
similarly, from a critical pair of rewrite rules vi — v and wy — wp,
we obtain another rewrite rule.
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Motivation: Two Compositions in a Double Category

Horizontal and vertical compositions related by the interchange law:

mol
—_—

B—>pD-"-F B F
UT Ha TV Wﬂ TW horizontal UT ﬂamﬁTW
AT CE A n E
C—~F
L
VT Hﬁ Tx C——F
B——E vertical; vouT HQEIB TXOW
UT Ha TW A T> D
A——>D
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Morphisms between Operads

e Our goal is to understand the operad DIA.

e We have no convenient normal form for the basis monomials of DIA.

e There is a normal form if we factor out associativity but not interchange.

e There is a normal form if we factor out interchange but not associativity.

e We use the monomial basis of the operad Free.

e We apply rewrite rules which express associativity of each operation
(right to left, or reverse) and interchange between the operations
(black to white, or reverse).

e These rewritings convert one monomial in Free to another monomial
which is equivalent to the first modulo associativity and interchange.

e Given an element X of DIA represented by a monomial T in Free,
we convert T to another monomial T’ in the same inverse image as T
with respect to the natural surjection Free — DIA.

e We use undirected rewriting: to pass from T to T', we may need to
reassociate left to right, apply interchange, reassociate right to left.
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Commutative Diagram of Operads and Morphisms

AssocNB

p | isomorphism

AssocB

( ) )
o X
Free
: — /(@) —/(A A +I1,A A +1I)
X o

o _ Inter
’Y\Lisomorphism
. DBP
Llinclusion

BP

(We were very pleased with ourselves when we finally figured out this picture.)
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Geometric Realization Map: Interchange Generates Kernel

For monomials my, my € Free(n) with n > 4, we write

e m; = my if and only if m; and my can be obtained from the two sides
of the interchange law by the same sequence of partial compositions

e my ~ my if and only if [(my) = ['(m2) (geometric realization map)

(Fatemeh Bagherzadeh) The equivalence relations ~ and = coincide.
That is, ~ is generated by the consequences of the interchange law.

e For n=1,2,3, the map I is injective, so there is nothing to prove.

e Now suppose that n > 4 and that my, my € Free(n) satisfy my ~ mo.

e Thus for some P € DBP(n) we have my, my € T"1(P).

e For n = 4, dihedral group of the square acts on 40 (= 5 - 23) monomials;
3 generators: replace A (A ) by opposite operation, switch operations.
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e For each orbit, we choose a representative and display its image under I

l

e Except for the first, the size of the orbit generated by the block partition
equals the size of the orbit generated by the tree monomial.

e The two monomials in [ ~1(E) are the two terms of the interchange law.

e This is only failure of injectivity for n = 4; rest of proof: induction on n.

e Generalization to all dimensions, proof by homological algebra:
Murray Bremner, Vladimir Dotsenko: arXiv:1705.04573 [math.KT]
Boardman—Vogt tensor products of absolutely free operads.

(We just got a positive report from Proc. A, Royal Soc. Edinburgh.)
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Cuts and Slices

Definition

e Subrectangle: any union of empty blocks forming a rectangle.

e Let P be a block partition of /2, and let R be a subrectangle of P.

e A main cut in R is a horizontal or vertical bisection of R.

e Every subrectangle has at most two main cuts (horizontal, vertical).

e Suppose that a main cut partitions R into subrectangles R; and R».

o If either R; or R has a main cut parallel to the main cut of R, we call
this a primary cut in R; we also call the main cut of R a primary cut.

e In general, if a subrectangle S of R is obtained by a sequence of cuts
parallel to a main cut of R then a main cut of S is a primary cut of R.

e Let Cq,..., C; be the primary cuts of R parallel to a given main cut C;
(1 < i <¥)in positive order (left to right, or bottom to top) so that
there is no primary cut between C; and G4 for 1 < j < /—1.

e Define “cuts” Gy, Cypy1 to be left, right (bottom, top) sides of R.

e Write S; for the j-th slice of R parallel to the given main cut.




Commutativity Relations

Suppose that for some monomial m of arity n in the operad Free, and
for some transposition (ij) € Sy, the corresponding cosets in DIA satisfy:

M(X1, oy Xiy ooy Xy ooy Xn) = M(X1, ooy Xy ooy Xy ooy Xn)-

In this case we say that m admits a commutativity relation.

Proposition

(Fatemeh Bagherzadeh) Assume that m is a monomial in Free admitting
a commutativity relation which is not a consequence of a commutativity
relation holding in (i) a proper factor of m, or (ii) a proper quotient of m.
(Quotient refers to substitution of a decomposable factor for the same
indecomposable argument on both sides of a relation of lower arity).
Then the dyadic block partition P = I'(m) contains both main cuts.

In other words, it must be possible to apply the interchange law as a
rewrite rule at the root of the monomial m (regarded as a binary tree).




Border Blocks and Interior Blocks

Definition

Let P be a block partition of /? consisting of empty blocks Ry, ..., Rxk.
If the closure of R; has nonempty intersection with the four sides of the
closure /2 then R; is a border block, otherwise R; is an interior block.

Lemma

Suppose that Py = T'(my) and P, = I'(my) are two labelled dyadic block
partitions of 1% such that m; = mo in every double interchange semigroup.
Then any interior (border) block of Py is an interior (border) block of P;.

Lemma

If m admits a commutativity relation then in the corresponding block
partition P =T (m) the two commuting empty blocks are interior blocks.

Basic idea of the proofs: neither associativity nor the interchange law can

change an interior block to a border block or conversely.
23/31



Lower Bounds on the Arity of a Commutativity Relation

If m admits a commutativity relation then P = ['(m) has both main cuts;
hence P is the union of 4 subsquares A1, ..., Ay (NW, NE, SW, SE).

If a subsquare has 1 (2) empty interior block(s) then that subsquare has
at least 3 (4) empty blocks. Hence P contains at least 7 empty blocks.

Proposition

(Fatemeh Bagherzadeh) If the monomial m of arity n in the operad Free
admits a commutativity relation then P = T(m) has n > 8 empty blocks.

Reflecting P in the horizontal and/or vertical axes if necessary, we may
assume that the NW subsquare A; has two empty interior blocks and has
only the horizontal main cut (otherwise we reflect in the NW-SE diagonal).
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We display the 3 partitions with 7 empty blocks satisfying these conditions:

f f f
=z g g g
cld| e c |dle

None of these configurations admits a commutativity relation.

The method used for the proof of the last proposition can be extended to
show that a monomial of arity 8 cannot admit a commutativity relation,
although the proof is rather long owing to the large number of cases:

(a) 1 square A; has 5 empty blocks, and the other 3 squares are empty;
(b) 1 square A; has 4 empty blocks, another square A; has 2, and the
other 2 squares are empty (2 subcases: A;, A; share edge or only corner);
(c) 2 squares Aj, A; each have 3 empty blocks, other 2 empty (2 subcases).
This provides a different proof, independent of machine computation, of

the minimality result of Bremner and Madariaga.
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Commutative Block Partitions in Arity 10

Lemma

Let m admit a commutativity relation in arity 10. Then P =T (m) has at
least two and at most four parallel slices in either direction.

Proof.
By the lemmas, P contains both main cuts. Since P contains 10 empty
blocks, it has at most 5 parallel slices (4 primary cuts) in either direction.
If there are 4 primary cuts in one direction and the main cut in the other
direction, then there are 10 empty blocks, and all are border blocks. OJ

In what follows, m has arity 10 and admits a commutativity relation.
Hence P =T (m) is a dyadic block partition with 10 empty blocks.
Commuting blocks are interior; P has either 2, 3, or 4 parallel slices.

If P has 3 (resp. 4) parallel slices, then commuting blocks are in middle
slice (resp. middle 2 slices). Interchanging H and V if necessary, we may

assume parallel slices are vertical.
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Four Parallel Vertical Slices

We have H and V main cuts, and 2 more vertical primary cuts.

Applying horizontal associativity gives 2 rows of 4 equal empty blocks.

This configuration has 8 empty blocks, all of which are border blocks.
We need 2 more cuts to create 2 interior blocks.

Applying vertical associativity in the second slice from the left, and
applying a dihedral symmetry of the square (if necessary), reduces
the number of configurations to the following A, B, C:

A: B: C: T




Configuration A: Geometric Proof of New Commutativity

e Cei el . i I
crH—iiJ J c J cler—J clel—J
d d| & d| &g g g
g d d
albr—h alb|flh a:b|flh alr—fl|h a—f|h
f b b
cei cei cl¢ j i j il
— — C| €| Cc e
z J g J / J / J 1 J
d d 2] £ | -
al—f|h a—f|h aldlf|n aldlf|n aldif|n
b b b b b
. . e . e . e . e . .
(o} el J ChH—1 J crH—1 J CrH— J CcCrH—1 J
g g g g
8 | d d d d
a~—dif|h al—f|h at—{f|h a gflh a —flh
b b b b
elil. eli| . e:j e, e
c J c J c J c J cH——ilJ
g|d gld g d gld g
d
a b |flh a b |f|h alb:f|h alb|f:h abTh
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Configuration A: In every double interchange semigroup, the followmg
commutativity relation holds for all values of the arguments a, ... ,j:

(a0 b)A(c(dae)a(((Fag)ah)a(ing) =
(anb)a(ca(gae)a(((fad)ah)a(iag)

For configuration B we label only the two blocks which transpose.
Applications of associativity and interchange can easily be recovered:

I c|
1€ g g|c g|c c

| g g
g e ]
C

[o] o]
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Configuration B: In every double interchange semigroup, the following

commutativity relation holds for all values of the arguments a, ..., J:
((an(bac))a(fa(gah))a((dae)a(ing)) =
((aa(bag))a(fa(cah)))a((dre)a(ing))

For configuration C we obtain no new commutativity relations.
For further details, see our preprint: arXiv:1706.04693 [math.RA].

Concluding remarks: higher dimensions

We have studied structures with two operations, representing orthogonal
(horizontal and vertical) compositions in two dimensions.

Most of our constructions make sense for any number of dimensions d > 2.

Major obstacle for d > 3: monomial basis for AssocNB consisting of
nonbinary trees with alternating white and black internal nodes does not
generalize in a straightforward way.
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Thanks for Your Attention!
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