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Flat functors Starting point for the 2-categorical case Flat 2-functors

Flat functors and main theorem

Definition

A
P−→ Set is flat if its left Kan extension

along the Yoneda embedding is left exact
(preserves finite limits).

A

P

��

h // Hom(Aop, Set)

P∗

||

ηP=⇒

Set

Theorem∗

For A
P−→ Set, the following are equivalent:

1 The category of elements ElP of P is cofiltered.

2 P is a filtered colimit of representable functors.

3 P is flat.

∗ [ML,M] Sheaves in Geometry and Logic: a First Introduction to Topos Theory,
1992.
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Idea of the proof
1 ElP is cofiltered.

2 P is a filtered colimit of representable functors.

3 P is flat.

1 ⇒ 2: P = lim−→
ElopP

A(a,−)
(
=
∫ a

Pa×A(a,−)
)
.

2 ⇒ 3: Representable functors are flat.
+

Filtered colimit of flat is flat (since filtered colimits
commute with finite limits).

3⇒ 1: C
F→ D left exact and C has finite limits⇒ ElF cofiltered.

+
ElP∗ cofiltered ⇒ ElP cofiltered.
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Flatness for V-enriched functors

A notion of flatness for V-enriched functors was already considered by
Kelly∗.

V = Cat gives us a notion of flatness for 2-functors.

There is no known generalization of the main theorem with this
notion of flatness.

∗[K] Structures defined by finite limits in the enriched context, I, 1982.
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Expressions for A P−→ Cat

There was no known expression
of P as a (conical) colimit of

representable functors.

P ≈ p
∫ A

PA×A(A,−).

Key Fact

This pseudo-coend can be expressed as a special kind of (conical)
colimit over the 2-category of elements ElP associated to P .
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Diamonds vs cones (dimension 1)
A

P−→ Set, Aop
F−→ Set.

Dicones for A×Aop P×F−−−→ Set: Cones for ElopP
♦opP−→ Aop

F−→ Set:

Pa× Fa
θa

$$
Pa× Fb ≡

id×Ff
88

Pf×id
&&

Z

Pb× Fb
θb

::

Fa
λ(x,a)

  
≡ Z

Fb

Ff

OO

λ(Pf(x),b)

>>

θa(x, y) = λ(x,a)(y)

As a corollary,
∫ a

Pa× Fa = lim−→
ElopP

Fa.
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Idea of the proof 1 ElP is σ-cofiltered.

2 P is (equivalent to) a σ-filtered σ-colimit of
representable 2-functors.

3 P is flat.

1 ⇒ 2: P = lim−→
ElopP

A(a,−).

2 ⇒ 3: Representable functors are flat.
+

filtered colimit of flat is flat (since filtered colimits
commute with finite limits).

3 ⇒ 1: C
F→ D left exact and C has finite limits
⇒ ElF cofiltered .

+
ElP∗ cofiltered ⇒ ElP cofiltered .

∗[DDS] A construction of certain weak colimits and an exactness property of the
2-category of categories, 2016.
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Thank you!
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