An Element-based Reformulation of Restriction Monads Category Theory 2017 at University of British Columbia

Darien DeWolf Dalhousie University

July 20, 2017

Restriction Categories

A restriction structure on a category **X** is an assignment of an arrow $\overline{f}: A \to A$ to each arrow $f: A \to B$ in **X** satisfying the following four conditions:

- (R.1) For all maps f, $f\overline{f} = f$.
- (R.2) For all maps $f: A \to B$ and $g: A \to B'$, $\overline{f} \overline{g} = \overline{g} \overline{f}$.
- (R.3) For all maps $f: A \to B$ and $g: A \to B'$, $\overline{g \, \overline{f}} = \overline{g} \, \overline{f}$.
- (R.4) For all maps $f: B \to A$ and $g: A \to B'$, $\overline{g} f = f \overline{gf}$.

A category equipped with a restriction structure is called a restriction category.

Restriction Monads: Definition Version 1

In a bicategory with involution, a restriction monad consists of a 0-cell x, 1-cells $T, D, E: x \to x$ and 2-cells

- $\eta: 1_T \Rightarrow T$,
- $\mu: T^2 \Rightarrow T, [\mu|_* DE]: DE \Rightarrow D,$
- $\rho: D \Rightarrow E$ (epic),
- $\iota: E \Rightarrow T$ (monic),
- $\Delta: T \Rightarrow TD, \tau: D^2 \Rightarrow D^2$ and
- $\psi: DT \Rightarrow TD$

satisfying conditions corresponding to (R.1) through (R.4) plus the usual monad laws plus $D^*D = DD^*$

Problem with the first approach

Ordinary monads in $\mathrm{Span}(\mathbf{Set})$ are in one-to-one correspondence with small categories.

Let X be a restriction category. We can easily construct a restriction monad R(X) in $\mathrm{Span}(\mathbf{Set})$ with T,D,E behaving as desired, but we can't canonically go backwards: the D is not uniquely determined by the choice of T.

Problem with the first approach

Ordinary monads in Span(Set) are in one-to-one correspondence with small categories.

Let X be a restriction category. We can easily construct a restriction monad R(X) in $\mathrm{Span}(\mathbf{Set})$ with T,D,E behaving as desired, but we can't canonically go backwards: the D is not uniquely determined by the choice of T.

One Solution:

Define restriction monads so that D and E naturally become "subobjects" of T by design. We can do this easily if we think of T as having elements and defining our operations on certain subsets of T.

Suppose that X is a small restriction category. For each element A of X_0 , we can define a span \vec{A} : $\{*\}$ — \to X_0 by

Peek-ahead: We will call such a span {*}-elemental.

Suppose that X is a small restriction category. Its corresponding monad in $\mathrm{Span}(\mathbf{Set})$ is of the form

Suppose that X is a small restriction category. Its corresponding monad in $\mathrm{Span}(\mathbf{Set})$ is of the form

Composing \vec{A} with T, then is of the form

$$\{*\}_{A} \times_{\mathfrak{s}} \mathsf{X}_{1}$$
 $\{*\}$
 X_{0}

 $T\vec{A}$ contains as data all arrows of **X** with source A.

Given another object $B \in \mathbf{X}_0$, a span morphism $f : \vec{B} \longrightarrow T\vec{A}$, of the form

is therefore equivalent to the choice of an arrow f in X whose source is A and whose target is B.

$$\mathrm{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(\vec{B}, T\vec{A}) \longleftrightarrow \mathbf{X}(A, B).$$

Such an identification allows us to define the restriction operator ρ as a family of set functions

$$\rho_{A,B}: \operatorname{Span}(\mathsf{Set})(\{*\}, \mathsf{X}_0)(\vec{B}, T\vec{A}) \to \operatorname{Span}(\mathsf{Set})(\{*\}, \mathsf{X}_0)(\vec{A}, T\vec{A})$$

of arrows $f: A \rightarrow B$ to arrows $\rho(f): A \rightarrow A$.

The conditions that this family of assignments satisfies will be given in a definition soon.

Identifying $\operatorname{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(\vec{B}, T\vec{A})$ with $\mathbf{X}(A, B)$, we must therefore consider how to "compose" elements of the set

$$\operatorname{Span}(\mathsf{Set})(\{*\},\mathsf{X}_0)(\vec{B},T\vec{A})\times\operatorname{Span}(\mathsf{Set})(\{*\},\mathsf{X}_0)(\vec{C},T\vec{B}).$$

Identifying $\operatorname{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(\vec{B}, T\vec{A})$ with $\mathbf{X}(A, B)$, we must therefore consider how to "compose" elements of the set

$$\operatorname{Span}(\operatorname{Set})(\{*\}, \mathsf{X}_0)(\vec{B}, T\vec{A}) \times \operatorname{Span}(\operatorname{Set})(\{*\}, \mathsf{X}_0)(\vec{C}, T\vec{B}).$$

Note that such an element is of the form

$$\vec{C} \longrightarrow T\vec{B}$$
 $\vec{B} \longrightarrow T\vec{A}$

For all $A, B, C \in \mathbf{X}_0$, define a composition map $\widetilde{\mu}$ to be a Kleisli-flavoured composite.

 \widetilde{u} is the composite:

$$\operatorname{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(\vec{B}, T\vec{A}) \times \operatorname{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(\vec{C}, T\vec{B})$$

$$\downarrow \operatorname{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(T, T) \times \operatorname{id}$$

$$\operatorname{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(T\vec{B}, TT\vec{A}) \times \operatorname{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(\vec{C}, T\vec{B})$$

$$\downarrow \circ_{TT\vec{A}, T\vec{B}, \vec{C}}^{\operatorname{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)}$$

$$\operatorname{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(\vec{C}, TT\vec{A})$$

$$\downarrow \operatorname{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(\vec{C}, T\vec{A})$$

$$\operatorname{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(\vec{C}, T\vec{A})$$

Defining $\widetilde{\mu}$ first requires an interpretation of the set

$$\operatorname{Span}(\mathbf{Set})(\{*\},\mathbf{X}_0)(T\vec{B},TT\vec{A}).$$

Its elements are span morphisms of the form

These are assignments of arrows f with source B to composable pairs of arrows with source A and target tf:

$$(B \to C) \longmapsto (A \to C' \to C).$$

The morphism $\operatorname{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(T, T)$

$$\operatorname{Span}(\operatorname{Set})(\{*\}, X_0)(\vec{B}, T\vec{A}) \longrightarrow \operatorname{Span}(\operatorname{Set})(\{*\}, X_0)(T\vec{B}, TT\vec{A})$$

is defined by

$$\left[f:A\to B\right]\longmapsto \left[(f,-):(g:B\to C)\longmapsto (f:A\to B,\,g:B\to C)\right]$$

The morphism $\operatorname{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(T, T)$

$$\operatorname{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(\vec{B}, T\vec{A}) \longrightarrow \operatorname{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(T\vec{B}, TT\vec{A})$$

is defined by

$$\left[f:A\to B\right]\longmapsto \left[(f,-):(g:B\to C)\longmapsto (f:A\to B,\,g:B\to C)\right]$$

We can then compute this composite $\widetilde{\mu}$:

$$(f:A\rightarrow B,g:B\rightarrow C)\mapsto ((f,-),g)\mapsto (f,g)\mapsto \mu(f,g)=g\circ f;$$

The composition defined by μ coincides with $\widetilde{\mu}$ in Span(Set).

Suppose that \mathcal{B} is a bicategory with an involution on 1-cells containing an object E satisfying $\mathcal{B}(E,E)_0 \cong \mathcal{B}_0$.

Suppose that \mathcal{B} is a bicategory with an involution on 1-cells containing an object E satisfying $\mathcal{B}(E,E)_0 \cong \mathcal{B}_0$.

A restriction monad in \mathcal{B} is a monad (\mathcal{T}, η, μ) in \mathcal{B} together with a family of functions

$$ho_{A,B}: \mathcal{B}(E,x)(B,TA)
ightarrow \mathcal{B}(E,x)(A,TA)$$

indexed by *E*-elemental one-cells $A, B : E \rightarrow x$.

(**Definition:** *E*-elemental means: $A^*A \cong id_E$.)

Suppose that \mathcal{B} is a bicategory with an involution on 1-cells containing an object E satisfying $\mathcal{B}(E,E)_0 \cong \mathcal{B}_0$.

A restriction monad in \mathcal{B} is a monad (\mathcal{T}, η, μ) in \mathcal{B} together with a family of functions

$$\rho_{A,B}: \mathcal{B}(E,x)(B,TA) \to \mathcal{B}(E,x)(A,TA)$$

indexed by *E*-elemental one-cells $A, B : E \rightarrow x$. (**Definition:** *E*-elemental means: $A^*A \cong \operatorname{id}_E$.)

Together with a way to compose morphisms between E-elemental one-cells, we impose four axioms on restriction monads, coming up.

The way to compose morphisms between *E*-elemental one-cells is a multiplication map

$$\widetilde{\mu}_{A,B,C}: \mathcal{B}(E,x)(B,TA) \times \mathcal{B}(E,x)(C,TB) \rightarrow \mathcal{B}(E,x)(C,TA)$$

of E-elemental 1-cells defined by the composite

$$(\mathcal{B}(E,x)(T,T)\times \mathrm{id}); (\circ_{TTA,TB,C}^{\mathcal{B}(E,x)}); \mathcal{B}(E,x)(C,\mu_A).$$

For every triple of 1-cells $A, B, C: 1 \rightarrow x$, we require that the following diagrams commute which correspond to (R1)–(R4):

(R.1) "
$$f \overline{f} = f$$
"
$$\mathcal{B}(E,x)(B,TA) \xrightarrow{\Delta} \mathcal{B}(E,x)(B,TA) \times \mathcal{B}(E,x)(B,TA)$$

$$\downarrow \rho \times \mathrm{id}$$

$$\mathcal{B}(E,x)(B,TA) \leftarrow \frac{\widetilde{\mu}}{\widetilde{\mu}} \mathcal{B}(E,x)(A,TA) \times \mathcal{B}(E,x)(B,TA)$$

(R.2) "
$$\overline{f} \ \overline{g} = \overline{g} \ \overline{f}$$
"
$$\mathcal{B}(E,x)(B,TA) \times \mathcal{B}(E,x)(C,TA) \xrightarrow{\rho \times \rho} \mathcal{B}(E,x)(A,TA) \times \mathcal{B}(E,x)(A,TA)$$

$$\downarrow^{\overline{\mu}}$$

$$\mathcal{B}(E,x)(C,TA) \times \mathcal{B}(E,x)(B,TA) \xrightarrow{\rho \times \rho}$$

$$\mathcal{B}(E,x)(A,TA) \times \mathcal{B}(E,x)(A,TA)$$

$$(R.3) "\overline{g} \overline{f} = \overline{g} \overline{f}"$$

$$\mathcal{B}(E,x)(B,TA) \times \mathcal{B}(E,x)(C,TA) \xrightarrow{\rho \times \mathrm{id}} \mathcal{B}(E,x)(A,TA) \times \mathcal{B}(E,x)(C,TA)$$

$$\downarrow^{\widetilde{\mu}}$$

$$\mathcal{B}(E,x)(C,TA) \downarrow^{\rho}$$

$$\mathcal{B}(E,x)(A,TA) \times \mathcal{B}(E,x)(A,TA) \xrightarrow{\widetilde{\mu}} \mathcal{B}(E,x)(A,TA)$$

(R.4) "
$$\overline{g} f = f \overline{g} f$$
"

Restriction Monads as Internal Categories

Proposition

Small restriction categories are in one-to-one correspondence with restriction monads in $\mathrm{Span}(\mathbf{Set})$.

Restriction Monads as Internal Categories

Proposition

Small restriction categories are in one-to-one correspondence with restriction monads in $\mathrm{Span}(\mathbf{Set})$.

Proposition

Let C be a category with all pullbacks over s and t. Restriction monads in $\mathrm{Span}(C)$ are in one-to-one correspondence with restriction categories internal to C.

Restriction Monads as Enriched Categories

Proposition

Restriction monads in **Set**-Mat are in one-to-one correspondence with small restriction categories.

Restriction Monads as Enriched Categories

Proposition

Restriction monads in **Set**-Mat are in one-to-one correspondence with small restriction categories.

Proposition

If V is a Cartesian monoidal category, then restriction V-categories are restriction monads in V-Mat

Algebras for Restriction Monads

Let T be an ordinary monad in Span(Set) and that X is its corresponding small category.

Recall that algebras (S, h) for T are right-X modules on the apex set of $S = X_0 \leftarrow {}^a M - {}^b Y$ with the action given by $h : ST \Rightarrow S$:

Similarly to how we identify the hom-set $\mathrm{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(\vec{B}, T\vec{A})$ with $\mathbf{X}(A, B)$, we identify $\mathrm{Span}(\mathbf{Set})(\{*\}, Y)(\vec{B}, S\vec{A})$ with the module set S(B, A).

Similarly to how we identify the hom-set $\mathrm{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(\vec{B}, T\vec{A})$ with $\mathbf{X}(A, B)$, we identify $\mathrm{Span}(\mathbf{Set})(\{*\}, Y)(\vec{B}, S\vec{A})$ with the module set S(B, A).

We can then define a restriction operator r as a family of set functions

$$r_{A,B}: \operatorname{Span}(\operatorname{Set})(\{*\}, Y)(\vec{B}, S\vec{A}) \to \operatorname{Span}(\operatorname{Set})(\{*\}, X_0)(\vec{A}, T\vec{A})$$

$$\alpha: A \longrightarrow B \longmapsto r(\alpha): A \to A$$

Similarly to how we identify the hom-set $\mathrm{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(\vec{B}, T\vec{A})$ with $\mathbf{X}(A, B)$, we identify $\mathrm{Span}(\mathbf{Set})(\{*\}, Y)(\vec{B}, S\vec{A})$ with the module set S(B, A).

We can then define a restriction operator r as a family of set functions

$$r_{A,B}: \operatorname{Span}(\operatorname{Set})(\{*\}, Y)(\vec{B}, S\vec{A}) \to \operatorname{Span}(\operatorname{Set})(\{*\}, X_0)(\vec{A}, T\vec{A})$$

$$\alpha: A \longrightarrow B \longmapsto r(\alpha): A \to A$$

We will require that each $r(\alpha)$ is a restriction idempotent of **X** :

$$\operatorname{Im}(r_{A,B}) \subseteq \cup_{A':1\to x} \operatorname{Im}(\rho_{A,A'})$$

Identifying $\operatorname{Span}(\mathbf{Set})(\{*\}, Y)(\vec{B}, S\vec{A})$ with S(B, A), we must therefore consider how to "h-act" with elements of the set

$$\mathrm{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(\vec{A}, T\vec{A'}) \times \mathrm{Span}(\mathbf{Set})(\{*\}, Y)(\vec{B}, S\vec{A})$$

Much like $\widetilde{\mu}$, we will define \widetilde{h} as a Kleisli-styled composite which will coincide (on the hom-categories) with h in $\mathrm{Span}(\mathbf{Set})$.

There will also be restriction axiom diagrams which will have to commute.

 \widetilde{h} is the composite:

$$\operatorname{Span}(\mathbf{Set})(\{*\}, \mathbf{X}_0)(\vec{A}, T\vec{A'}) \times \operatorname{Span}(\mathbf{Set})(\{*\}, Y)(\vec{B}, S\vec{A})$$

$$\operatorname{Span}(\mathbf{Set})(\{*\}, S\mathbf{X}_0)(S, S) \times \operatorname{id}$$

$$\operatorname{Span}(\mathbf{Set})(\{*\}, Y)(S\vec{A}, ST\vec{A'}) \times \operatorname{Span}(\mathbf{Set})(\{*\}, Y)(\vec{B}, S\vec{A})$$

$$\circ^{\operatorname{Span}(\mathbf{Set})(\{*\}, Y)}_{ST\vec{A'}, S\vec{A}, \vec{B}}$$

$$\operatorname{Span}(\mathbf{Set})(\{*\}, Y)(\vec{B}, ST\vec{A'})$$

$$\operatorname{Span}(\mathbf{Set})(\{*\}, Y)(\vec{B}, S\vec{A'})$$

$$\operatorname{Span}(\mathbf{Set})(\{*\}, Y)(\vec{B}, S\vec{A'})$$

(R.1)
$$\mathcal{B}(E,y)(B,SA) \xrightarrow{\Delta} \mathcal{B}(E,y)(B,SA) \times \mathcal{B}(E,y)(B,SA)$$

$$\downarrow r \times \mathrm{id}$$

$$\mathcal{B}(E,y)(B,SA) \leftarrow \widetilde{h} \qquad \mathcal{B}(E,x)(A,TA) \times \mathcal{B}(E,y)(B,SA)$$

(R.3)

$$\mathcal{B}(E,y)(B,SA) \times \mathcal{B}(E,y)(B',SA) \xrightarrow{r \times \mathrm{id}} \mathcal{B}(E,x)(A,TA) \times \mathcal{B}(E,y)(B',SA)$$

$$\downarrow \widetilde{h}$$

$$\mathcal{B}(E,y)(B',SA)$$

$$\downarrow r$$

$$\mathcal{B}(E,x)(A,TA) \times \mathcal{B}(E,x)(A,TA) \xrightarrow{\widetilde{\mu}} \mathcal{B}(E,x)(A,TA)$$

(R.4)

$$\mathcal{B}(E,x)(B,TA) \times \mathcal{B}(E,x)(C,TB) \xrightarrow{\operatorname{id} \times r} \mathcal{B}(E,x)(B,TA) \times \mathcal{B}(E,x)(B,TB)$$

$$\stackrel{\Delta \times \operatorname{id}}{\longrightarrow} \mathcal{B}(E,x)(B,TA) \times \mathcal{B}(E,x)(B,TA) \times \mathcal{B}(E,x)(C,TB)$$

$$\stackrel{\operatorname{id} \times \widetilde{h}}{\longrightarrow} \mathcal{B}(E,x)(B,TA) \times \mathcal{B}(E,x)(C,TA)$$

$$\stackrel{\operatorname{id} \times r}{\longrightarrow} \mathcal{B}(E,x)(B,TA) \times \mathcal{B}(E,x)(A,TA) \xrightarrow{\widetilde{\mu},T} \mathcal{B}(E,x)(B,TA)$$

Proposition

Let **X** be a small restriction category and let (T, η, μ, ρ) denote its corresponding restriction monad in Span(Set). An algebra

$$(S = \mathbf{X}_0 \overset{a}{\longleftarrow} M \overset{b}{\longrightarrow} Y, h, r)$$

is a right-X restriction module, whose right X-action is defined by h-evaluation.