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Aim of the talk

[Bourn ’87]

Let C be an exact category.

Gpd(C)
π0 //
⊥ C
D
oo

there exists an internal comprehensive
factorization system in Gpd(C)

(final functors, discrete fibrations)

Aim: clarify connections between the two, with a special attention to the Mal’tsev case.
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Internal groupoids

An internal groupoid X in C is a diagram

X1 ×(d,c) X1

pr2 //
pr1
//m // X1

d //
c
//

i

��
X0eoo

A functor F : X→ Y between internal groupoids is given by a
pair of morphisms (f0, f1)

X1
f1 //

d

��
c

��

Y1

d

��
c

��
X0

f0

//

e

OO

Y0

e

OO

A functor between internal groupoids is called a discrete
fibration when the square cf1 = f0c is a pullback.

π0(X) = Coeq(d, c)
D(X) = X

1 //

1
//1 // X

1 //

1
//

1

��
X1oo
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[Bourn ’87]

The adjunction π0 a D can be seen as a composite

Gpd(C)
Supp //
⊥ Eq(C)

Q //

U
oo ⊥ C

D

oo

Supp is defined via the following factorization

X1

d

��
c

��

〈c,d〉

))
// // (Supp(X))1

// //

����

X0 ×X0

pr2

��
pr1

��
X0

e

OO

X0

OO

X0

∆

OO
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Semi-left-exact reflections

B
I //
⊥ X
H
oo

1. B finitely complete

2. H fully faithful

3. The reflector I preserves pullbacks of the form

B ×HI(B) H(X) //

��

H(X)

H(φ)

��
B

ηB
// HI(B)

[Cassidy, Hébert, Kelly ’85] Reflections satisfying 3. are called semi-left-exact.

These are also called

I semi-localization [Mantovani ’98]

I fibered reflection (i.e. pseudo-fibration) [Bourn ’87]

I (absolutely) admissible in the sense of categorical Galois Theory [Janelidze ’90]

Under the conditions above, the reflection induces a factorization system (E ,M) on B
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Reflective factorization systems

E is the class of morphisms e such that I(e) iso. I-invertible

M is the class of morphisms m such that the following is a
pullback

A

m

��

ηA // HI(A)

HI(m)

��
B

ηB // HI(B)

I-cartesian

Trivial coverings

Factorization of an arrow f

A

e
&&

ηA

))

f

$$

B ×HI(B) HI(A) //

m

��

HI(A)

HI(f)

��
B

ηB
// HI(B)
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Monotone-light factorization systems

[Carboni, Janelidze, Kelly, Paré ’97] Monotone-light factorization system.

E ′ is the class of morphisms whose pullbacks are always in E Stably in E

M∗ is the class of morphisms f for which there exists some
effective descent morphism p such that p∗(f) is in M

E ×B A

p∗(f)

��

pr2 // A

f

��
E

p // B

Locally in M

Coverings

It is always true that E ′ ⊆ (M∗)↑, and in some cases the pair (E ′,M∗) is a factorization system.

Examples: [Everaert, Gran ’13]
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The case of π0

What happens in the case of π0 : Gpd(C)→ C ?

E is the class of internal functors F such
that π0(F ) is an iso.

M is the class of internal functors F such
that both F and Supp(F ) are discrete
fibrations.

E ′ is the class of internal functors F whose
pullbacks are always inverted by π0.

M∗ is the class of internal discrete
fibrations.

If we want (E ′,M∗) to be a factorization system, E ′ must coincide with the class of internal final
functors. But it doesn’t.

Proposition ([Cigoli, Mantovani, Metere ’14])

A functor F between internal groupoids in a semi-abelian category is final if and only if π0(F ) is
an iso and π1(F ) is a regular epi.

π1(X) = Ker(〈d, c〉 : X1 → X0 ×X0)
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The relative perspective

Let F be a class of arrows in B containing identities, closed under composition and pullback stable.

B
I //
⊥ X
H
oo

is said to be admissible w.r.t. F if I
preserves pullbacks of the form

B ×HI(B) H(X) //

��

H(X)

H(φ)∈F

��
B

ηB
// HI(B)

One can define M and M∗ as in the absolute case, with the additional requirement that they are
contained in F .

A relevant case: [Janelidze, Kelly ’94]

X an admissible Birkhoff subcategory of an exact category B,
F the class of regular epimorphisms (extensions).

M = trivial extensions, M∗ = central extensions.
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Relative factorization systems

[Chikhladze ’04]

A factorization system for F consists of a pair of classes of maps (E ,M) such that:

I E and M both contain identities and are closed under composition with isomorphisms;

I E and M are orthogonal to each other;

I M is contained in F ;

I every arrow f in F is the composite f = me of an m in M with an e in E .

As in the absolute case, if I a H is admissible w.r.t. F

E the class of all morphisms in B
inverted by I.

M the class of morphisms m in F such that the
following is a pullback (trivial coverings)

A

m

��

ηA // HI(A)

HI(m)

��
B

ηB // HI(B)

(E ,M) is a factorization system for F .
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Relative monotone-light factorization

E ′ the class of morphisms in B whose
pullbacks along arrows in F are in E .

(stably in E)

M∗ the class of morphisms m in F such
that p∗(m) is in M for some effective
descent morphism p.

(locally in M, coverings)

(E ′,M∗) may also be a factorization system for F .
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Internal groupoids in Mal’tsev

Let C be exact and Mal’tsev.

Proposition ([Gran ’99])

Gpd(C) is exact Mal’tsev.

Regular epimorphisms (extensions) in Gpd(C) coincide with levelwise regular epimorphisms.

[Gran ’01]

C is an admissible Birkhoff subcategory of Gpd(C):

Gpd(C)
π0 //
⊥ C
D
oo

Proposition ([Gran ’01])

A regular epimorphism F in Gpd(C) is

I a trivial extension if and only if both F and Supp(F ) are discrete fibrations;

I a central extension if and only if it is a discrete fibration.
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(E ,M) = (π0-invertible, trivial extensions) form a factorization system for regular epimorphisms
in Gpd(C)

What about (E ′,M∗) ?

Proposition

Final functors between internal groupoids in C are stable under pullback along regular
epimorphisms. Equivalently, the pair

(final functors, reg. epic discrete fibrations)

is a factorization system for regular epimorphisms in Gpd(C).
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