A symmetric monoidal and compact closed
bicategorical syntax for graphical calculi

Daniel Cicala
21 July 2017

University of Califonia at Riverside

motivation

motivation

a question

IS THERE A GENERAL FRAMEWORK FOR SYSTEMS COMPRISED OF

OPEN NETWORKS AND REWRITING?

motivation

a question

IS THERE A GENERAL FRAMEWORK FOR SYSTEMS COMPRISED OF

OPEN NETWORKS AND REWRITING?

Loosely, by open network we mean a graphical language with
inputs and outputs

goals

Today, we will

construct such a bicategorical framework
— and —

illustrate its use on the zx-calculus

modeling open networks & rewrites

modeling open networks

Open networks can be modeled with cospans, eg

AL

J O~ °

i) | @0l Vs — ® > O«
VLS NU B o

modeling open networks

Open networks can be modeled with cospans, eg

AL

E'ON /\E ©

il @—0) 3 Vs — ® O«
':\O:.) S g o

In general, for a network G with inputs X and outputs Y

X—=>G+Y

modeling open networks

Compatible open networks can be connected, e.g.

'\ \
1
O . R O S
g 1o N A Jrg g R
&, ! @20z » 210~ T T 2, ! e—e—e 12
g1 g CH Vg i o b
\ \
_/ \Q’ _’ \Q’
N

modeling open networks

Compatible open networks can be connected, e.g.

N N
N\ //\ '\ I/\
1L R > S 1L > LI

‘El 1 - g,\ e gl [R

2! @0z 410e 's — ' 1 —e—® g

g | NIZ-t 5 N 0 & N 0 D&

T @ a g o 0@
fo} fol

This is made precise with pushouts:

X=GC«Y)(Yo>H+2)=(X—>G+yH<+ 2)

modeling open networks

Compatible open networks can be connected, e.g.

\ \
1
g NN YRR g e
2 Gy 2 = 2
2! @01z ' 210—e T 2l 0—e—e T
EI‘ Mg g So 0 ;& E‘ ! 0 &
1 \
Y o o o

This is made precise with pushouts:
X=GC«Y)(Yo>H+2)=(X—>G+yH<+ 2)
This induces a category with

(objects) input and output types
(morphisms) open networks possibly modulo relations.

modeling open networks

Compatible open networks can be connected, e.g.

\ \
1 1
2 1 NN g g =1 L E
3 3 1 = 3. |
&g, ! @01z + 2100 ! 2l 0—e—e 3
.E‘ Mg g So 0 ;& E‘ ! 0 . 5
1 \
o o

This is made precise with pushouts:
X=GC«Y)(Yo>H+2)=(X—>G+yH<+ 2)
This induces a category with

(objects) input and output types
(morphisms) open networks possibly modulo relations.

CAN WE CATEGORIFY THIS WITH RELATIONS AS 2-CELLS?

modeling rewrite rules

Using graph-like structures, we give relations by rewrite rules.

modeling rewrite rules

Using graph-like structures, we give relations by rewrite rules.
In particular, we use double pushout rewriting where a rule
L~ R

is given by a span
L+~ K—R

modeling rewrite rules

Using graph-like structures, we give relations by rewrite rules.
In particular, we use double pushout rewriting where a rule
L~ R

is given by a span
L+~ K—R

So what we want is
rewrite rules (spans) between open networks (cospans).

Thus spans of cospans:

combining open networks & rewrite rules

combining open networks & rewrite rules

The components we are working with are

e inputs and outputs
e open networks, i.e. cospans between inputs and outputs
e rewrites of open networks, i.e. spans of cospans

10

combining open networks & rewrite rules

The components we are working with are

e inputs and outputs

e open networks, i.e. cospans between inputs and outputs
e rewrites of open networks, i.e. spans of cospans

DID WE JUST DESCRIBE A BICATEGORY?

10

combining open networks & rewrite rules

Theorem (C.)
Let T be a topos. There is a bicategory MonicSp(Csp(T)) with

(0-cells) objects of T
(1-cells) cospans in T

(2-cells) monic spans of cospans in T up to isomorphism

11

combining open networks & rewrite rules

Theorem (C.)
Let T be a topos. There is a bicategory MonicSp(Csp(T)) with

(0-cells) objects of T
(1-cells) cospans in T

(2-cells) monic spans of cospans in T up to isomorphism

The hypothesis are used in the interchange rule.

11

combining open networks & rewrite rules

Theorem (C.)
Let T be a topos. There is a bicategory MonicSp(Csp(T)) with

(0-cells) objects of T
(1-cells) cospans in T

(2-cells) monic spans of cospans in T up to isomorphism

The hypothesis are used in the interchange rule.

(_%/
b
V /
% DPO rewriting often assumes monic span legs

11

combining open networks & rewrite rules

In case monic span legs are too strict...

12

combining open networks & rewrite rules

In case monic span legs are too strict...

Theorem (C.)
Let C be a category with finite limits and colimits. There is a

bicategory Sp(Csp(C)) with
(0-cells) objects of C,
(1-cells) cospans in C,
(2-cells) spans of cospans in C,
up to sharing a domain and codomain.

12

combining open networks & rewrite rules

Theorem (C. & Courser)

Consider the topos T and the finitely complete and cocomplete
category C to be symmetric monoical via + and 0.

Then the bicategories MonicSp(Csp(T)) and Sp(Csp(C)) are
symmetric monoidal and compact closed (4 la Mike Stay).

13

combining open networks & rewrite rules

MonicSp(Csp(T)) and Sp(Csp(C)) are too big!

We need to pare them down

14

combining open networks & rewrite rules

MonicSp(Csp(T)) and Sp(Csp(C)) are too big!
We need to pare them down

Let's illustrate this process with the zx-calculus

14

the zx-calculus

ii5)

the zx-calculus — generators

The zx-calculus® is a syntax used in categorical quantum
mechanics.

It models certain quantum processes

It is generated by the diagrams

— [D) o e

!B Coecke & R Duncan (2011) Interacting quantum observables: categorical
algebra and diagrammatics. New J. Phys., 13 (4), 043016.

16

the zx-calculus — generators

and the relations

{(DIC b= LRGP *e-0 oe-o

17

the zx-calculus — generators

and the relations

AP TMCETE ee-0 ee-e

How CAN WE REALIZE THESE AS

OPEN GRAPH-LIKE STRUCTURES?

17

the zx-calculus — coloring the nodes

We want directed graphs with colored nodes. To this end, we
define a graph S,«

a,B € [-m,m)

18

the zx-calculus — coloring the nodes

We want directed graphs with colored nodes. To this end, we
define a graph S,«

a,B € [-m,m)

The generating zx-diagrams are almost graphs over S,,

O—0 OOOOL O

{ac»—)o {a—~ @
b— 0O

18

the zx-calculus — coloring the nodes

We want directed graphs with colored nodes. To this end, we
define a graph S,«

a,B € [-m,m)

The generating zx-diagrams are almost graphs over S,,

O—0 OOOOL O

{ac»—)o {a—~ @
b— 0O

But these still lack inputs and outputs! 18

the zx-calculus — constructing inputs and outputs

Define a functor
N: FinSet — Graph | S,,

by sending a set x to the edgeless graph with node set x equipped
with the map constant over the node O of

o, B € [-m,m)

19

the zx-calculus — constructing inputs and outputs

Rewrite is the SMCC sub-bicategory of Sp(Csp(Graph | S.))
Rewrite conceit

(0-cells) N(x) input/output type
(1-cells) | N(x) — G < N(y) | open graphs over S,

(2-cells) Zjl all DPO rewrite rules
L7

20

the zx-calculus — constructing inputs and outputs

Rewrite is the SMCC sub-bicategory of Sp(Csp(Graph | S.))
Rewrite conceit

(0-cells) N(x) input/output type
(1-cells) | N(x) — G < N(y) | open graphs over S,

(2-cells) Zjl all DPO rewrite rules
L7

Rewrite is still too big. WHAT IS IT GOOD FOR?

20

the zx-calculus — constructing inputs and outputs

Rewrite is the SMCC sub-bicategory of Sp(Csp(Graph | S.))
Rewrite conceit

(0-cells) N(x) input/output type
(1-cells) | N(x) — G < N(y) | open graphs over S,

(2-cells) Zjl all DPO rewrite rules
L7

Rewrite is still too big. WHAT IS IT GOOD FOR?

— an ambient space in which to generate SMCC bicategories —

20

the zx-calculus — constructing inputs and outputs

Rewrite is the SMCC sub-bicategory of Sp(Csp(Graph | S.))
Rewrite conceit

(0-cells) N(x) input/output type
(1-cells) | N(x) — G < N(y) | open graphs over S,

(2-cells) Zjl all DPO rewrite rules
L7

Rewrite is still too big. WHAT IS IT GOOD FOR?

— an ambient space in which to generate SMCC bicategories —
To categorify the zx-calculus, we will translate

e zx-diagrams into open graphs over S,
e relations into DPO rewrite rules

20

the zx-calculus — translating to Rewrite

Translate zx-diagrams into 1-cells of Rewrite

over S,, via
ak — 0O
b — O

c—Q

etc.

21

the zx-calculus — translating to Rewrite

Translate zx-relations into 2-cells of Rewrite

—

el
BHE
&
) @) over S vi
ﬁXH @ ® GIN®| @
@ @ by — O
©) @@
OO,
OO
(=)
()

etc. 22

the zx-calculus — translating to Rewrite

To force the wire to act like the identity, we add the 2-cell

s
m

over S,, via

a+— O

b— O

23

the zx-calculus — translating to Rewrite

To force the wire to act like the identity, we add the 2-cell

s
m

over S,, via

a+— O

b— O

These 1-cells and 2-cells generate an SMCC sub-bicategory

of Rewrite.

23

the zx-calculus — a bicategory

Denote by zx the category with
(objects) N
(morphisms) zx-diagrams modulo zx-relations

24

the zx-calculus — a bicategory

Denote by zx the category with
(objects) N
(morphisms) zx-diagrams modulo zx-relations

Theorem (C.)
Let ||zx|| be the category with

(objects) the 0-cells of zx
(morphisms) the 1-cells of zx up to the 2-cells

Then ||zx|| is equivalent to zx

24

the zx-calculus — a bicategory

Denote by zx the category with
(objects) N
(morphisms) zx-diagrams modulo zx-relations

Theorem (C.)
Let ||zx|| be the category with

(objects) the 0-cells of zx
(morphisms) the 1-cells of zx up to the 2-cells

Then ||zx|| is equivalent to zx

This equivalence is witnessed by the functor described in the above
translation process.

24

in conclusion

25

conclusion

The benefits of this framework is...

e this process is sufficiently general to work with other
graphical languages

26

conclusion

The benefits of this framework is...

e this process is sufficiently general to work with other
graphical languages

e it gives a syntax that is bicategorical with symmetric
monoidal and compact closed structure

26

conclusion

The benefits of this framework is...

e this process is sufficiently general to work with other
graphical languages

e it gives a syntax that is bicategorical with symmetric
monoidal and compact closed structure

e it should be straightforward, in concept, to include iterated
rewrites

26

thank you

27

