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motivation

a question

IS THERE A GENERAL FRAMEWORK FOR SYSTEMS COMPRISED OF

OPEN NETWORKS AND REWRITING?

Loosely, by open network we mean a graphical language with
inputs and outputs



goals

Today, we will

construct such a bicategorical framework
— and —

illustrate its use on the zx-calculus
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modeling open networks

Open networks can be modeled with cospans, eg
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In general, for a network G with inputs X and outputs Y

X—=>G+Y



modeling open networks

Compatible open networks can be connected, e.g.
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Compatible open networks can be connected, e.g.
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This is made precise with pushouts:

X=GC«Y)(Yo>H+2)=(X—>G+yH<+ 2)
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modeling open networks

Compatible open networks can be connected, e.g.
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This is made precise with pushouts:
X=GC«Y)(Yo>H+2)=(X—>G+yH<+ 2)
This induces a category with

(objects) input and output types
(morphisms) open networks possibly modulo relations.

CAN WE CATEGORIFY THIS WITH RELATIONS AS 2-CELLS?
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Using graph-like structures, we give relations by rewrite rules.
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modeling rewrite rules

Using graph-like structures, we give relations by rewrite rules.
In particular, we use double pushout rewriting where a rule
L~ R

is given by a span
L+~ K—R

So what we want is
rewrite rules (spans) between open networks (cospans).

Thus spans of cospans:
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The components we are working with are

e inputs and outputs
e open networks, i.e. cospans between inputs and outputs
e rewrites of open networks, i.e. spans of cospans
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combining open networks & rewrite rules

The components we are working with are

e inputs and outputs

e open networks, i.e. cospans between inputs and outputs
e rewrites of open networks, i.e. spans of cospans

DID WE JUST DESCRIBE A BICATEGORY?
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combining open networks & rewrite rules

Theorem (C.)
Let T be a topos. There is a bicategory MonicSp(Csp(T)) with

(0-cells) objects of T
(1-cells) cospans in T

(2-cells) monic spans of cospans in T up to isomorphism
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Theorem (C.)
Let T be a topos. There is a bicategory MonicSp(Csp(T)) with
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(2-cells) monic spans of cospans in T up to isomorphism

The hypothesis are used in the interchange rule.
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combining open networks & rewrite rules

Theorem (C.)
Let T be a topos. There is a bicategory MonicSp(Csp(T)) with

(0-cells) objects of T
(1-cells) cospans in T

(2-cells) monic spans of cospans in T up to isomorphism

The hypothesis are used in the interchange rule.

(_%/
b
V /
% DPO rewriting often assumes monic span legs
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combining open networks & rewrite rules

In case monic span legs are too strict...
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combining open networks & rewrite rules

In case monic span legs are too strict...

Theorem (C.)
Let C be a category with finite limits and colimits. There is a

bicategory Sp(Csp(C)) with
(0-cells) objects of C,
(1-cells) cospans in C,
(2-cells) spans of cospans in C,
up to sharing a domain and codomain.
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combining open networks & rewrite rules

Theorem (C. & Courser)

Consider the topos T and the finitely complete and cocomplete
category C to be symmetric monoical via + and 0.

Then the bicategories MonicSp(Csp(T)) and Sp(Csp(C)) are
symmetric monoidal and compact closed (4 la Mike Stay).
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combining open networks & rewrite rules

MonicSp(Csp(T)) and Sp(Csp(C)) are too big!

We need to pare them down
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combining open networks & rewrite rules

MonicSp(Csp(T)) and Sp(Csp(C)) are too big!
We need to pare them down

Let's illustrate this process with the zx-calculus
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the zx-calculus
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the zx-calculus — generators

The zx-calculus® is a syntax used in categorical quantum
mechanics.

It models certain quantum processes

It is generated by the diagrams

— [ D) o e

!B Coecke & R Duncan (2011) Interacting quantum observables: categorical
algebra and diagrammatics. New J. Phys., 13 (4), 043016.
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the zx-calculus — generators

and the relations

{(DIC b= LRGP *e-0 oe-o
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the zx-calculus — generators

and the relations

AP TMCETE ee-0 ee-e

How CAN WE REALIZE THESE AS

OPEN GRAPH-LIKE STRUCTURES?
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the zx-calculus — coloring the nodes

We want directed graphs with colored nodes. To this end, we
define a graph S,«

a,B € [-m,m)
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the zx-calculus — coloring the nodes

We want directed graphs with colored nodes. To this end, we
define a graph S,«

a,B € [-m,m)

The generating zx-diagrams are almost graphs over S,,
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the zx-calculus — coloring the nodes

We want directed graphs with colored nodes. To this end, we
define a graph S,«

a,B € [-m,m)

The generating zx-diagrams are almost graphs over S,,

O—0 OOOOL O

{ac»—)o {a—~ @
b— 0O

But these still lack inputs and outputs! 18



the zx-calculus — constructing inputs and outputs

Define a functor
N: FinSet — Graph | S,,

by sending a set x to the edgeless graph with node set x equipped
with the map constant over the node O of

o, B € [-m,m)
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the zx-calculus — constructing inputs and outputs

Rewrite is the SMCC sub-bicategory of Sp(Csp(Graph | S.))
Rewrite conceit

(0-cells) N(x) input/output type
(1-cells) | N(x) — G < N(y) | open graphs over S,

(2-cells) Zjl all DPO rewrite rules
L7
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the zx-calculus — constructing inputs and outputs

Rewrite is the SMCC sub-bicategory of Sp(Csp(Graph | S.))
Rewrite conceit

(0-cells) N(x) input/output type
(1-cells) | N(x) — G < N(y) | open graphs over S,

(2-cells) Zjl all DPO rewrite rules
L7

Rewrite is still too big. WHAT IS IT GOOD FOR?

— an ambient space in which to generate SMCC bicategories —
To categorify the zx-calculus, we will translate

e zx-diagrams into open graphs over S,
e relations into DPO rewrite rules
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the zx-calculus — translating to Rewrite

Translate zx-diagrams into 1-cells of Rewrite

over S,, via
ak — 0O
b — O

c—Q

etc.
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the zx-calculus — translating to Rewrite

Translate zx-relations into 2-cells of Rewrite
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the zx-calculus — translating to Rewrite

To force the wire to act like the identity, we add the 2-cell

s
m

over S,, via

a+— O

b— O
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the zx-calculus — translating to Rewrite

To force the wire to act like the identity, we add the 2-cell

s
m

over S,, via

a+— O

b— O

These 1-cells and 2-cells generate an SMCC sub-bicategory

of Rewrite.
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the zx-calculus — a bicategory

Denote by zx the category with
(objects) N
(morphisms)  zx-diagrams modulo zx-relations
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(objects) the 0-cells of zx
(morphisms)  the 1-cells of zx up to the 2-cells

Then ||zx|| is equivalent to zx
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the zx-calculus — a bicategory

Denote by zx the category with
(objects) N
(morphisms)  zx-diagrams modulo zx-relations

Theorem (C.)
Let ||zx|| be the category with

(objects) the 0-cells of zx
(morphisms)  the 1-cells of zx up to the 2-cells

Then ||zx|| is equivalent to zx

This equivalence is witnessed by the functor described in the above
translation process.
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in conclusion
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conclusion

The benefits of this framework is...

e this process is sufficiently general to work with other
graphical languages

26



conclusion

The benefits of this framework is...

e this process is sufficiently general to work with other
graphical languages

e it gives a syntax that is bicategorical with symmetric
monoidal and compact closed structure
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conclusion

The benefits of this framework is...

e this process is sufficiently general to work with other
graphical languages

e it gives a syntax that is bicategorical with symmetric
monoidal and compact closed structure

e it should be straightforward, in concept, to include iterated
rewrites
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thank you
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