FROBENIUS AND HOPF $\mathcal{V}\text{-}\mathsf{CATEGORIES}$

Joint work with Mitchell Buckley (ULB), Christina Vasilakopoulou (ULB) and Joost Vercruysse (ULB)

Timmy Fieremans

July 18, 2017

Overview

- Preliminaries
- Frobenius and Hopf V-categories
- Special case: V = Mod_k
- Equivalent definitions of Frobenius V-categories
- Larson Sweedler theorem

What is a V-category A?

What is a V-category A?

►
$$X = \text{ObA}$$
, $A = \{A_{x,y}\}_{X \times X} \in \mathcal{V}$

- $(\mathcal{V}, \otimes, \mathbf{I}, \sigma)$ braided monoidal category
- What is a V-category A?

•
$$X = \mathsf{ObA}, A = \{A_{x,y}\}_{X \times X} \in \mathcal{V}$$

- ▶ multiplication morphisms m_{xyz} : $A_{x,y} \otimes A_{y,z} \rightarrow A_{x,z}$ in \mathcal{V}
- unit morphisms $\eta_x : I \to A_{x,x}$

- $(\mathcal{V},\otimes,\mathit{I},\sigma)$ braided monoidal category
- What is a V-category A?

•
$$X = \mathsf{ObA}, A = \{A_{x,y}\}_{X \times X} \in \mathcal{V}$$

- ▶ multiplication morphisms m_{xyz} : $A_{x,y} \otimes A_{y,z} \rightarrow A_{x,z}$ in \mathcal{V}
- unit morphisms $\eta_x : I \to A_{x,x}$

with the usual unit and associativity conditions.

- $(\mathcal{V},\otimes,\mathit{I},\sigma)$ braided monoidal category
- What is a V-category A?
 - ► $X = \mathsf{ObA}, A = \{A_{x,y}\}_{X \times X} \in \mathcal{V}$
 - ▶ multiplication morphisms m_{xyz} : $A_{x,y} \otimes A_{y,z} \rightarrow A_{x,z}$ in \mathcal{V}
 - unit morphisms $\eta_x : I \to A_{x,x}$

with the usual unit and associativity conditions.

- ► *V*-opcategory = *V*^{op}-category
 - d_{xyz}: C_{x,z} → C_{x,y} ⊗ C_{y,z}, e_x: C_{x,x} → I satisfying coassociativity and counity axioms.

What is a V-category A?

•
$$X = \mathsf{ObA}, A = \{A_{x,y}\}_{X \times X} \in \mathcal{V}$$

- ▶ multiplication morphisms m_{xyz} : $A_{x,y} \otimes A_{y,z} \rightarrow A_{x,z}$ in \mathcal{V}
- unit morphisms $\eta_x : I \to A_{x,x}$

with the usual unit and associativity conditions.

- V-opcategory = V^{op}-category
 - ► d_{xyz} : $C_{x,z} \rightarrow C_{x,y} \otimes C_{y,z}$, e_x : $C_{x,x} \rightarrow I$ satisfying coassociativity and counity axioms.

Examples

• $(\mathcal{V}, \otimes, I) = (Sets, \times, \{*\})$: ordinary categories

What is a V-category A?

•
$$X = \mathsf{ObA}, A = \{A_{x,y}\}_{X \times X} \in \mathcal{V}$$

- ▶ multiplication morphisms m_{xyz} : $A_{x,y} \otimes A_{y,z} \rightarrow A_{x,z}$ in \mathcal{V}
- unit morphisms $\eta_x : I \to A_{x,x}$

with the usual unit and associativity conditions.

- V-opcategory = V^{op}-category
 - ► d_{xyz} : $C_{x,z} \rightarrow C_{x,y} \otimes C_{y,z}$, e_x : $C_{x,x} \rightarrow I$ satisfying coassociativity and counity axioms.

Examples

- $(\mathcal{V}, \otimes, I) = (Sets, \times, \{*\})$: ordinary categories
- $(\mathcal{V}, \otimes, I) = (Mod_k, \otimes_k, k)$: *k*-linear categories

Frobenius and Hopf \mathcal{V} -categories

Note that $Comon(\mathcal{V})$ is again monoidal!

Frobenius and Hopf \mathcal{V} -categories

Note that $Comon(\mathcal{V})$ is again monoidal!

Definition

If $(\mathcal{V}, \otimes, I, \sigma)$ is braided, a *semi-Hopf* \mathcal{V} -category H is a Comon (\mathcal{V}) -enriched category.

Frobenius and Hopf \mathcal{V} -categories

Note that $Comon(\mathcal{V})$ is again monoidal!

Definition

If $(\mathcal{V}, \otimes, I, \sigma)$ is braided, a *semi-Hopf* \mathcal{V} -category H is a Comon (\mathcal{V}) -enriched category. Explicitly, it consists of a collection of objects X and for every $x, y \in X$ an object $H_{x,y}$ of \mathcal{V} , together with families of morphisms in \mathcal{V}

$$m_{xyz} \colon H_{x,y} \otimes H_{y,z} \to H_{x,z} \qquad j_x \colon I \to H_{x,x}$$

which make $H \neq \mathcal{V}$ -category, and a collection of morphisms

$$c_{xy} \colon H_{x,y} \to H_{x,y} \otimes H_{x,y} \qquad \epsilon_{xy} \colon H_{x,y} \to I$$

such that each $(H_{x,y}, c_{xy}, \epsilon_{xy})$ is a comonoid in \mathcal{V} and satisfying the following equations:

Frobenius and Hopf V-Categories

Definition

A *Hopf* \mathcal{V} -category is a semi-Hopf \mathcal{V} -category equipped with a family of maps $S_{xy} \colon H_{x,y} \to H_{y,x}$ satisfying

Every Hopf algebra H in a braided monoidal \mathcal{V} is a 1-object Hopf \mathcal{V} -category;

Every Hopf algebra H in a braided monoidal \mathcal{V} is a 1-object Hopf \mathcal{V} -category;

Example

A groupoid is precisely a Hopf Set-category.

Every Hopf algebra H in a braided monoidal \mathcal{V} is a 1-object Hopf \mathcal{V} -category;

Example

A groupoid is precisely a Hopf Set-category.

Example

Let A be a k-linear Hopf category, with Ob(A) = X a finite set. Then $\hat{A} = \bigoplus_{x,y \in X} A_{x,y}$ is a weak Hopf algebra.

What is the Frobenius 'counterpart' of a (semi)-Hopf category?

Timmy Fieremans

Frobenius and Hopf \mathcal{V} -Categories

July 18, 2017 7/ 18

What is the Frobenius 'counterpart' of a (semi)-Hopf category?

Definition

A Frobenius \mathcal{V} -category A is a \mathcal{V} -category that is also a \mathcal{V} -opcategory and satisfies indexed 'Frobenius conditions'.

What is the Frobenius 'counterpart' of a (semi)-Hopf category?

Definition

A Frobenius \mathcal{V} -category A is a \mathcal{V} -category that is also a \mathcal{V} -opcategory and satisfies indexed 'Frobenius conditions'. Explicitly, it consists of a set of objects X and for every $x, y \in X$ an object $A_{x,y}$ of \mathcal{V} together with maps

$$\begin{array}{ll} m_{xyz} \colon A_{x,y} \otimes A_{y,z} \to A_{x,z} & \quad j_x \colon I \to A_{x,x} \\ d_{abc} \colon A_{a,c} \to A_{a,b} \otimes A_{b,c} & \quad \mathbf{e}_y \colon A_{y,y} \to I \end{array}$$

that make A a \mathcal{V} -category and a \mathcal{V} -opcategory, and satisfy the following axioms.

Every Frobenius monoid in a monoidal category ${\mathcal V}$ is a one-object Frobenius ${\mathcal V}\text{-}category.$

Every Frobenius monoid in a monoidal category \mathcal{V} is a one-object Frobenius \mathcal{V} -category.

Example

For a field *k*, let Mat be the category whose objects are the natural numbers and whose hom-sets $Mat_{m,n}$ are the sets of $m \times n$ matrices with entries in *k*. This is a Mod_k-category if we take the usual composition of matrices and the usual identity matrices. The comultiplication and counit are defined by

$$\textit{d}_{n,p,m} \colon \textit{Mat}_{n,m} \rightarrow \textit{Mat}_{n,p} \otimes \textit{Mat}_{p,m} \colon e_{i,j} \mapsto \sum_{t=1}^{p} e_{i,t} \otimes e_{t,j}$$

$$\epsilon_{n,m} \colon Mat_{n,m} \to k \colon e_{i,j} \mapsto \delta_{i,j}$$

for all $1 \le i \le n, 1 \le j \le m$, with $e_{*,*}$ the usual basis of Mat_{*,*}. This makes Mat into a Frobenius category.

Timmy Fieremans

Frobenius and Hopf V-Categories

Let A be a Frobenius \mathcal{V} -category with a finite set X of objects, where \mathcal{V} is a semi-additive category (i.e. a category for which finite products and coproducts coincide) Then the 'packed form' $\hat{A} = \coprod_{x,y \in X} A_{x,y}$ of A is a Frobenius monoid in \mathcal{V} .

Equivalent definitions of Frobenius \mathcal{V} -category

From now on $\mathcal{V} = Mod_k$

Definition

Let (A, m, j) be a *k*-linear category with ObA = X. A Casimir family *E* is a X^2 -indexed family of elements $\stackrel{xy}{e} = e_{x,y}^1 \otimes e_{y,x}^2 \in A_{x,y} \otimes A_{y,x}$ such that for every $a \in A_{x,z}$

$$ae^1_{z,y}\otimes e^2_{y,z}=e^1_{x,y}\otimes e^2_{y,x}a$$
 .

A \mathcal{V} -category A is Frobenius if and only if there exists a Casimir family E and morphisms $\nu_x \colon A_{x,x} \to k$ for all $x \in X$, such that for each $\stackrel{xx}{e} \in E$:

$$\nu_x(\mathbf{e}_{x,x}^1) \cdot \mathbf{e}_{x,x}^2 = \mathbf{e}_{x,x}^1 \cdot \nu_x(\mathbf{e}_{x,x}^2) = \mathbf{1}_{x,x}$$

for all $x \in X$.

We call (E, ν) a Frobenius system of the \mathcal{V} -category A.

For a k-linear category A, the following assertions are equivalent.

- 1. A is Frobenius k-linear category.
- 2. A_{x,y} is finitely generated projective as k-module for every $x, y \in X$; and
 - A and (A*)^{op} are isomorphic as right (or left) A-modules.

For a k-linear category A, the following assertions are equivalent.

- 1. A is Frobenius k-linear category.
- A_{x,y} is finitely generated projective as k-module for every x, y ∈ X; and
 - A and (A*)^{op} are isomorphic as right (or left) A-modules.

Remark

- ► The right module structure is given by: $A_{x,v}^* \otimes A_{y,z} \rightarrow A_{x,z}^* : g \otimes a \mapsto g(a-)$
- We are working in Mod^f_k!

Definition

ı

The *left integral* $\int_{A_{x,y}}^{l}$ for the hom-object $A_{x,y}$ is the collection

$$\int_{A_{x,y}}' = \left\{ t \in A_{x,y} \mid ht = \epsilon_{x,x}(h) \cdot t, \forall h \in A_{x,x} \right\},$$

We denote the family of all (x, y)-left integrals for A by \int_A^I .

Larson-Sweedler theorem

Theorem

Let $(H, m, j, c, \epsilon, S)$ be a k-linear Hopf category. The following assertions are equivalent:

- 1. (*H*, *m*, *j*) has the structure of a Frobenius k-linear category;
- 2. H is locally finitely generated and projective, and all k-modules $\int_{H_{x,x}^*}^{l}$ are free of rank one.

Let *H* be a *k*-linear Hopf category with a finite set of objects *X*. Recall:

- $\bigoplus_{x,y\in X} H_{x,y}$ is a weak Hopf algebra
- The packed form of a Frobenius k-linear category is a Frobenius monoid in Mod_k

The previous theorem now gives us a class of weak Hopf algebras that are also Frobenius.

Thank you!

Timmy Fieremans

Frobenius and Hopf \mathcal{V} -Categories

July 18, 2017 17/ 18

References

E. Batista, S. Caenepeel, and J. Vercruysse. Hopf Categories. Algebr. Represent. Theory, 19(5):1173-1216, 2016.

Frobenius and Hopf V-Categories