| Flat functors | Starting point for the 2-categorical case | Flat 2-functors |
|---------------|-------------------------------------------|-----------------|
| 00            | 0000                                      | 000             |
|               |                                           |                 |

# On flat 2-functors

María Emilia Descotte $^{1}$ 

University of Buenos Aires

CT 2017 Vancouver, Canada

▲ロト ▲昼下 ▲目下 ▲目下 三目 めんの

<sup>&</sup>lt;sup>1</sup>Joint work with E. Dubuc and M. Szyld

| Flat functors | Starting point for the 2-categorical case | Flat 2-functors |
|---------------|-------------------------------------------|-----------------|
| ••            | 0000                                      | 000             |
|               |                                           |                 |

## Definition

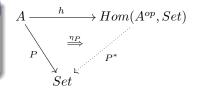
 $A \xrightarrow{P} Set$  is **flat** if its left Kan extension along the Yoneda embedding is left exact (preserves finite limits).



| Flat functors Starting point i | for the 2-categorical case Flat 2-fur | ictors |
|--------------------------------|---------------------------------------|--------|
| ●O 0000                        | 000                                   |        |

## Definition

 $A \xrightarrow{P} Set$  is **flat** if its left Kan extension along the Yoneda embedding is left exact (preserves finite limits).

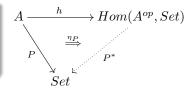


うして ふゆう ふほう ふほう ふしつ

| Flat functors St | tarting point for the 2-categorical case | Flat 2-functors |
|------------------|------------------------------------------|-----------------|
| •0 0             | 000                                      | 000             |

#### Definition

 $A \xrightarrow{P} Set$  is **flat** if its left Kan extension along the Yoneda embedding is left exact (preserves finite limits).



うして ふゆう ふほう ふほう ふしつ

#### Theorem<sup>\*</sup>

For  $A \xrightarrow{P} Set$ , the following are equivalent:

- The category of elements  $El_P$  of P is cofiltered.
- $\bigcirc$  P is a filtered colimit of representable functors.
- $\bigcirc$  P is flat.

 $\ast$  [ML,M] Sheaves in Geometry and Logic: a First Introduction to Topos Theory, 1992.

| Flat functors $\odot \bullet$ | Starting point for the 2-categorical case 0000 | Flat 2-functors<br>000 |
|-------------------------------|------------------------------------------------|------------------------|
| Idea of the proof             |                                                |                        |
|                               | • $El_P$ is cofiltered.                        |                        |
|                               | <b>2</b> $P$ is a filtered colimit of re       | epresentable functors. |
|                               | $\bigcirc$ P is flat.                          |                        |
|                               | $A( ) \left( \int^a D \cdots A( ) \right)$     |                        |

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○◆

• 
$$1 \Rightarrow 2$$
:  $P = \lim_{El_P^{op}} A(a, -) \left(= \int^a Pa \times A(a, -)\right).$ 

| Flat functors $\bigcirc$ | Starting point for the 2-categorical case 0000       | Flat 2-functors<br>000 |
|--------------------------|------------------------------------------------------|------------------------|
| Idea of the proof        |                                                      |                        |
| race of the proof        | • $El_P$ is cofiltered.                              |                        |
|                          | • P is a filtered colimit of representable functors. |                        |
|                          | $\bigcirc$ P is flat.                                |                        |
|                          | • 1 15 1100.                                         |                        |

• 1 
$$\Rightarrow$$
 2:  $P = \varinjlim_{El_P^{op}} A(a, -) \left(= \int^a Pa \times A(a, -)\right).$ 

+

• 2  $\Rightarrow$  3: Representable functors are flat.

Filtered colimit of flat is flat (since filtered colimits commute with finite limits).

| Flat functors $\odot \bullet$ | Starting point for the 2-categorical case<br>0000            | Flat 2-functors<br>000 |
|-------------------------------|--------------------------------------------------------------|------------------------|
| Idea of the proof             |                                                              |                        |
| face of the proof             | • $El_P$ is cofiltered.                                      |                        |
|                               | <b>2</b> $P$ is a filtered colimit of representable functors |                        |
|                               | P  is flat.                                                  |                        |

• 1 
$$\Rightarrow$$
 2:  $P = \varinjlim_{El_P^{op}} A(a, -) \left(= \int^a Pa \times A(a, -)\right).$ 

+ Filtered colimit of flat is flat (since filtered colimits commute with finite limits).

•  $3 \Rightarrow 1: C \xrightarrow{F} D$  left exact and C has finite limits  $\Rightarrow El_F$  cofiltered. +  $El_{P^*}$  cofiltered  $\Rightarrow El_P$  cofiltered.

| Flat functors | Starting point for the 2-categorical case | Flat 2-functors |
|---------------|-------------------------------------------|-----------------|
| 00            | 0000                                      | 000             |
|               |                                           |                 |

## Flatness for $\mathcal{V}$ -enriched functors

A notion of flatness for  $\mathcal V\text{-enriched}$  functors was already considered by Kelly\*.

\*[K] Structures defined by finite limits in the enriched context, I, 1982.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

| Flat functors | Starting point for the 2-categorical case | Flat 2-functors |
|---------------|-------------------------------------------|-----------------|
| 00            | 0000                                      | 000             |
|               |                                           |                 |

## Flatness for $\mathcal{V}$ -enriched functors

A notion of flatness for  $\mathcal V\text{-enriched}$  functors was already considered by Kelly\*.

 $\mathcal{V} = \mathcal{C}at$  gives us a notion of flatness for 2-functors.

\*[K] Structures defined by finite limits in the enriched context, I, 1982.

ション ふゆ く は く は く む く む く し く

| Flat functors | Starting point for the 2-categorical case | Flat 2-functors |
|---------------|-------------------------------------------|-----------------|
| 00            | 0000                                      | 000             |
|               |                                           |                 |

## Flatness for $\mathcal{V}$ -enriched functors

A notion of flatness for  $\mathcal V\text{-enriched}$  functors was already considered by Kelly\*.

 $\mathcal{V} = \mathcal{C}at$  gives us a notion of flatness for 2-functors.

There is no known generalization of the main theorem with this notion of flatness.

\*[K] Structures defined by finite limits in the enriched context, I, 1982.

うして ふゆう ふほう ふほう ふしつ

| Flat | functors |
|------|----------|
| 00   |          |

Flat 2-functors 000

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Expressions for  $\mathcal{A} \xrightarrow{P} \mathcal{C}at$ 

There was no known expression of P as a (conical) colimit of representable functors.

| Flat | functors |  |
|------|----------|--|
| 00   |          |  |

Flat 2-functors 000

ション ふゆ マ キャット マックシン

Expressions for  $\mathcal{A} \xrightarrow{P} \mathcal{C}at$ 

There was no known expression of P as a (conical) colimit of representable functors.

 $P \approx p \int^{A} PA \times \mathcal{A}(A, -).$ 

| Flat | functors |
|------|----------|
| 00   |          |

Flat 2-functors 000

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Expressions for  $\mathcal{A} \xrightarrow{P} \mathcal{C}at$ 

There was no known expression of P as a (conical) colimit of representable functors.

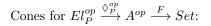
 $P \approx p \int^{A} PA \times \mathcal{A}(A, -).$ 

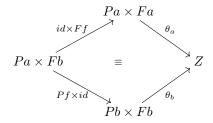
#### Key Fact

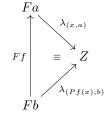
This pseudo-coend can be expressed as a special kind of (conical) colimit over the 2-category of elements  $\mathcal{E}l_P$  associated to P.



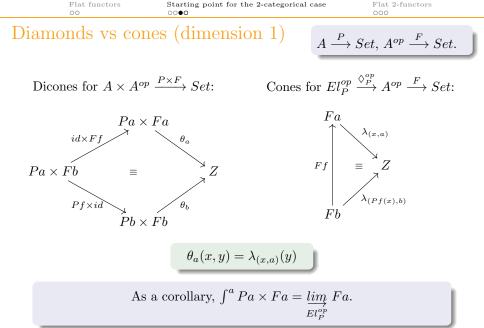
Dicones for 
$$A \times A^{op} \xrightarrow{P \times F} Set$$
:



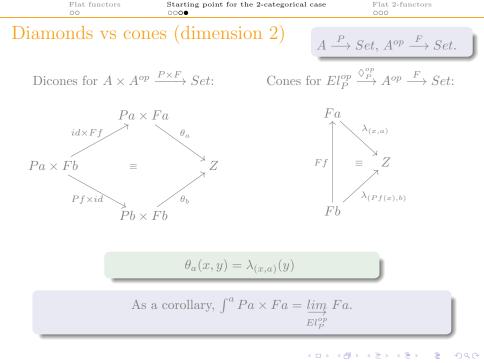


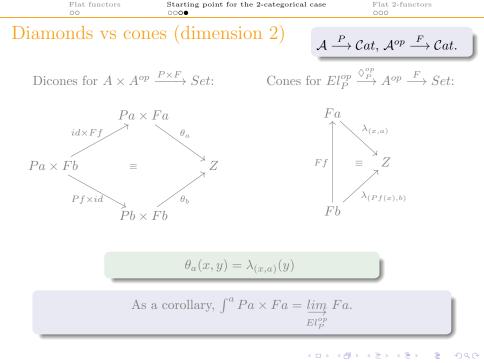


$$\theta_a(x,y) = \lambda_{(x,a)}(y)$$



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ







Starting point for the 2-categorical case  $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ 

Flat 2-functors

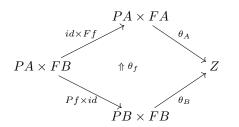
# Diamonds vs cones (dimension 2)

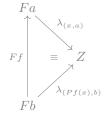
$$\mathcal{A} \xrightarrow{P} \mathcal{C}at, \mathcal{A}^{op} \xrightarrow{F} \mathcal{C}at.$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Pseudodicones for 
$$\mathcal{A} \times \mathcal{A}^{op} \xrightarrow{P \times F} \mathcal{C}at$$
:

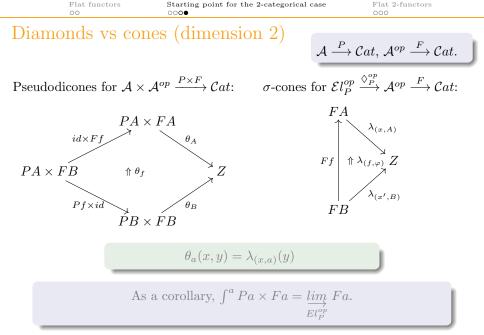




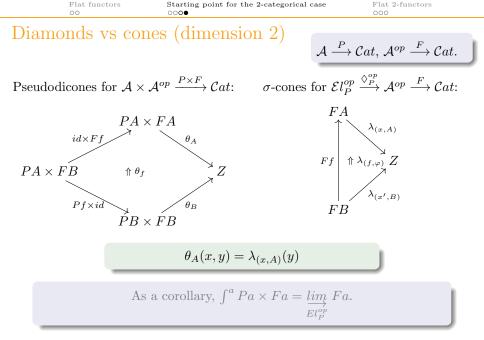


$$\theta_a(x,y) = \lambda_{(x,a)}(y)$$

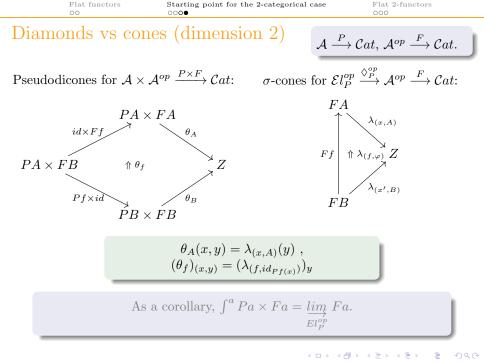
As a corollary, 
$$\int^a Pa \times Fa = \lim_{El_P^{op}} Fa$$
.

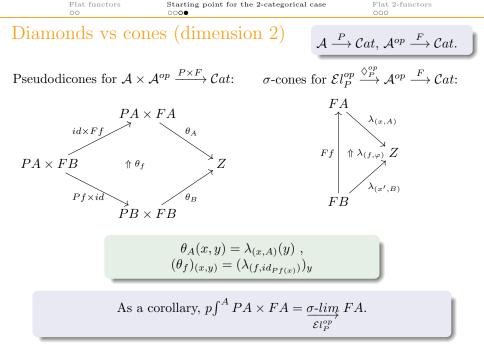


▲□▶ ▲圖▶ ▲国▶ ▲国▶ ■ ● ● ●



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで



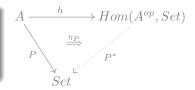


(日)、(同)、(日)、(日)、(日)、(の)()

| Flat func | tors Starting point for th | e 2-categorical case Flat 2-functors |
|-----------|----------------------------|--------------------------------------|
| 00        | 0000                       | ●00                                  |

## Definition

 $A \xrightarrow{P} Set$  is **flat** if its left Kan extension along the Yoneda embedding is left exact (preserves finite limits).



- 日本 - 4 日本 - 4 日本 - 日本

#### Theorem

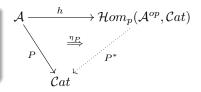
For a functor  $A \xrightarrow{P} Set$ , the following are equivalent:

- The category of elements  $El_P$  of P is cofiltered.
- **2** *P* is a filtered colimit of representable functors.
- $\bullet$  P is flat.

| Flat f | unctors Startin | ng point for the 2-categorical case | Flat 2-functors |
|--------|-----------------|-------------------------------------|-----------------|
| 00     | 0000            |                                     | ●00             |

## Definition

 $\mathcal{A} \xrightarrow{P} \mathcal{C}at$  is flat if its left Kan extension along the Yoneda embedding is left exact (preserves finite limits).



うして ふゆう ふほう ふほう ふしつ

#### Theorem

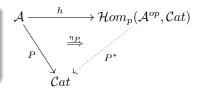
For a functor  $A \xrightarrow{P} Set$ , the following are equivalent:

- The category of elements  $El_P$  of P is cofiltered.
- **2** *P* is a filtered colimit of representable functors.
- $\bigcirc$  P is flat.

| 000 0000 <b>000</b> | Flat functors | Starting point for the 2-categorical case | Flat 2-functors |
|---------------------|---------------|-------------------------------------------|-----------------|
|                     | 00            | 0000                                      | <b>●</b> 00     |

## Definition

 $\mathcal{A} \xrightarrow{P} \mathcal{C}at$  is **flat** if its left bi-Kan extension<sup>\*</sup> along the Yoneda embedding is left exact (preserves finite limits).



うして ふゆう ふほう ふほう ふしつ

#### Theorem

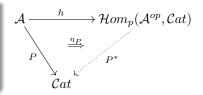
For a functor  $A \xrightarrow{P} Set$ , the following are equivalent:

- The category of elements  $El_P$  of P is cofiltered.
- **2** *P* is a filtered colimit of representable functors.
- $\bigcirc$  P is flat.

| Flat functors | Starting point for the 2-categorical case | Flat 2-functors |
|---------------|-------------------------------------------|-----------------|
| 00            | 0000                                      | <b>●</b> 00     |

## Definition

 $\mathcal{A} \xrightarrow{P} \mathcal{C}at$  is **flat** if its left bi-Kan extension<sup>\*</sup> along the Yoneda embedding is left exact (preserves finite weighted bi-limits).



うして ふゆう ふほう ふほう ふしつ

#### Theorem

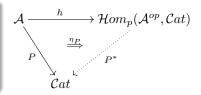
For a functor  $A \xrightarrow{P} Set$ , the following are equivalent:

- The category of elements  $El_P$  of P is cofiltered.
- **2** *P* is a filtered colimit of representable functors.
- $\bigcirc$  P is flat.

| Flat functors | Starting point for the 2-categorical case | Flat 2-functors |
|---------------|-------------------------------------------|-----------------|
| 00            | 0000                                      | <b>●</b> ○○     |

## Definition

 $\mathcal{A} \xrightarrow{P} \mathcal{C}at$  is **flat** if its left bi-Kan extension<sup>\*</sup> along the Yoneda embedding is left exact (preserves finite weighted bi-limits).



うして ふゆう ふほう ふほう ふしつ

#### Theorem

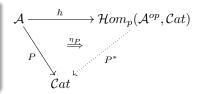
For a 2-functor  $\mathcal{A} \xrightarrow{P} \mathcal{C}at$ , the following are equivalent:

- The category of elements  $El_P$  of P is cofiltered.
- **2** *P* is a filtered colimit of representable functors.
- $\bigcirc$  P is flat.

| Flat functors | Starting point for the 2-categorical case | Flat 2-functors |
|---------------|-------------------------------------------|-----------------|
| 00            | 0000                                      | ●00             |

## Definition

 $\mathcal{A} \xrightarrow{P} \mathcal{C}at$  is **flat** if its left bi-Kan extension<sup>\*</sup> along the Yoneda embedding is left exact (preserves finite weighted bi-limits).



うして ふゆう ふほう ふほう ふしつ

#### Theorem

For a 2-functor  $\mathcal{A} \xrightarrow{P} \mathcal{C}at$ , the following are equivalent:

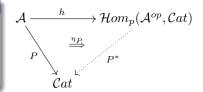
- The 2-category of elements  $\mathcal{E}l_P$  of P is cofiltered.
- **2** *P* is a filtered colimit of representable functors.

 $\bigcirc$  P is flat.

| Flat functors | Starting point for the 2-categorical case | Flat 2-functors |
|---------------|-------------------------------------------|-----------------|
| 00            | 0000                                      | ●00             |
|               |                                           |                 |

#### Definition

 $\mathcal{A} \xrightarrow{P} \mathcal{C}at$  is **flat** if its left bi-Kan extension<sup>\*</sup> along the Yoneda embedding is left exact (preserves finite weighted bi-limits).



うして ふゆう ふほう ふほう ふしつ

#### Theorem

For a 2-functor  $\mathcal{A} \xrightarrow{P} \mathcal{C}at$ , the following are equivalent:

- The 2-category of elements  $\mathcal{E}l_P$  of P is  $\sigma$ -cofiltered (with respect to the family of co-cartesian arrows).
- **2** *P* is a filtered colimit of representable functors.

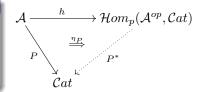
 $\bullet$  P is flat.

\*[LN] On biadjoint triangles, 2016.

| Flat functors | Starting point for the 2-categorical case | Flat 2-functors |
|---------------|-------------------------------------------|-----------------|
| 00            | 0000                                      | ●00             |
|               |                                           |                 |

## Definition

 $\mathcal{A} \xrightarrow{P} \mathcal{C}at$  is **flat** if its left bi-Kan extension<sup>\*</sup> along the Yoneda embedding is left exact (preserves finite weighted bi-limits).



うして ふゆう ふほう ふほう ふしつ

#### Theorem

For a 2-functor  $\mathcal{A} \xrightarrow{P} \mathcal{C}at$ , the following are equivalent:

- The 2-category of elements El<sub>P</sub> of P is σ-cofiltered (with respect to the family of co-cartesian arrows).
- P is (equivalent to) a σ-filtered σ-colimit of representable 2-functors.

#### It is flat.

\*[LN] On biadjoint triangles, 2016.

| Flat functors<br>00 | Starting point for the 2-categorical case 0000                              | Flat 2-functors<br>O●O    |
|---------------------|-----------------------------------------------------------------------------|---------------------------|
| Idea of the proof   | • $\mathcal{E}l_P$ is $\sigma$ -cofiltered.                                 |                           |
|                     | <ul> <li>P is (equivalent to) a σ-filterepresentable 2-functors.</li> </ul> | ered $\sigma$ -colimit of |
|                     | $\bigcirc$ P is flat.                                                       |                           |

• 
$$1 \Rightarrow 2$$
:  $P = \varinjlim_{El_P^{op}} A(a, -).$ 

filtered colimit of flat is flat (since filtered colimits commute with finite limits).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• 
$$3 \Rightarrow 1: C \xrightarrow{F} D$$
 left exact and C has finite limits  
 $\Rightarrow El_F$  cofiltered.  
+  
 $El_{P^*}$  cofiltered  $\Rightarrow El_P$  cofiltered.

| Flat functors<br>00 | Starting point for the 2-categorical case 0000                                                                                    | Flat 2-functors<br>0●0     |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Idea of the proof   | <ol> <li><i>El<sub>P</sub></i> is σ-cofiltered.</li> <li><i>P</i> is (equivalent to) a σ-fil representable 2-functors.</li> </ol> | tered $\sigma$ -colimit of |
|                     | • $P$ is flat.                                                                                                                    |                            |

• 
$$1 \Rightarrow 2$$
:  $P \approx \underbrace{\sigma\text{-lim}}_{\mathcal{E}l_P^{op}} \mathcal{A}(A, -).$ 

2 ⇒ 3: Representable functors are flat.
 +
 filtered colimit of flat is flat (since filtered colimits commute with finite limits).

• 
$$3 \Rightarrow 1: C \xrightarrow{F} D$$
 left exact and C has finite limits  
 $\Rightarrow El_F$  cofiltered.  
 $+$   
 $El_{P^*}$  cofiltered  $\Rightarrow El_P$  cofiltered.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

|                   | Starting point for the 2-categorical case 0000                                                                                     | Flat 2-functors $0 \bullet 0$ |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Idea of the proof | <ul> <li><i>El<sub>P</sub></i> is σ-cofiltered.</li> <li><i>P</i> is (equivalent to) a σ-filt representable 2-functors.</li> </ul> | tered $\sigma$ -colimit of    |
|                   | $\bigcirc$ P is flat.                                                                                                              |                               |

• 
$$1 \Rightarrow 2$$
:  $P \approx \underbrace{\sigma\text{-lim}}_{\mathcal{E}l_P^{op}} \mathcal{A}(A, -).$ 

+

filtered colimit of flat is flat (since filtered colimits commute with finite limits).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• 
$$3 \Rightarrow 1: C \xrightarrow{F} D$$
 left exact and C has finite limits  
 $\Rightarrow El_F$  cofiltered.  
+  
 $El_{P^*}$  cofiltered  $\Rightarrow El_P$  cofiltered.

|                   | Starting point for the 2-categorical case 0000                                                                                    | Flat 2-functors<br>0●0     |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Idea of the proof | <ul> <li><i>El<sub>P</sub></i> is σ-cofiltered.</li> <li><i>P</i> is (equivalent to) a σ-fil representable 2-functors.</li> </ul> | tered $\sigma$ -colimit of |
|                   | $\bigcirc$ P is flat.                                                                                                             |                            |

• 
$$1 \Rightarrow 2$$
:  $P \approx \underbrace{\sigma\text{-lim}}_{\mathcal{E}l_P^{op}} \mathcal{A}(A, -).$ 

• 2  $\Rightarrow$  3: Representable 2-functors are flat. +  $\sigma$ -filtered  $\sigma$ -colimit of flat is flat (since filtered colimits commute with finite limits).

• 
$$3 \Rightarrow 1: C \xrightarrow{F} D$$
 left exact and C has finite limits  
 $\Rightarrow El_F$  cofiltered.  
 $+$   
 $El_{P^*}$  cofiltered  $\Rightarrow El_P$  cofiltered.

| <ul> <li>Idea of the proof</li> <li><i>El</i><sub>P</sub> is σ-cofiltered.</li> <li><i>P</i> is (equivalent to) a σ-filtered σ-colimit of representable 2 functors.</li> </ul> |                   | Starting point for the 2-categorical case                                    | Flat 2-functors<br>0●0   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------|--------------------------|
| <ul><li>P is flat.</li></ul>                                                                                                                                                   | Idea of the proof | <b>2</b> $P$ is (equivalent to) a $\sigma$ -filter representable 2-functors. | red $\sigma$ -colimit of |

• 
$$1 \Rightarrow 2$$
:  $P \approx \underbrace{\sigma\text{-lim}}_{\mathcal{E}l_P^{op}} \mathcal{A}(A, -).$ 

 $\sigma$ -filtered  $\sigma$ -colimit of flat is flat (since  $\sigma$ -filtered  $\sigma$ -colimits commute with finite weighted bilimits<sup>\*</sup>).

• 
$$3 \Rightarrow 1: C \xrightarrow{F} D$$
 left exact and C has finite limits  
 $\Rightarrow El_F$  cofiltered.  
 $+$   
 $El_{P^*}$  cofiltered  $\Rightarrow El_P$  cofiltered.

\*[DDS] A construction of certain weak colimits and an exactness property of the 2-category of categories, 2016.

| Flat functors<br>00 | Starting point for the 2-categorical case 0000                                                                                                                | Flat 2-functors<br>000    |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Idea of the proof   | <ul> <li><i>El<sub>P</sub></i> is σ-cofiltered.</li> <li><i>P</i> is (equivalent to) a σ-filt representable 2-functors.</li> <li><i>P</i> is flat.</li> </ul> | ered $\sigma$ -colimit of |

• 
$$1 \Rightarrow 2$$
:  $P \approx \underbrace{\sigma\text{-lim}}_{\mathcal{E}l_P^{op}} \mathcal{A}(A, -).$ 

 $\sigma$ -filtered  $\sigma$ -colimit of flat is flat (since  $\sigma$ -filtered  $\sigma$ -colimits commute with finite weighted bilimits<sup>\*</sup>).

• 
$$3 \Rightarrow 1: \mathcal{C} \xrightarrow{F} \mathcal{D}$$
 left exact and  $\mathcal{C}$  has finite weighted bilimits  
 $\Rightarrow \mathcal{E}l_F \ \sigma\text{-cofiltered.}$   
 $+$   
 $El_{P^*} \text{ cofiltered } \Rightarrow El_P \text{ cofiltered }.$ 

\*[DDS] A construction of certain weak colimits and an exactness property of the 2-category of categories, 2016.

| Flat functors<br>00 | Starting point for the 2-categorical case 0000                                                                                                                   | Flat 2-functors<br>0●0    |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Idea of the proof   | <ul> <li><i>El<sub>P</sub></i> is σ-cofiltered.</li> <li><i>P</i> is (equivalent to) a σ-filtered.</li> <li><i>P</i> is (equivalent to) a σ-filtered.</li> </ul> | ered $\sigma$ -colimit of |
|                     | $\bigcirc$ P is flat.                                                                                                                                            |                           |

• 
$$1 \Rightarrow 2$$
:  $P \approx \underbrace{\sigma\text{-lim}}_{\mathcal{E}l_P^{op}} \mathcal{A}(A, -).$ 

 $\sigma$ -filtered  $\sigma$ -colimit of flat is flat (since  $\sigma$ -filtered  $\sigma$ -colimits commute with finite weighted bilimits<sup>\*</sup>).

• 
$$3 \Rightarrow 1: \mathcal{C} \xrightarrow{F} \mathcal{D}$$
 left exact and  $\mathcal{C}$  has finite weighted bilimits  
 $\Rightarrow \mathcal{E}l_F \ \sigma\text{-cofiltered.}$   
 $+$   
 $\mathcal{E}l_{P^*} \ \sigma\text{-cofiltered}$ .

\*[DDS] A construction of certain weak colimits and an exactness property of the 2-category of categories, 2016.

| 000 0000 <b>000</b> | Flat functors | Starting point for the 2-categorical case | Flat 2-functors |
|---------------------|---------------|-------------------------------------------|-----------------|
|                     | 00            | 0000                                      | 000             |

# Thank you!

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ