A relative monotone-light factorization system for internal groupoids

Alan Cigoli

INdAM cofund Marie Curie fellow Université catholique de Louvain

(joint work with T. Everaert and M. Gran)

International Category Theory Conference Vancouver, July 20, 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の�?

Aim of the talk

Let \mathcal{C} be an exact category.

Let \mathcal{C} be an exact category.

$$\mathbf{Gpd}(\mathcal{C}) \xrightarrow[D]{\pi_0} \mathcal{C}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへで

Let \mathcal{C} be an exact category.

$$\mathbf{Gpd}(\mathcal{C}) \xrightarrow[D]{\pi_0}{\mathcal{L}} \mathcal{C}$$

there exists an internal comprehensive factorization system in Gpd(C) (final functors, discrete fibrations)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

$[\mathrm{Bourn~'87}]$

Let \mathcal{C} be an exact category.

$$\mathbf{Gpd}(\mathcal{C}) \xrightarrow[D]{\pi_0} \mathcal{C}$$

there exists an internal comprehensive factorization system in $\mathbf{Gpd}(\mathcal{C})$

(final functors, discrete fibrations)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の�?

Aim: clarify connections between the two, with a special attention to the Mal'tsev case.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ のへの

An internal groupoid $\mathbb X$ in $\mathcal C$ is a diagram

$$X_1 \times_{(d,c)} X_1 \xrightarrow[pr_1]{pr_1} X_1 \xrightarrow[c]{i} d \xrightarrow[c]{d} X_0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

An internal groupoid $\mathbb X$ in $\mathcal C$ is a diagram

$$X_1 \times_{(d,c)} X_1 \xrightarrow[pr_1]{pr_2} X_1 \xrightarrow[c]{i} d \xrightarrow[c]{d} X_0$$

A functor $F: \mathbb{X} \to \mathbb{Y}$ between internal groupoids is given by a pair of morphisms (f_0, f_1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の�?

An internal groupoid $\mathbb X$ in $\mathcal C$ is a diagram

$$X_1 \times_{(d,c)} X_1 \xrightarrow[pr_1]{pr_2} X_1 \xrightarrow[c]{i} d \\ \xrightarrow{d} X_1 \xrightarrow{d} X_0$$

A functor $F: \mathbb{X} \to \mathbb{Y}$ between internal groupoids is given by a pair of morphisms (f_0, f_1)

A functor between internal groupoids is called a *discrete* fibration when the square $cf_1 = f_0c$ is a pullback.

An internal groupoid $\mathbb X$ in $\mathcal C$ is a diagram

$$X_1 \times_{(d,c)} X_1 \xrightarrow[pr_1]{pr_2} X_1 \xrightarrow[c]{i} d \\ \xrightarrow{d} X_1 \xrightarrow{d} X_0$$

A functor $F: \mathbb{X} \to \mathbb{Y}$ between internal groupoids is given by a pair of morphisms (f_0, f_1)

A functor between internal groupoids is called a *discrete* fibration when the square $cf_1 = f_0c$ is a pullback.

$$\pi_0(\mathbb{X}) = \operatorname{Coeq}(d, c)$$

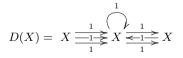
An internal groupoid $\mathbb X$ in $\mathcal C$ is a diagram

$$X_1 \times_{(d,c)} X_1 \xrightarrow[pr_1]{pr_2} X_1 \xrightarrow[d]{d} X_1$$

A functor $F: \mathbb{X} \to \mathbb{Y}$ between internal groupoids is given by a pair of morphisms (f_0, f_1)

A functor between internal groupoids is called a *discrete* fibration when the square $cf_1 = f_0c$ is a pullback.

$$\pi_0(\mathbb{X}) = \operatorname{Coeq}(d, c)$$



・ロット (四・ (川・ (日・ (日・)))

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ の�?

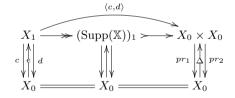
The adjunction $\pi_0 \dashv D$ can be seen as a composite

$$\mathbf{Gpd}(\mathcal{C}) \xrightarrow[]{\text{Supp}}_{\swarrow \underline{\perp}} \mathbf{Eq}(\mathcal{C}) \xrightarrow[]{Q}_{\swarrow \underline{\perp}} \mathcal{C}$$

The adjunction $\pi_0 \dashv D$ can be seen as a composite

$$\mathbf{Gpd}(\mathcal{C}) \xrightarrow[]{\text{Supp}}_{\swarrow \underline{\perp}} \mathbf{Eq}(\mathcal{C}) \xrightarrow[]{Q}_{\swarrow \underline{\perp}} \mathcal{C}$$

Supp is defined via the following factorization



◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

 $\mathcal{B} \xrightarrow{I \atop \leftarrow H} \mathcal{X}$

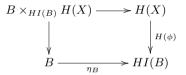
$$\mathcal{B} \xrightarrow{I \atop \leftarrow H} \mathcal{X}$$

1. \mathcal{B} finitely complete

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

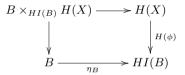
- 1. \mathcal{B} finitely complete
- 2. H fully faithful

- 1. \mathcal{B} finitely complete
- 2. H fully faithful
- 3. The reflector I preserves pullbacks of the form



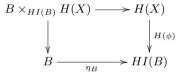
▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 _ のくぐ

- 1. ${\cal B}$ finitely complete
- 2. H fully faithful
- 3. The reflector I preserves pullbacks of the form



[Cassidy, Hébert, Kelly '85] Reflections satisfying 3. are called *semi-left-exact*.

- 1. ${\mathcal B}$ finitely complete
- 2. H fully faithful
- 3. The reflector I preserves pullbacks of the form



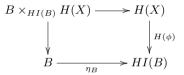
▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のなべ

[Cassidy, Hébert, Kelly '85] Reflections satisfying 3. are called *semi-left-exact*.

These are also called

- semi-localization [Mantovani '98]
- ▶ fibered reflection (i.e. pseudo-fibration) [Bourn '87]
- ▶ (absolutely) admissible in the sense of categorical Galois Theory [Janelidze '90]

- 1. ${\mathcal B}$ finitely complete
- 2. H fully faithful
- 3. The reflector I preserves pullbacks of the form



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の�?

[Cassidy, Hébert, Kelly '85] Reflections satisfying 3. are called *semi-left-exact*. These are also called

- semi-localization [Mantovani '98]
- ▶ fibered reflection (i.e. pseudo-fibration) [Bourn '87]
- ▶ (absolutely) admissible in the sense of categorical Galois Theory [Janelidze '90]

Under the conditions above, the reflection induces a factorization system $(\mathcal{E}, \mathcal{M})$ on \mathcal{B}

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ のへの

 \mathcal{E} is the class of morphisms e such that I(e) iso.

I-invertible

 \mathcal{E} is the class of morphisms e such that I(e) iso.

I-invertible

 $\mathcal M$ is the class of morphisms m such that the following is a pullback

$$\begin{array}{c|c} A \xrightarrow{\eta_A} HI(A) \\ m \\ \downarrow & \downarrow \\ B \xrightarrow{\eta_B} HI(B) \end{array}$$

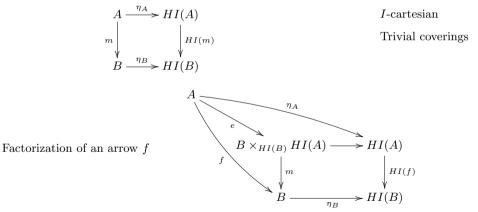
I-cartesian Trivial coverings

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへで

 \mathcal{E} is the class of morphisms e such that I(e) iso.

I-invertible

 ${\mathcal M}$ is the class of morphisms m such that the following is a pullback



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Monotone-light factorization systems

Monotone-light factorization systems

[Carboni, Janelidze, Kelly, Paré '97] Monotone-light factorization system.

 \mathcal{E}' is the class of morphisms whose pullbacks are always in \mathcal{E} Stably in \mathcal{E}

 \mathcal{E}' is the class of morphisms whose pullbacks are always in \mathcal{E} Stably in \mathcal{E}

 \mathcal{M}^* is the class of morphisms f for which there exists some effective descent morphism p such that $p^*(f)$ is in \mathcal{M}

$$\begin{array}{c|c} E \times_B A & \xrightarrow{pr_2} A \\ & & p^*(f) \\ & & & \downarrow f \\ & & E & \xrightarrow{p} & B \end{array}$$

Locally in \mathcal{M} Coverings

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の�?

 \mathcal{E}' is the class of morphisms whose pullbacks are always in \mathcal{E} Stably in \mathcal{E}

 \mathcal{M}^* is the class of morphisms f for which there exists some effective descent morphism p such that $p^*(f)$ is in \mathcal{M}

$$\begin{array}{c|c} E \times_B A & \xrightarrow{pr_2} A & \text{Locally in } \mathcal{M} \\ p^*(f) & \downarrow & \downarrow f \\ E & \xrightarrow{p} B \end{array}$$

т

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の�?

It is always true that $\mathcal{E}' \subseteq (\mathcal{M}^*)^{\uparrow}$, and in some cases the pair $(\mathcal{E}', \mathcal{M}^*)$ is a factorization system.

 \mathcal{E}' is the class of morphisms whose pullbacks are always in \mathcal{E} Stably in \mathcal{E}

 \mathcal{M}^* is the class of morphisms f for which there exists some effective descent morphism p such that $p^*(f)$ is in \mathcal{M}

 $\begin{array}{c|c} E \times_B A \xrightarrow{pr_2} A & \text{Locally in } \mathcal{M} \\ p^*(f) & & & \\ F \xrightarrow{p} B \end{array}$

It is always true that $\mathcal{E}' \subseteq (\mathcal{M}^*)^{\uparrow}$, and in some cases the pair $(\mathcal{E}', \mathcal{M}^*)$ is a factorization system.

Examples: [Everaert, Gran '13]

The case of π_0

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ の�?

What happens in the case of $\pi_0: \mathbf{Gpd}(\mathcal{C}) \to \mathcal{C}$?

What happens in the case of $\pi_0: \mathbf{Gpd}(\mathcal{C}) \to \mathcal{C}$?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへで

 \mathcal{E} is the class of internal functors F such that $\pi_0(F)$ is an iso.

What happens in the case of $\pi_0: \mathbf{Gpd}(\mathcal{C}) \to \mathcal{C}$?

 \mathcal{E} is the class of internal functors F such that $\pi_0(F)$ is an iso.

 \mathcal{M} is the class of internal functors F such that both F and Supp(F) are discrete fibrations.

What happens in the case of $\pi_0: \mathbf{Gpd}(\mathcal{C}) \to \mathcal{C}$?

 \mathcal{E} is the class of internal functors F such that $\pi_0(F)$ is an iso.

 \mathcal{M} is the class of internal functors F such that both F and $\mathrm{Supp}(F)$ are discrete fibrations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

 \mathcal{M}^* is the class of internal discrete fibrations.

What happens in the case of $\pi_0: \mathbf{Gpd}(\mathcal{C}) \to \mathcal{C}$?

 \mathcal{E} is the class of internal functors F such that $\pi_0(F)$ is an iso.

 \mathcal{E}' is the class of internal functors F whose pullbacks are always inverted by π_0 .

 \mathcal{M} is the class of internal functors F such that both F and Supp(F) are discrete fibrations.

 \mathcal{M}^* is the class of internal discrete fibrations.

What happens in the case of $\pi_0: \mathbf{Gpd}(\mathcal{C}) \to \mathcal{C}$?

 \mathcal{E} is the class of internal functors F such that $\pi_0(F)$ is an iso.

 \mathcal{E}' is the class of internal functors F whose pullbacks are always inverted by π_0 .

 \mathcal{M} is the class of internal functors F such that both F and $\operatorname{Supp}(F)$ are discrete fibrations.

 \mathcal{M}^* is the class of internal discrete fibrations.

If we want $(\mathcal{E}', \mathcal{M}^*)$ to be a factorization system, \mathcal{E}' must coincide with the class of internal final functors. But it doesn't.

What happens in the case of $\pi_0: \mathbf{Gpd}(\mathcal{C}) \to \mathcal{C}$?

 \mathcal{E} is the class of internal functors F such that $\pi_0(F)$ is an iso.

 \mathcal{E}' is the class of internal functors F whose pullbacks are always inverted by π_0 .

 \mathcal{M} is the class of internal functors F such that both F and $\operatorname{Supp}(F)$ are discrete fibrations.

 \mathcal{M}^* is the class of internal discrete fibrations.

If we want $(\mathcal{E}', \mathcal{M}^*)$ to be a factorization system, \mathcal{E}' must coincide with the class of internal final functors. But it doesn't.

Proposition ([Cigoli, Mantovani, Metere '14])

A functor F between internal groupoids in a semi-abelian category is final if and only if $\pi_0(F)$ is an iso and $\pi_1(F)$ is a regular epi. What happens in the case of $\pi_0: \mathbf{Gpd}(\mathcal{C}) \to \mathcal{C}$?

 \mathcal{E} is the class of internal functors F such that $\pi_0(F)$ is an iso.

 \mathcal{E}' is the class of internal functors F whose pullbacks are always inverted by π_0 .

 \mathcal{M} is the class of internal functors F such that both F and $\operatorname{Supp}(F)$ are discrete fibrations.

 \mathcal{M}^* is the class of internal discrete fibrations.

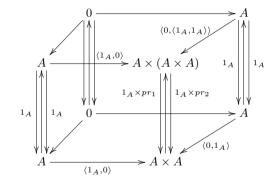
If we want $(\mathcal{E}', \mathcal{M}^*)$ to be a factorization system, \mathcal{E}' must coincide with the class of internal final functors. But it doesn't.

Proposition ([Cigoli, Mantovani, Metere '14])

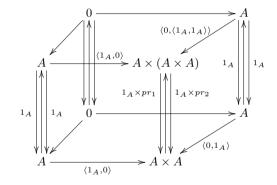
A functor F between internal groupoids in a semi-abelian category is final if and only if $\pi_0(F)$ is an iso and $\pi_1(F)$ is a regular epi.

 $\pi_1(\mathbb{X}) = \operatorname{Ker}(\langle d, c \rangle \colon X_1 \to X_0 \times X_0)$

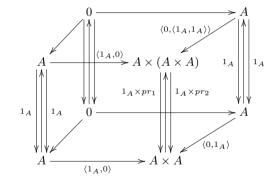
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ の�?



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへで



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへで



 π_1 's are trivial

Applying π_0 we have

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Let \mathcal{F} be a class of arrows in \mathcal{B} containing identities, closed under composition and pullback stable.

Let \mathcal{F} be a class of arrows in \mathcal{B} containing identities, closed under composition and pullback stable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の�?

$$\mathcal{B} \xrightarrow{I \atop \leftarrow H} \mathcal{X}$$

is said to be admissible w.r.t. \mathcal{F} if I preserves pullbacks of the form

Let \mathcal{F} be a class of arrows in \mathcal{B} containing identities, closed under composition and pullback stable.

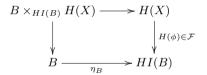
$$\mathcal{B} \xrightarrow[H]{I \\ \swarrow} \mathcal{X}$$

is said to be admissible w.r.t. ${\mathcal F}$ if I preserves pullbacks of the form

Let \mathcal{F} be a class of arrows in \mathcal{B} containing identities, closed under composition and pullback stable.

 $\mathcal{B} \xrightarrow{I \atop \leftarrow H} \mathcal{X}$

is said to be admissible w.r.t. ${\mathcal F}$ if I preserves pullbacks of the form

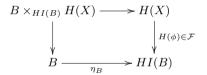


One can define \mathcal{M} and \mathcal{M}^* as in the absolute case, with the additional requirement that they are contained in \mathcal{F} .

Let \mathcal{F} be a class of arrows in \mathcal{B} containing identities, closed under composition and pullback stable.

 $\mathcal{B} \xrightarrow{I \atop \leftarrow H} \mathcal{X}$

is said to be admissible w.r.t. ${\mathcal F}$ if I preserves pullbacks of the form



▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のなべ

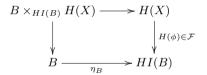
One can define \mathcal{M} and \mathcal{M}^* as in the absolute case, with the additional requirement that they are contained in \mathcal{F} .

A relevant case: [Janelidze, Kelly '94]

Let \mathcal{F} be a class of arrows in \mathcal{B} containing identities, closed under composition and pullback stable.

 $\mathcal{B} \xrightarrow{I \atop \leftarrow H} \mathcal{X}$

is said to be admissible w.r.t. ${\mathcal F}$ if I preserves pullbacks of the form



One can define \mathcal{M} and \mathcal{M}^* as in the absolute case, with the additional requirement that they are contained in \mathcal{F} .

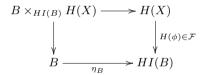
A relevant case: [Janelidze, Kelly '94]

 \mathcal{X} an admissible Birkhoff subcategory of an exact category \mathcal{B} , \mathcal{F} the class of regular epimorphisms (extensions).

Let \mathcal{F} be a class of arrows in \mathcal{B} containing identities, closed under composition and pullback stable.

 $\mathcal{B} \xrightarrow{I \atop \leftarrow H} \mathcal{X}$

is said to be admissible w.r.t. ${\mathcal F}$ if I preserves pullbacks of the form



One can define \mathcal{M} and \mathcal{M}^* as in the absolute case, with the additional requirement that they are contained in \mathcal{F} .

A relevant case: [Janelidze, Kelly '94]

 \mathcal{X} an admissible Birkhoff subcategory of an exact category \mathcal{B} , \mathcal{F} the class of regular epimorphisms (extensions).

 \mathcal{M} = trivial extensions, \mathcal{M}^* = central extensions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

[Chikhladze '04]

[Chikhladze '04]

A factorization system for \mathcal{F} consists of a pair of classes of maps $(\mathcal{E}, \mathcal{M})$ such that:

[Chikhladze '04]

A factorization system for \mathcal{F} consists of a pair of classes of maps $(\mathcal{E}, \mathcal{M})$ such that:

 \blacktriangleright ${\mathcal E}$ and ${\mathcal M}$ both contain identities and are closed under composition with isomorphisms;

[Chikhladze '04]

A factorization system for \mathcal{F} consists of a pair of classes of maps $(\mathcal{E}, \mathcal{M})$ such that:

 \blacktriangleright ${\cal E}$ and ${\cal M}$ both contain identities and are closed under composition with isomorphisms;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の�?

• \mathcal{E} and \mathcal{M} are orthogonal to each other;

[Chikhladze '04]

A factorization system for \mathcal{F} consists of a pair of classes of maps $(\mathcal{E}, \mathcal{M})$ such that:

 \blacktriangleright ${\cal E}$ and ${\cal M}$ both contain identities and are closed under composition with isomorphisms;

- \mathcal{E} and \mathcal{M} are orthogonal to each other;
- \mathcal{M} is contained in \mathcal{F} ;

[Chikhladze '04]

A factorization system for \mathcal{F} consists of a pair of classes of maps $(\mathcal{E}, \mathcal{M})$ such that:

 \blacktriangleright ${\cal E}$ and ${\cal M}$ both contain identities and are closed under composition with isomorphisms;

- \mathcal{E} and \mathcal{M} are orthogonal to each other;
- \mathcal{M} is contained in \mathcal{F} ;
- every arrow f in \mathcal{F} is the composite f = me of an m in \mathcal{M} with an e in \mathcal{E} .

[Chikhladze '04]

A factorization system for \mathcal{F} consists of a pair of classes of maps $(\mathcal{E}, \mathcal{M})$ such that:

 \blacktriangleright ${\mathcal E}$ and ${\mathcal M}$ both contain identities and are closed under composition with isomorphisms;

- \mathcal{E} and \mathcal{M} are orthogonal to each other;
- \mathcal{M} is contained in \mathcal{F} ;
- every arrow f in \mathcal{F} is the composite f = me of an m in \mathcal{M} with an e in \mathcal{E} .

As in the absolute case, if $I \dashv H$ is admissible w.r.t. \mathcal{F}

[Chikhladze '04]

A factorization system for \mathcal{F} consists of a pair of classes of maps $(\mathcal{E}, \mathcal{M})$ such that:

• \mathcal{E} and \mathcal{M} both contain identities and are closed under composition with isomorphisms;

- \mathcal{E} and \mathcal{M} are orthogonal to each other;
- \mathcal{M} is contained in \mathcal{F} ;
- every arrow f in \mathcal{F} is the composite f = me of an m in \mathcal{M} with an e in \mathcal{E} .

As in the absolute case, if $I \dashv H$ is admissible w.r.t. \mathcal{F}

 \mathcal{E} the class of all morphisms in \mathcal{B} inverted by I.

[Chikhladze '04]

A factorization system for \mathcal{F} consists of a pair of classes of maps $(\mathcal{E}, \mathcal{M})$ such that:

- \mathcal{E} and \mathcal{M} both contain identities and are closed under composition with isomorphisms;
- \mathcal{E} and \mathcal{M} are orthogonal to each other;
- \mathcal{M} is contained in \mathcal{F} ;
- every arrow f in \mathcal{F} is the composite f = me of an m in \mathcal{M} with an e in \mathcal{E} .

As in the absolute case, if $I \dashv H$ is admissible w.r.t. \mathcal{F}

 \mathcal{M} the class of morphisms m in \mathcal{F} such that the following is a pullback (trivial coverings)

 \mathcal{E} the class of all morphisms in \mathcal{B} inverted by I.

$$\begin{array}{c|c} A & \xrightarrow{\eta_A} & HI(A) \\ m & & & \downarrow \\ m & & & \downarrow \\ B & \xrightarrow{\eta_B} & HI(B) \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

[Chikhladze '04]

A factorization system for \mathcal{F} consists of a pair of classes of maps $(\mathcal{E}, \mathcal{M})$ such that:

- \mathcal{E} and \mathcal{M} both contain identities and are closed under composition with isomorphisms;
- \mathcal{E} and \mathcal{M} are orthogonal to each other;
- \mathcal{M} is contained in \mathcal{F} ;
- every arrow f in \mathcal{F} is the composite f = me of an m in \mathcal{M} with an e in \mathcal{E} .

As in the absolute case, if $I \dashv H$ is admissible w.r.t. \mathcal{F}

 \mathcal{M} the class of morphisms m in \mathcal{F} such that the following is a pullback (trivial coverings)

 \mathcal{E} the class of all morphisms in \mathcal{B} inverted by I.

 $(\mathcal{E}, \mathcal{M})$ is a factorization system for \mathcal{F} .

$$\begin{array}{c|c} A & \xrightarrow{\eta_A} & HI(A) \\ m & & & \downarrow \\ m & & & \downarrow \\ B & \xrightarrow{\eta_B} & HI(B) \end{array}$$

Relative monotone-light factorization

 \mathcal{E}' the class of morphisms in \mathcal{B} whose pullbacks along arrows in \mathcal{F} are in \mathcal{E} . (stably in \mathcal{E})

 \mathcal{E}' the class of morphisms in \mathcal{B} whose pullbacks along arrows in \mathcal{F} are in \mathcal{E} . (stably in \mathcal{E}) \mathcal{M}^* the class of morphisms m in \mathcal{F} such that $p^*(m)$ is in \mathcal{M} for some effective descent morphism p. (locally in \mathcal{M} , coverings)

 \mathcal{E}' the class of morphisms in \mathcal{B} whose pullbacks along arrows in \mathcal{F} are in \mathcal{E} . (stably in \mathcal{E})

 $(\mathcal{E}', \mathcal{M}^*)$ may also be a factorization system for \mathcal{F} .

 \mathcal{M}^* the class of morphisms m in \mathcal{F} such that $p^*(m)$ is in \mathcal{M} for some effective descent morphism p. (locally in \mathcal{M} , coverings)

Let ${\mathcal C}$ be exact and Mal'tsev.

Let ${\mathcal C}$ be exact and Mal'tsev.

Proposition ([Gran '99]) $\mathbf{Gpd}(\mathcal{C})$ is exact Mal'tsev.

Let ${\mathcal C}$ be exact and Mal'tsev.

Proposition ([Gran '99]) $\mathbf{Gpd}(\mathcal{C})$ is exact Mal'tsev.

Regular epimorphisms (extensions) in $\mathbf{Gpd}(\mathcal{C})$ coincide with levelwise regular epimorphisms.

Let ${\mathcal C}$ be exact and Mal'tsev.

Proposition ([Gran '99]) $\mathbf{Gpd}(\mathcal{C})$ is exact Mal'tsev.

Regular epimorphisms (extensions) in $\mathbf{Gpd}(\mathcal{C})$ coincide with levelwise regular epimorphisms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の�?

[Gran '01]

Let ${\mathcal C}$ be exact and Mal'tsev.

Proposition ([Gran '99]) $\mathbf{Gpd}(\mathcal{C})$ is exact Mal'tsev.

Regular epimorphisms (extensions) in $\mathbf{Gpd}(\mathcal{C})$ coincide with levelwise regular epimorphisms.

[Gran '01]

 ${\mathcal C}$ is an admissible Birkhoff subcategory of ${\bf Gpd}({\mathcal C})$:

$$\mathbf{Gpd}(\mathcal{C}) \xrightarrow[D]{\pi_0} \mathcal{C}$$

Let ${\mathcal C}$ be exact and Mal'tsev.

Proposition ([Gran '99]) $\mathbf{Gpd}(\mathcal{C})$ is exact Mal'tsev.

Regular epimorphisms (extensions) in $\mathbf{Gpd}(\mathcal{C})$ coincide with levelwise regular epimorphisms.

[Gran '01]

 ${\mathcal C}$ is an admissible Birkhoff subcategory of ${\bf Gpd}({\mathcal C})$:

$$\mathbf{Gpd}(\mathcal{C}) \xrightarrow[D]{\pi_0} \mathcal{C}$$

・ロト ・雪ト ・ヨト ・ヨト ・ヨ

Proposition ([Gran '01])

A regular epimorphism F in $\mathbf{Gpd}(\mathcal{C})$ is

- a trivial extension if and only if both F and Supp(F) are discrete fibrations;
- ▶ a central extension if and only if it is a discrete fibration.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

 $(\mathcal{E}, \mathcal{M}) = (\pi_0$ -invertible, trivial extensions) form a factorization system for regular epimorphisms in $\mathbf{Gpd}(\mathcal{C})$

 $(\mathcal{E}, \mathcal{M}) = (\pi_0$ -invertible, trivial extensions) form a factorization system for regular epimorphisms in $\mathbf{Gpd}(\mathcal{C})$

What about $(\mathcal{E}', \mathcal{M}^*)$?

 $(\mathcal{E}, \mathcal{M}) = (\pi_0$ -invertible, trivial extensions) form a factorization system for regular epimorphisms in $\mathbf{Gpd}(\mathcal{C})$

What about $(\mathcal{E}', \mathcal{M}^*)$?

Proposition

Final functors between internal groupoids in C are stable under pullback along regular epimorphisms. Equivalently, the pair

(final functors, reg. epic discrete fibrations)

is a factorization system for regular epimorphisms in $\mathbf{Gpd}(\mathcal{C})$.

References

- D. BOURN, The shift functor and the comprehensive factorization for internal groupoids, Cah. Topol. Géom. Differ. Catég. 28 (1987) 197-226.
- A. CARBONI, G. JANELIDZE, G. M. KELLY AND R. PARÉ, On localization and stabilization of factorization systems, *Appl. Categ. Struct.* 5 (1997) 1–58.
- C. CASSIDY, M. HÉBERT AND G. M. KELLY, Reflective subcategories, localizations and factorizations systems, J. Austral. Math. Soc. 38 (1985) 287-329.
- D. CHIKHLADZE, Monotone-light factorization for Kan fibrations of simplicial sets with respect to groupoids, *Homol. Homot. Appl.* 6 (2004) 501–505.
- A. S. CIGOLI, S. MANTOVANI AND G. METERE, A push forward construction and the comprehensive factorization for internal crossed modules, *Appl. Categ. Structures* **22** (2014) 931–960.
 - T. EVERAERT AND M. GRAN, Monotone-light factorisation systems and torsion theories, Bull. Sci. Math. 137 (2013) 996-1006.
 - M. GRAN, Internal categories in Mal'cev categories, J. Pure Appl. Algebra 143 (1999) 221-229.
 - M. GRAN, Central extensions and internal groupoids in Maltsev categories, J. Pure Appl. Algebra 155 (2001) 139-166.
- G. JANELIDZE, Pure Galois Theory in categories, J. Algebra 132 (1990) 270–286.
- G. JANELIDZE AND G. M. KELLY, Galois theory and a general notion of central extension, J. Pure Appl. Algebra 97 (1994) 135-161.
- S. MANTOVANI, Semilocalizations of exact and leftextensive categories, Cah. Topol. Géom. Differ. Catég. 39 (1998) 27-44.