
A symmetric monoidal and compact closed

bicategorical syntax for graphical calculi

Daniel Cicala

21 July 2017

University of Califonia at Riverside

1

motivation

2

motivation

a question

Is there a general framework for systems comprised of

open networks and rewriting?

Loosely, by open network we mean a graphical language with

inputs and outputs

3

motivation

a question

Is there a general framework for systems comprised of

open networks and rewriting?

Loosely, by open network we mean a graphical language with

inputs and outputs

3

goals

Today, we will

construct such a bicategorical framework

— and —

illustrate its use on the zx-calculus

4

modeling open networks & rewrites

5

modeling open networks

Open networks can be modeled with cospans, eg

in
p
u
t
s

o
u
t
p
u
t
s

vs
◦

◦
• ◦

◦

◦

◦

◦

In general, for a network G with inputs X and outputs Y

X → G ← Y

6

modeling open networks

Open networks can be modeled with cospans, eg

in
p
u
t
s

o
u
t
p
u
t
s

vs
◦

◦
• ◦

◦

◦

◦

◦

In general, for a network G with inputs X and outputs Y

X → G ← Y

6

modeling open networks

Compatible open networks can be connected, e.g.
in

p
u
t
s

o
u
t
p
u
t
s

;

in
p
u
t
s

o
u
t
p
u
t
s

=

in
p
u
t
s

o
u
t
p
u
t
s

This is made precise with pushouts:

(X → G ← Y); (Y → H ← Z) = (X → G +Y H ← Z)

This induces a category with

(objects) input and output types

(morphisms) open networks possibly modulo relations.

Can we categorify this with relations as 2-cells?

7

modeling open networks

Compatible open networks can be connected, e.g.
in

p
u
t
s

o
u
t
p
u
t
s

;

in
p
u
t
s

o
u
t
p
u
t
s

=

in
p
u
t
s

o
u
t
p
u
t
s

This is made precise with pushouts:

(X → G ← Y); (Y → H ← Z) = (X → G +Y H ← Z)

This induces a category with

(objects) input and output types

(morphisms) open networks possibly modulo relations.

Can we categorify this with relations as 2-cells?

7

modeling open networks

Compatible open networks can be connected, e.g.
in

p
u
t
s

o
u
t
p
u
t
s

;

in
p
u
t
s

o
u
t
p
u
t
s

=

in
p
u
t
s

o
u
t
p
u
t
s

This is made precise with pushouts:

(X → G ← Y); (Y → H ← Z) = (X → G +Y H ← Z)

This induces a category with

(objects) input and output types

(morphisms) open networks possibly modulo relations.

Can we categorify this with relations as 2-cells?

7

modeling open networks

Compatible open networks can be connected, e.g.
in

p
u
t
s

o
u
t
p
u
t
s

;

in
p
u
t
s

o
u
t
p
u
t
s

=

in
p
u
t
s

o
u
t
p
u
t
s

This is made precise with pushouts:

(X → G ← Y); (Y → H ← Z) = (X → G +Y H ← Z)

This induces a category with

(objects) input and output types

(morphisms) open networks possibly modulo relations.

Can we categorify this with relations as 2-cells?

7

modeling rewrite rules

Using graph-like structures, we give relations by rewrite rules.

In particular, we use double pushout rewriting where a rule

L R

is given by a span

L← K → R

So what we want is

rewrite rules (spans) between open networks (cospans).

Thus spans of cospans:

8

modeling rewrite rules

Using graph-like structures, we give relations by rewrite rules.

In particular, we use double pushout rewriting where a rule

L R

is given by a span

L← K → R

So what we want is

rewrite rules (spans) between open networks (cospans).

Thus spans of cospans:

8

modeling rewrite rules

Using graph-like structures, we give relations by rewrite rules.

In particular, we use double pushout rewriting where a rule

L R

is given by a span

L← K → R

So what we want is

rewrite rules (spans) between open networks (cospans).

Thus spans of cospans:

8

combining open networks & rewrite rules

9

combining open networks & rewrite rules

The components we are working with are

• inputs and outputs

• open networks, i.e. cospans between inputs and outputs

• rewrites of open networks, i.e. spans of cospans

Did we just describe a bicategory?

10

combining open networks & rewrite rules

The components we are working with are

• inputs and outputs

• open networks, i.e. cospans between inputs and outputs

• rewrites of open networks, i.e. spans of cospans

Did we just describe a bicategory?

10

combining open networks & rewrite rules

Theorem (C.)

Let T be a topos. There is a bicategory MonicSp(Csp(T)) with

(0-cells) objects of T

(1-cells) cospans in T

(2-cells) monic spans of cospans in T up to isomorphism

θ

The hypothesis are used in the interchange rule.

DPO rewriting often assumes monic span legs

11

combining open networks & rewrite rules

Theorem (C.)

Let T be a topos. There is a bicategory MonicSp(Csp(T)) with

(0-cells) objects of T

(1-cells) cospans in T

(2-cells) monic spans of cospans in T up to isomorphism

θ

The hypothesis are used in the interchange rule.

DPO rewriting often assumes monic span legs

11

combining open networks & rewrite rules

Theorem (C.)

Let T be a topos. There is a bicategory MonicSp(Csp(T)) with

(0-cells) objects of T

(1-cells) cospans in T

(2-cells) monic spans of cospans in T up to isomorphism

θ

The hypothesis are used in the interchange rule.

DPO rewriting often assumes monic span legs

11

combining open networks & rewrite rules

In case monic span legs are too strict...

Theorem (C.)

Let C be a category with finite limits and colimits. There is a

bicategory Sp(Csp(C)) with

(0-cells) objects of C,

(1-cells) cospans in C,

(2-cells) spans of cospans in C,

up to sharing a domain and codomain.

12

combining open networks & rewrite rules

In case monic span legs are too strict...

Theorem (C.)

Let C be a category with finite limits and colimits. There is a

bicategory Sp(Csp(C)) with

(0-cells) objects of C,

(1-cells) cospans in C,

(2-cells) spans of cospans in C,

up to sharing a domain and codomain.

12

combining open networks & rewrite rules

Theorem (C. & Courser)

Consider the topos T and the finitely complete and cocomplete

category C to be symmetric monoical via + and 0.

Then the bicategories MonicSp(Csp(T)) and Sp(Csp(C)) are

symmetric monoidal and compact closed (á la Mike Stay).

13

combining open networks & rewrite rules

MonicSp(Csp(T)) and Sp(Csp(C)) are too big!

We need to pare them down

Let’s illustrate this process with the zx-calculus

14

combining open networks & rewrite rules

MonicSp(Csp(T)) and Sp(Csp(C)) are too big!

We need to pare them down

Let’s illustrate this process with the zx-calculus

14

the zx-calculus

15

the zx-calculus – generators

The zx-calculus1 is a syntax used in categorical quantum

mechanics.

It models certain quantum processes

It is generated by the diagrams

α.
.
.

.

.

.m n
β

.

.

.
.
.
.m n

1B Coecke & R Duncan (2011) Interacting quantum observables: categorical

algebra and diagrammatics. New J. Phys., 13 (4), 043016.

16

the zx-calculus – generators

and the relations

α

β

.

.

.

.

.

.

.

.

.

.

.

.

. . .

m

m′

n

n′

=

α+ β

.

.

.
.
.
.

m+m′
n+ n′

=

= =
π...m

π

π

...m

=

=
=

π α −α π

=
α .

.

.
.
.
.m n

α .
.
.

.

.

.m n = =

How can we realize these as

open graph-like structures?

17

the zx-calculus – generators

and the relations

α

β

.

.

.

.

.

.

.

.

.

.

.

.

. . .

m

m′

n

n′

=

α+ β

.

.

.
.
.
.

m+m′
n+ n′

=

= =
π...m

π

π

...m

=

=
=

π α −α π

=
α .

.

.
.
.
.m n

α .
.
.

.

.

.m n = =

How can we realize these as

open graph-like structures?

17

the zx-calculus – coloring the nodes

We want directed graphs with colored nodes. To this end, we

define a graph Szx

α β

α, β ∈ [−π, π)

The generating zx-diagrams are almost graphs over Szx

a b

a, b 7→

a

`1

`m

.

.

.

r1

rn

.

.

.

`k, rk 7→
a 7→ α

a

`1

`m

.

.

.

r1

rn

.

.

.

`k, rk 7→
a 7→ β

a b c

a, c 7→
b 7→

a

a 7→

a b

a, b 7→

a

`1

`m

.

.

.

r1

rn

.

.

.

`k, rk 7→
a 7→ α

a

`1

`m

.

.

.

r1

rn

.

.

.

`k, rk 7→
a 7→ β

a b c

a, c 7→
b 7→

a

a 7→

But these still lack inputs and outputs! 18

the zx-calculus – coloring the nodes

We want directed graphs with colored nodes. To this end, we

define a graph Szx

α β

α, β ∈ [−π, π)

The generating zx-diagrams are almost graphs over Szx

a b

a, b 7→

a

`1

`m

.

.

.

r1

rn

.

.

.

`k, rk 7→
a 7→ α

a

`1

`m

.

.

.

r1

rn

.

.

.

`k, rk 7→
a 7→ β

a b c

a, c 7→
b 7→

a

a 7→

a b

a, b 7→

a

`1

`m

.

.

.

r1

rn

.

.

.

`k, rk 7→
a 7→ α

a

`1

`m

.

.

.

r1

rn

.

.

.

`k, rk 7→
a 7→ β

a b c

a, c 7→
b 7→

a

a 7→

But these still lack inputs and outputs! 18

the zx-calculus – coloring the nodes

We want directed graphs with colored nodes. To this end, we

define a graph Szx

α β

α, β ∈ [−π, π)

The generating zx-diagrams are almost graphs over Szx

a b

a, b 7→

a

`1

`m

.

.

.

r1

rn

.

.

.

`k, rk 7→
a 7→ α

a

`1

`m

.

.

.

r1

rn

.

.

.

`k, rk 7→
a 7→ β

a b c

a, c 7→
b 7→

a

a 7→

a b

a, b 7→

a

`1

`m

.

.

.

r1

rn

.

.

.

`k, rk 7→
a 7→ α

a

`1

`m

.

.

.

r1

rn

.

.

.

`k, rk 7→
a 7→ β

a b c

a, c 7→
b 7→

a

a 7→

But these still lack inputs and outputs! 18

the zx-calculus – constructing inputs and outputs

Define a functor

N : FinSet→ Graph ↓ Szx

by sending a set x to the edgeless graph with node set x equipped

with the map constant over the node of

α β

α, β ∈ [−π, π)

19

the zx-calculus – constructing inputs and outputs

Rewrite is the SMCC sub-bicategory of Sp(Csp(Graph ↓ Szx))

Rewrite conceit

(0-cells) N(x) input/output type

(1-cells) N(x)→ G ← N(y) open graphs over Szx

(2-cells) all DPO rewrite rules

Rewrite is still too big. What is it good for?

– an ambient space in which to generate SMCC bicategories –

To categorify the zx-calculus, we will translate

• zx-diagrams into open graphs over Szx

• relations into DPO rewrite rules

20

the zx-calculus – constructing inputs and outputs

Rewrite is the SMCC sub-bicategory of Sp(Csp(Graph ↓ Szx))

Rewrite conceit

(0-cells) N(x) input/output type

(1-cells) N(x)→ G ← N(y) open graphs over Szx

(2-cells) all DPO rewrite rules

Rewrite is still too big. What is it good for?

– an ambient space in which to generate SMCC bicategories –

To categorify the zx-calculus, we will translate

• zx-diagrams into open graphs over Szx

• relations into DPO rewrite rules

20

the zx-calculus – constructing inputs and outputs

Rewrite is the SMCC sub-bicategory of Sp(Csp(Graph ↓ Szx))

Rewrite conceit

(0-cells) N(x) input/output type

(1-cells) N(x)→ G ← N(y) open graphs over Szx

(2-cells) all DPO rewrite rules

Rewrite is still too big. What is it good for?

– an ambient space in which to generate SMCC bicategories –

To categorify the zx-calculus, we will translate

• zx-diagrams into open graphs over Szx

• relations into DPO rewrite rules

20

the zx-calculus – constructing inputs and outputs

Rewrite is the SMCC sub-bicategory of Sp(Csp(Graph ↓ Szx))

Rewrite conceit

(0-cells) N(x) input/output type

(1-cells) N(x)→ G ← N(y) open graphs over Szx

(2-cells) all DPO rewrite rules

Rewrite is still too big. What is it good for?

– an ambient space in which to generate SMCC bicategories –

To categorify the zx-calculus, we will translate

• zx-diagrams into open graphs over Szx

• relations into DPO rewrite rules

20

the zx-calculus – translating to Rewrite

Translate zx-diagrams into 1-cells of Rewrite

...
... 7→

a1

an

...

a1

an

b1

bm

c
...

...

b1

bm

...
ak 7→
bk 7→
c 7→

over Szx via

etc.

21

the zx-calculus – translating to Rewrite

Translate zx-relations into 2-cells of Rewrite

= 7→

a1

a2

a3

a4

b1

b2

b3

b4

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

a1

a2

a3

a4

b1

b2

b3

b4

a1

a2

a3

a4

b1

b2

b3

b4

c1

over Szx via

ak 7→

bk 7→

ck 7→

etc. 22

the zx-calculus – translating to Rewrite

To force the wire to act like the identity, we add the 2-cell

a b

a b

a b

ab

over Szx via

a 7→

b 7→

These 1-cells and 2-cells generate an SMCC sub-bicategory

zx

of Rewrite.

23

the zx-calculus – translating to Rewrite

To force the wire to act like the identity, we add the 2-cell

a b

a b

a b

ab

over Szx via

a 7→

b 7→

These 1-cells and 2-cells generate an SMCC sub-bicategory

zx

of Rewrite.

23

the zx-calculus – a bicategory

Denote by zx the category with

(objects) N
(morphisms) zx-diagrams modulo zx-relations

Theorem (C.)

Let ||zx|| be the category with

(objects) the 0-cells of zx

(morphisms) the 1-cells of zx up to the 2-cells

Then ||zx|| is equivalent to zx

This equivalence is witnessed by the functor described in the above

translation process.

24

the zx-calculus – a bicategory

Denote by zx the category with

(objects) N
(morphisms) zx-diagrams modulo zx-relations

Theorem (C.)

Let ||zx|| be the category with

(objects) the 0-cells of zx

(morphisms) the 1-cells of zx up to the 2-cells

Then ||zx|| is equivalent to zx

This equivalence is witnessed by the functor described in the above

translation process.

24

the zx-calculus – a bicategory

Denote by zx the category with

(objects) N
(morphisms) zx-diagrams modulo zx-relations

Theorem (C.)

Let ||zx|| be the category with

(objects) the 0-cells of zx

(morphisms) the 1-cells of zx up to the 2-cells

Then ||zx|| is equivalent to zx

This equivalence is witnessed by the functor described in the above

translation process.

24

in conclusion

25

conclusion

The benefits of this framework is...

• this process is sufficiently general to work with other

graphical languages

• it gives a syntax that is bicategorical with symmetric

monoidal and compact closed structure

• it should be straightforward, in concept, to include iterated

rewrites

26

conclusion

The benefits of this framework is...

• this process is sufficiently general to work with other

graphical languages

• it gives a syntax that is bicategorical with symmetric

monoidal and compact closed structure

• it should be straightforward, in concept, to include iterated

rewrites

26

conclusion

The benefits of this framework is...

• this process is sufficiently general to work with other

graphical languages

• it gives a syntax that is bicategorical with symmetric

monoidal and compact closed structure

• it should be straightforward, in concept, to include iterated

rewrites

26

thank you

27

