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Enriched (co)fibrant replacement

Theorem (Folklore: Garner, Riehl, Shulman, . . . )

Let V be a monoidal model category in which every object is cofibrant.
Then any cofibrantly generated model V-category has:

a cofibrant replacement V-comonad, and

a fibrant replacement V-monad.

Examples

V = sSet, Cat.

Theorem (Lack–Rosický)

Let V be a monoidal model category with cofibrant unit object. If V has a
cofibrant replacement V-comonad, then every object of V is cofibrant.
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Let V be a monoidal model category with cofibrant unit object. If V has a
cofibrant replacement V-comonad, then every object of V is cofibrant.

Alexander Campbell (CoACT) Enriched awfs CT2017 UBC 2 / 30



The problem of enriched (co)fibrant generation

Question

If V is a monoidal model category in which not every object is cofibrant,
then what extra structure, if not an enrichment in the ordinary sense, is
naturally possessed by the (co)fibrant replacement (co)monad of a model
V-category?

An analysis of the monoidal model category V = 2-Cat suggests the

decisive concept:

locally weak V-functor
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The monoidal category of 2-categories

Recall (Gray)

The category 2-Cat of (small) 2-categories and 2-functors is a symmetric
monoidal closed category with:

unit object 1,

tensor product A⊗ B the (pseudo) Gray tensor product of
2-categories,

internal hom Gray(A,B) the 2-category of 2-functors A −→ B,
pseudonatural transformations, and modifications.

Categories enriched over this monoidal category are called
Gray-categories. The self-enrichment of 2-Cat is called Gray.
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The monoidal model category of 2-categories

Recall (Lack)

There is a model structure on 2-Cat, whose weak equivalences are the
biequivalences, and which is monoidal with respect to the Gray monoidal
structure.

A 2-category is cofibrant if and only if its underlying category is free on a
graph. In particular the unit 2-category 1 is cofibrant.

Since not every 2-category is cofibrant, it follows from the argument of
Lack and Rosický that there does not exist a Gray-enriched cofibrant
replacement comonad on 2-Cat.
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The strictification adjunction

The model category 2-Cat has a canonical cofibrant replacement
comonad, which is induced by the adjunction

2-Cat `

// Bicat
stoo

where Bicat is the category of bicategories and pseudofunctors, the right
adjoint is the inclusion, and the left adjoint st sends a bicategory to its
“strictification”.
Hence this canonical cofibrant replacement stA of a 2-category A is its
“pseudofunctor classifier”; i.e. it has the universal property:

stA −→ B 2-functors

A // B pseudofunctors

Alexander Campbell (CoACT) Enriched awfs CT2017 UBC 8 / 30



The strictification adjunction

The model category 2-Cat has a canonical cofibrant replacement
comonad, which is induced by the adjunction

2-Cat `

// Bicat
stoo

where Bicat is the category of bicategories and pseudofunctors, the right
adjoint is the inclusion, and the left adjoint st sends a bicategory to its
“strictification”.

Hence this canonical cofibrant replacement stA of a 2-category A is its
“pseudofunctor classifier”; i.e. it has the universal property:

stA −→ B 2-functors

A // B pseudofunctors

Alexander Campbell (CoACT) Enriched awfs CT2017 UBC 8 / 30



The strictification adjunction

The model category 2-Cat has a canonical cofibrant replacement
comonad, which is induced by the adjunction

2-Cat `

// Bicat
stoo

where Bicat is the category of bicategories and pseudofunctors, the right
adjoint is the inclusion, and the left adjoint st sends a bicategory to its
“strictification”.
Hence this canonical cofibrant replacement stA of a 2-category A is its
“pseudofunctor classifier”; i.e. it has the universal property:

stA −→ B 2-functors

A // B pseudofunctors

Alexander Campbell (CoACT) Enriched awfs CT2017 UBC 8 / 30



The strictification multiadjunction

Theorem (C.)

The strictification adjunction extends to an adjunction of multicategories,
i.e. an adjunction in the 2-category of multicategories.

2-Cat `

// Bicat
stoo

The multicategory structure on 2-Cat is represented by the Gray monoidal
structure. Its n-ary morphisms are the “cubical functors of n variables”.
The multicategory structure on Bicat, introduced in Verity’s PhD thesis,
is closed but not representable. Its n-ary morphisms are the “cubical
pseudofunctors of n variables”.
Hence the comonad st on 2-Cat extends to a comonad in the 2-category
of multicategories. But the multicategory structure on 2-Cat is
representable, so st in fact extends to a monoidal comonad on 2-Cat.
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How strict is strictification?

Corollary

The strictification comonad st is a monoidal comonad on 2-Cat.

By adjointness, a monoidal comonad on a monoidal closed category is
equally a closed comonad, so st comes equipped with 2-functors

st (Gray(A,B)) // Gray(stA, stB)

which, by the universal property of the pseudofunctor classifier, are equally
pseudofunctors

Gray(A,B) // Gray(stA, stB)

making st : Gray→ Gray into a “locally weak Gray-functor”.

Corollary (C.)

The strictification comonad st is a locally weak Gray-comonad on Gray.
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Locally weak V-functors

Let (Q, ϕ, ϕ0, . . .) be a monoidal comonad on a monoidal category V. We
think of morphisms QX −→ Y in V as “weak morphisms” X // Y in V.

Definition (C.)

Let A and B be V-categories. A locally Q-weak V-functor F : A −→ B
consists of:

(i) a function F : obA −→ obB,

(ii) for each A,B ∈ A, a morphism ψA,B : QA(A,B) −→ B(FA,FB) in

V, i.e. a “weak morphism” ψA,B : A(A,B) // B(FA,FB) in V,

subject to the following two axioms.

QA(B,C)⊗ QA(A,B)
ϕ
//

ψ⊗ψ

��

Q (A(B,C)⊗A(A,B))
QK
// QA(A,C)

ψ

��

B(FB,FC)⊗ B(FA,FB)
K

// B(FA,FC)

QI
Qj
// QA(A,A)

ψ

��

I

ϕ0

OO

j
// B(FA,FA)

Alexander Campbell (CoACT) Enriched awfs CT2017 UBC 12 / 30



Locally weak V-functors

Let (Q, ϕ, ϕ0, . . .) be a monoidal comonad on a monoidal category V. We
think of morphisms QX −→ Y in V as “weak morphisms” X // Y in V.

Definition (C.)

Let A and B be V-categories. A locally Q-weak V-functor F : A −→ B
consists of:

(i) a function F : obA −→ obB,

(ii) for each A,B ∈ A, a morphism ψA,B : QA(A,B) −→ B(FA,FB) in

V, i.e. a “weak morphism” ψA,B : A(A,B) // B(FA,FB) in V,

subject to the following two axioms.

QA(B,C)⊗ QA(A,B)
ϕ
//

ψ⊗ψ

��

Q (A(B,C)⊗A(A,B))
QK
// QA(A,C)

ψ

��

B(FB,FC)⊗ B(FA,FB)
K

// B(FA,FC)

QI
Qj
// QA(A,A)

ψ

��

I

ϕ0

OO

j
// B(FA,FA)

Alexander Campbell (CoACT) Enriched awfs CT2017 UBC 12 / 30



Locally weak V-functors

Let (Q, ϕ, ϕ0, . . .) be a monoidal comonad on a monoidal category V. We
think of morphisms QX −→ Y in V as “weak morphisms” X // Y in V.

Definition (C.)

Let A and B be V-categories. A locally Q-weak V-functor F : A −→ B
consists of:

(i) a function F : obA −→ obB,

(ii) for each A,B ∈ A, a morphism ψA,B : QA(A,B) −→ B(FA,FB) in

V, i.e. a “weak morphism” ψA,B : A(A,B) // B(FA,FB) in V,

subject to the following two axioms.

QA(B,C)⊗ QA(A,B)
ϕ
//

ψ⊗ψ

��

Q (A(B,C)⊗A(A,B))
QK
// QA(A,C)

ψ

��

B(FB,FC)⊗ B(FA,FB)
K

// B(FA,FC)

QI
Qj
// QA(A,A)

ψ

��

I

ϕ0

OO

j
// B(FA,FA)

Alexander Campbell (CoACT) Enriched awfs CT2017 UBC 12 / 30



Locally weak V-functors

Let (Q, ϕ, ϕ0, . . .) be a monoidal comonad on a monoidal category V. We
think of morphisms QX −→ Y in V as “weak morphisms” X // Y in V.

Definition (C.)

Let A and B be V-categories. A locally Q-weak V-functor F : A −→ B
consists of:

(i) a function F : obA −→ obB,

(ii) for each A,B ∈ A, a morphism ψA,B : QA(A,B) −→ B(FA,FB) in

V, i.e. a “weak morphism” ψA,B : A(A,B) // B(FA,FB) in V,

subject to the following two axioms.

QA(B,C)⊗ QA(A,B)
ϕ
//

ψ⊗ψ

��

Q (A(B,C)⊗A(A,B))
QK
// QA(A,C)

ψ

��

B(FB,FC)⊗ B(FA,FB)
K

// B(FA,FC)

QI
Qj
// QA(A,A)

ψ

��

I

ϕ0

OO

j
// B(FA,FA)

Alexander Campbell (CoACT) Enriched awfs CT2017 UBC 12 / 30



Locally weak V-functors

Let (Q, ϕ, ϕ0, . . .) be a monoidal comonad on a monoidal category V. We
think of morphisms QX −→ Y in V as “weak morphisms” X // Y in V.

Definition (C.)

Let A and B be V-categories. A locally Q-weak V-functor F : A −→ B
consists of:

(i) a function F : obA −→ obB,

(ii) for each A,B ∈ A, a morphism ψA,B : QA(A,B) −→ B(FA,FB) in

V, i.e. a “weak morphism” ψA,B : A(A,B) // B(FA,FB) in V,

subject to the following two axioms.

QA(B,C)⊗ QA(A,B)
ϕ
//

ψ⊗ψ

��

Q (A(B,C)⊗A(A,B))
QK
// QA(A,C)

ψ

��

B(FB,FC)⊗ B(FA,FB)
K

// B(FA,FC)

QI
Qj
// QA(A,A)

ψ

��

I

ϕ0

OO

j
// B(FA,FA)

Alexander Campbell (CoACT) Enriched awfs CT2017 UBC 12 / 30



The Kleisli 2-category of locally weak V-functors

Let Q be a monoidal comonad on a monoidal category V. Change of base
along Q defines a 2-comonad on the 2-category V-Cat.
The Kleisli 2-category of this 2-comonad has:

objects: V-categories,

morphisms: locally Q-weak V-functors,

2-cells: locally Q-weak V-natural transformations.

A (co)monad in this 2-category is called a locally Q-weak V-(co)monad.
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Leibniz–Day constructions I

Let (V,⊗, I ) be a monoidal category with finite colimits and finite limits,
such that ⊗ preserves finite colimits in each variable.

By Day convolution, the arrow category V2 is a monoidal category with:

unit: 0 −→ I ,

tensor product ( A
f // B )⊗̂( C

g
// D ) given by:

A⊗ C
1⊗g

//

f⊗1
��

A⊗ D

�� f⊗1

��

B ⊗ C //

1⊗g ..

·
f ⊗̂g

%%

B ⊗ D

definition of the associativity and unit constraints requires the above
assumption on colimits.
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Leibniz–Day constructions II

Let A be a V-category. Then A2 is a V2-category, with homs A(̂f , g)
given by:

A(B,C ) A(1,g)

%%

A(̂f ,g)
%%

A(f ,1)

%%

Sq(f , g) //

��

A(B,D)

A(f ,1)
��

A(A,C )
A(1,g)

// A(A,D)

Sq(f , g) is the V-object of squares f → g .

0

=

//

��

A(B,C )

A(̂f ,g)
��

I
(u,v)

// Sq(f , g)

↔

I

=

v //

u

��

A(B,D)

A(f ,1)
��

A(A,C )
A(1,g)

// A(A,D)

↔

A

=

u //

f
��

C

g

��

B v
// D
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Weak factorisation systems

A weak factorisation system (wfs) on a category C consists of two classes
of morphisms (L,R) in C subject to closure axioms, such that:

(i) every morphism f in C has a factorisation

f //

L3l
��

=
r∈R

??

(ii) every square l → r has a diagonal filler:

A //

L3l
��

C

r∈R
��

B

∃

??

// D

i.e.

C(B,C )

C(̂l ,r)
��

Sq(l , r)

is surjective ∀l ∈ L, r ∈ R.
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Enriched weak factorisation systems

Let (L,R) be a wfs on a monoidal category V. A wfs (H,M) on a

V-category A is said to be enriched over (L,R) if for each A
f // B in

H and each C
g
// D in M, the morphism A(B,C )

A(̂f ,g)
// Sq(f , g) in

V belongs to R.

Examples

(a) Every wfs is enriched over the (injective, surjective) wfs on Set.

(b) A wfs enriched over the (all, iso) factorisation system on Set is
precisely an orthogonal factorisation system.

(c) Let V be a monoidal model category. The two defining wfs of a
model V-category are enriched over the (cofibration, trivial fibration)
wfs on V.
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Algebraic weak factorisation systems

An algebraic weak factorisation system (awfs) on a category C consists of
a comonad L and a monad R on the arrow category C2, subject to various
axioms,

including that every morphism f has the canonical factorisation:

A
f //

Lf
  

=

B

Ef

Rf

>>

Note that E : C2 −→ C is a functor.

“L-map” ≡ L-coalgebra “R-map” ≡ R-algebra

A
Lf //

f
��

Ef

Rf
��

B

s

>>

1
// B

C
1 //

Lg

��

C

g

��

Eg

p

>>

Rg
// D
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Algebraic weak factorisation systems

Each square in C from an L-coalgebra (f , s) to an R-algebra (g , p)

A
u //

f
��

=

C

g

��

B v
// D

has the canonical diagonal filler p ◦ E (u, v) ◦ s.

A
1 //

1
��

A
u //

Lf
��

C
1 //

Lg

��

C

g

��

A
Lf //

f
��

Ef
E(u,v)

//

Rf
��

Eg

p

>>

Rg
//

Rg
��

D

1
��

B
1
//

s

>>

B v
// D

1
// D
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(Co)fibrant replacement (co)monad

If (L,R) is an awfs on a category C with an initial object 0, then
factorisation of morphisms of the form

0 //

  

=

A

QA

εA

>>

defines a comonad Q on C, called the cofibrant replacement comonad for
(L,R).

Q-coalgebras are called algebraically cofibrant objects. The Kleisli
category CQ for this comonad is called the category of weak maps for
(L,R).

Dually, if C has a terminal object 1, then factorisation of morphisms of the
form A −→ 1 defines a monad on C, called the fibrant replacement monad.
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Monoidal awfs

Let (V,⊗, I ) be a monoidal category with finite colimits and finite limits,
and such that ⊗ preserves finite colimits in each variable.

Recall that a wfs (L,R) on V is said to be a monoidal wfs if f , g ∈ L
implies f ⊗̂g ∈ L.

Definition (Riehl, C.)

An awfs (L,R) on V is said to be a monoidal awfs when it is equipped
with:

(i) a natural transformation ϕ : Ef ⊗ Eg −→ E (f ⊗̂g),

(ii) a morphism ϕ0 : I −→ QI ,

making:

(iii) ⊗ : V × V −→ V a two-variable oplax morphism of awfs,

(iv) E : V2 −→ V a monoidal functor,

(v) I an algebraically cofibrant object.
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Two-variable oplax morphism of awfs

Axiom (iii) (⊗ is a two-variable oplax morphism of awfs) implies, inter
alia, the following result.

Proposition (Riehl)

The tensor product ⊗̂ on V2 lifts to a functor

⊗̂ : L-Coalg × L-Coalg −→ L-Coalg.

Moreover, by the definition of two-variable oplax morphisms of awfs, ϕ
defines natural transformations

Lf ⊗̂Lg Φ // L(f ⊗̂g) Lf ⊗̂Rg Σ // R(f ⊗̂g) Rf ⊗̂Lg Π // R(f ⊗̂g)

which, together with the remaining axioms, prove the following theorem.
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Cofibrant replacement is a monoidal comonad

Let (L,R) be a monoidal awfs on V.

Theorem (C.)

(i) L is a monoidal comonad on V2.

(ii) R is a L-bistrong monad on V2.

(iii) The cofibrant replacement comonad Q is a monoidal comonad on V.

(iv) The fibrant replacement monad P is a Q-bistrong monad on V.

Corollary

(i) The monoidal structure on V2 lifts to a monoidal structure on
L-Coalg.

(ii) R-Kl is a two-sided (L-Coalg)-actegory.

(iii) The monoidal structure on V lifts to a monoidal structure on
Q-Coalg.

(iv) P-Kl is a two-sided (Q-Coalg)-actegory.

Alexander Campbell (CoACT) Enriched awfs CT2017 UBC 24 / 30



Cofibrant replacement is a monoidal comonad

Let (L,R) be a monoidal awfs on V.

Theorem (C.)

(i) L is a monoidal comonad on V2.

(ii) R is a L-bistrong monad on V2.

(iii) The cofibrant replacement comonad Q is a monoidal comonad on V.

(iv) The fibrant replacement monad P is a Q-bistrong monad on V.

Corollary

(i) The monoidal structure on V2 lifts to a monoidal structure on
L-Coalg.

(ii) R-Kl is a two-sided (L-Coalg)-actegory.

(iii) The monoidal structure on V lifts to a monoidal structure on
Q-Coalg.

(iv) P-Kl is a two-sided (Q-Coalg)-actegory.

Alexander Campbell (CoACT) Enriched awfs CT2017 UBC 24 / 30



Cofibrant replacement is a monoidal comonad

Let (L,R) be a monoidal awfs on V.

Theorem (C.)

(i) L is a monoidal comonad on V2.

(ii) R is a L-bistrong monad on V2.

(iii) The cofibrant replacement comonad Q is a monoidal comonad on V.

(iv) The fibrant replacement monad P is a Q-bistrong monad on V.

Corollary

(i) The monoidal structure on V2 lifts to a monoidal structure on
L-Coalg.

(ii) R-Kl is a two-sided (L-Coalg)-actegory.

(iii) The monoidal structure on V lifts to a monoidal structure on
Q-Coalg.

(iv) P-Kl is a two-sided (Q-Coalg)-actegory.

Alexander Campbell (CoACT) Enriched awfs CT2017 UBC 24 / 30



Cofibrant replacement is a monoidal comonad

Let (L,R) be a monoidal awfs on V.

Theorem (C.)

(i) L is a monoidal comonad on V2.

(ii) R is a L-bistrong monad on V2.

(iii) The cofibrant replacement comonad Q is a monoidal comonad on V.

(iv) The fibrant replacement monad P is a Q-bistrong monad on V.

Corollary

(i) The monoidal structure on V2 lifts to a monoidal structure on
L-Coalg.

(ii) R-Kl is a two-sided (L-Coalg)-actegory.

(iii) The monoidal structure on V lifts to a monoidal structure on
Q-Coalg.
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The multicategory of weak maps

Let (L,R) be a monoidal awfs on V with cofibrant replacement comonad
Q. Recall that the Kleisli category VQ for Q is called the category of weak
maps for (L,R).

Corollary

The Kleisli adjunction for Q extends to an adjunction of multicategories.

V `

// VQ
Q

oo

n-ary morphisms (X1, . . . ,Xn) −→ Y in the multicategory structure on VQ
are morphisms QX1 ⊗ · · · ⊗ QXn −→ Y in V.
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Enriched awfs

Let (L,E ,R) be a monoidal awfs on V.

Definition (Riehl, C.)

An awfs (H,N,M) on a V-category A is said to be enriched over (L,R)
when it is equipped with:

(i) a natural transformation ψ : EA(̂f , g) −→ A(Nf ,Ng),

making:

(ii) A(−,−) : Aop ×A −→ V a two-variable lax morphism of awfs,

(iii) (N,E ) : (A2,V2) −→ (A,V) a morphism of enriched categories.

EA(̂g , h)⊗ EA(̂f , g)
ϕ
//

ψ⊗ψ

��

E
(
A(̂g , h)⊗̂A(̂f , g)

)
EK̂ // EA(̂f , h)

ψ

��

A(Ng ,Nh)⊗A(Nf ,Ng)
K

// A(Nf ,Nh)

QI
E ĵ
// EA(̂f , f )

ψ

��

I

ϕ0

OO

j
// A(Nf ,Nf )
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Two-variable lax morphism of awfs

Axiom (ii) (A(−,−) is a two-variable lax morphism of awfs) implies,
inter alia, the following result.

Proposition (Riehl)

The V2-valued hom A(̂−,−) on A2 lifts to a functor

A(̂−,−) : H-Coalg ×M-Alg −→ R-Alg.

Moreover, by the definition of two-variable lax morphisms of awfs, ψ
defines natural transformations

RA(̂f , g)
Θ // A ̂(Hf ,Mg)

LA(̂f , g)
Ψ // A ̂(Hf ,Hg) LA(̂f , g)

Ω // A ̂(Mf ,Mg)

which, together with the remaining axioms, prove the following theorem.
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(Co)fibrant replacement is a locally weak (co)monad

Theorem (C.)

Let (H,M) be an (L,R)-enriched awfs on A. Then the following are
true.

(i) H is a locally L-weak V2-comonad on A2.

(ii) M is a locally L-weak V2-monad on A2.

(iii) The cofibrant replacement comonad for (H,M) is a locally Q-weak
V-comonad on A.

(iv) The fibrant replacement monad for (H,M) is a locally Q-weak
V-monad on A.
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The enriched category of weak maps

Let (L,R) be a monoidal awfs on V with cofibrant replacement comonad
Q. Let (H,M) be a (L,R)-enriched awfs on a V-category A with
cofibrant replacement comonad S .

Corollary (C.)

The Kleisli adjunction for S extends to a VQ-enriched adjunction, i.e. an
adjunction in the 2-category VQ-Cat of categories enriched over the
multicategory of weak maps for (L,R).

A `

// AS

Soo

The hom-objects in the VQ-category AS are AS(A,B) = A(SA,B).
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Examples of monoidal and enriched awfs

Examples

(a) Every monoidal awfs on a monoidal closed category is enriched over
itself.

(b) The (all,iso) factorisation system on a monoidal category V is a
monoidal awfs (with canonical factorisation f = 1 ◦ f ) . An awfs on
a V-category A enriched over this monoidal awfs is precisely a
V-enriched orthogonal factorisation system on A.

(c) The “split epi” awfs on Set (in which f : X → Y factors through
X + Y ) is monoidal with respect to cartesian product. Every awfs is
canonically enriched over this monoidal awfs.

(d) Let V be a monoidally cocomplete category, so that U = V(I ,−) :
V → Set has a left adjoint F . The “U-split epi” awfs on V (in which
f : X → Y factors through X + FUY ) is monoidal. Every awfs on a
V-category is canonically enriched over this monoidal awfs.
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