Properties of $\Sigma^{\Sigma^{(-)}}$ -algebras in Equ

Giulia Frosoni

(Joint work with Giuseppe Rosolini)

Department of Mathematics, University of Genova (Italy)

Category Theory 2017

Equilogical spaces (Scott, 1996)

Equ: category of equilogical spaces and equivariant maps.

- Objects: An equilogical space is a triple $E = (|E|, \tau_E, \equiv_E)$, where $(|E|, \tau_E)$ is a T_0 -space and \equiv_E is an equivalence relation on |E|.
- Morphisms: An equivariant map $[f]: E \to F$ between the equilogical spaces E and F is an equivalence class of continuous functions $f: (|E|, \tau_E) \to (|F|, \tau_F)$ which preserve the relations, *i.e.*

for all
$$x, x' \in |E|$$
, if $x \equiv_E x'$, then $f(x) \equiv_F f(x')$.

Two such functions, $f, f' \colon E \to F$ are equivalent if for all $x \in |E|$, $f(x) \equiv_F f'(x)$.

D.S. Scott, *A new category? Domains, spaces and equivalence relations.* Manuscript, (1996).

Relevant subcategories of Equ

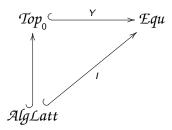
 $\mathcal{E}qu$ is a locally cartesian closed extension of Top_0 :

$$Top_{0} \xrightarrow{Y} Equ$$

$$(X, \tau_{X}) \longmapsto (X, \tau_{X}, =)$$

Relevant subcategories of Equ

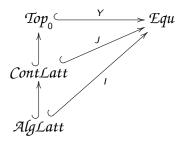
 $\mathcal{E}qu$ is a locally cartesian closed extension of Top_0 :



AlgLatt: category of algebraic lattices and Scott-continuous functions.

Relevant subcategories of Equ

 $\mathcal{E}qu$ is a locally cartesian closed extension of Top_0 :



 $\ensuremath{\textit{AlgLatt}}$: category of algebraic lattices and Scott-continuous functions.

ContLatt: category of continuous lattices and Scott-continuous functions.

PEqu: category of partial equilogical spaces

- Objects: a partial equilogical space is a triple $A = (|A|, \tau_{Sc}, \approx_A)$, where |A| is an algebraic lattice, τ_{Sc} is the Scott topology on |A| and \approx_A is a **partial equivalence** relation on |A|, namely it is symmetric and transitive, but not necessarily reflexive.
- Morphisms: $[f]: A \to B$ is an equivalence class of Scott-continuous functions $f: (|A|, \tau_{Sc}) \to (|B|, \tau_{Sc})$ such that

for all
$$a, a' \in |A|$$
, if $a \approx_A a'$, then $f(a) \approx_B f(a')$.

Two such functions $f, f' : A \to B$ are equivalent if for all $a, a' \in |A|$, if $a \approx_A a'$, then $f(a) \approx_B f'(a')$.

Theorem (Scott, 1996)

 $\mathcal{E}qu$ and $P\mathcal{E}qu$ are equivalent

Products and exponentials in PEqu

Let A and B be objects in PEqu. Then

• their product $A \times B$ is

$$(|A| \times |B|, \tau_{Sc}, \approx_{A \times B})$$

where $(a, b) \approx_{A \times B} (a', b')$ if $a \approx_A a'$ and $b \approx_B b'$;

• their exponential B^A is

$$(|B|^{|A|}, \tau_{Sc}, \approx_{B^A})$$

where

- $|B|^{|A|}$ is the algebraic lattice (ordered by the pointwise order) of the Scott-continuous functions from |A| to |B|
- $f \approx_{B^A} f'$ if for all $a, a' \in |A|$, if $a \approx_A a'$, then $f(a) \approx_B f'(a')$.

 Σ , the **Sierpinski space** : T_0 -space consisting of two points, \bot and \top , and the only non-trivial open set is $\{\top\}$.

 Σ , the **Sierpinski space** : T_0 -space consisting of two points, \bot and \top , and the only non-trivial open set is $\{\top\}$.

It is an algebraic lattice with the order $\bot \le \top$ and the topology just defined coincides with the Scott topology.

 Σ , the **Sierpinski space** : T_0 -space consisting of two points, \bot and \top , and the only non-trivial open set is $\{\top\}$.

It is an algebraic lattice with the order $\bot \le \top$ and the topology just defined coincides with the Scott topology.

Consider the self-adjoint functor

$$\mathcal{E}qu \xrightarrow{\Sigma^{(-)}} \mathcal{E}qu^{\mathrm{op}}$$

and the double power of Σ , denoted by $\Sigma^{\Sigma^{(-)}}$ or Σ^2 , gives rise to a monad on $\mathcal{E}qu$. \mathcal{C}^{Σ^2} : category of the Eilenberg-Moore algebras for the monad $\Sigma^{\Sigma^{(-)}}$ on \mathcal{C} .

 $\mathcal{REq}u$: full subcategory of $\mathcal{PEq}u$ consisting of those triples $A=(|A|,\tau_{Sc},\equiv_A)$, where \equiv_A is an equivalence relation on |A|.

 $\mathcal{REq}u$: full subcategory of $\mathcal{PEq}u$ consisting of those triples $A=(|A|,\tau_{Sc},\equiv_A)$, where \equiv_A is an equivalence relation on |A|.

SEqu: full subcategory of PEqu consisting of those triples $A=(|A|, \tau_{Sc}, \sim_A)$, where \sim_A is a **subreflexive** relation on |A|, namely it is contained in the diagonal relation.

$$\begin{array}{ccc} \mathcal{SEqu} & \longrightarrow \mathcal{PEqu} \\ & \parallel & \parallel \\ \mathcal{T}op_0 & \longrightarrow \mathcal{E}qu \end{array}$$

 $\mathcal{REq}u$: full subcategory of $\mathcal{PEq}u$ consisting of those triples $A=(|A|,\tau_{Sc},\equiv_A)$, where \equiv_A is an equivalence relation on |A|.

SEqu: full subcategory of PEqu consisting of those triples $A=(|A|, \tau_{Sc}, \sim_A)$, where \sim_A is a **subreflexive** relation on |A|, namely it is contained in the diagonal relation.

Proposition

 $S \in \mathcal{SE}$ qu, $R \in \mathcal{RE}$ qu $\Rightarrow S^R \in \mathcal{SE}$ qu and $R^S \in \mathcal{RE}$ qu

 $\mathcal{REq}u$: full subcategory of $\mathcal{PEq}u$ consisting of those triples $A=(|A|,\tau_{Sc},\equiv_A)$, where \equiv_A is an equivalence relation on |A|.

SEqu: full subcategory of PEqu consisting of those triples $A=(|A|, \tau_{Sc}, \sim_A)$, where \sim_A is a **subreflexive** relation on |A|, namely it is contained in the diagonal relation.

Proposition

 $S \in \mathcal{SE}$ qu, $R \in \mathcal{RE}$ qu $\Rightarrow S^R \in \mathcal{SE}$ qu and $R^S \in \mathcal{RE}$ qu

$$\text{REq} u \xrightarrow[\stackrel{\Sigma^{(-)}}{\overset{\bot}{\underset{\Sigma^{(-)}}{\longleftarrow}}} \text{SEq} u^{\text{op}}$$

$$SEqu \xrightarrow{\Sigma^{(-)}} REqu^{op}$$

- A topological space X is exponentiable if and only if Σ^X is a topological space.
- If X is a topological space, the global section functor, applied to the equilogical space Σ^X , gives the topology of X.
- The monad $\Sigma^{\Sigma^{(-)}}$ on $\mathcal{E}qu$ represents the algebraic theory of Σ in $\mathcal{E}qu$.
- Σ^2 -algebras in $\mathcal{E}qu \rightsquigarrow$ frames.
- P. Taylor, Sober spaces and continuations. Theory Appl. Categ., (2002).
- P. Taylor, Subspaces in abstract Stone duality. Theory Appl. Categ., (2002).
- S.J. Vickers and C.F. Townsend, *A universal characterization for the double power-locale*. Theoret. Comput. Sci., (2004).

Σ^2 -algebras and frames

Every Σ^2 -algebra in $\mathcal{E}qu$ inherits a frame structure from Σ , since the lattice operations $\wedge \colon \Sigma^2 \to \Sigma$ and $\vee \colon \Sigma^2 \to \Sigma$ are Scott-continuous and, in addition, for each set I, seen as a discrete topological space, $\vee^I \colon \Sigma^I \to \Sigma$ is Scott-continuous.

Theorem

Each Σ^2 -algebra (E, α) in $\mathcal{E}qu$ is a frame in $\mathcal{E}qu$

Σ^2 -algebras and frames

Every Σ^2 -algebra in $\mathcal{E}qu$ inherits a frame structure from Σ , since the lattice operations $\wedge \colon \Sigma^2 \to \Sigma$ and $\vee \colon \Sigma^2 \to \Sigma$ are Scott-continuous and, in addition, for each set I, seen as a discrete topological space, $\vee^I \colon \Sigma^I \to \Sigma$ is Scott-continuous.

Theorem

Each Σ^2 -algebra (E, α) in $\mathcal{E}qu$ is a frame in $\mathcal{E}qu$

So, the global section functor $\Gamma\colon \mathcal{Equ} \to \mathcal{S}et$ extends to a faithful functor

$$\begin{array}{c|c} \mathcal{E}qu^{\Sigma^2} & \xrightarrow{\Gamma} & \mathcal{F}rm \\ \downarrow \downarrow & & \downarrow \downarrow \\ \mathcal{E}qu & \xrightarrow{\Gamma} & \mathcal{S}et \end{array}$$

Σ^2 -algebras and frames

Every Σ^2 -algebra in $\mathcal{E}qu$ inherits a frame structure from Σ , since the lattice operations $\wedge \colon \Sigma^2 \to \Sigma$ and $\vee \colon \Sigma^2 \to \Sigma$ are Scott-continuous and, in addition, for each set I, seen as a discrete topological space, $\vee^I \colon \Sigma^I \to \Sigma$ is Scott-continuous.

Theorem

Each Σ^2 -algebra (E, α) in $\mathcal{E}qu$ is a frame in $\mathcal{E}qu$

So, the global section functor $\Gamma\colon \mathcal{Equ} o \mathcal{Set}$ extends to a faithful functor

$$\mathcal{E}qu^{\Sigma^2} \xrightarrow{\Gamma} \mathcal{F}rm$$

$$(E,\alpha) \longmapsto |E|/\equiv_E$$

Uniqueness of the structure map

Theorem

The structure map on an object A in $\mathcal{REq}u$, if exists, is unique

In particular, the claim holds for Σ^2 -algebras in $\mathcal{AlgLatt}$.

Uniqueness of the structure map

Theorem

The structure map on an object A in $\mathcal{REq}u$, if exists, is unique

In particular, the claim holds for Σ^2 -algebras in $\mathcal{AlgLatt}$.

Sketch of the proof:

- Each element of the algebraic lattice $|\Sigma^{(\Sigma^A)}|$ can be written as an arbitrary join of finite meets of functions of the form $\eta_A(k)$, where k is a compact element of |A| and η is the unit of the monad.
- In every Σ^2 -algebra of $\mathcal{REq}u$ which is a power of Σ , the frame structure coincides with the algebraic lattice structure.

$ContLatt \equiv REqu \cap SEqu$

Recall that the objects in Top_0 which are injective with respect to the topological inclusions are exactly continuous lattices endowed with the Scott topology.

Proposition

Let (X, τ_X) be a T₀-space. (X, τ_X) is injective if and only if $(X, \tau_X, =)$ is isomorphic to an object in $\mathcal{REq}u$

$ContLatt \equiv REqu \cap SEqu$

Recall that the objects in Top_0 which are injective with respect to the topological inclusions are exactly continuous lattices endowed with the Scott topology.

Proposition

Let (X, τ_X) be a T_0 -space. (X, τ_X) is injective if and only if $(X, \tau_X, =)$ is isomorphic to an object in $\mathcal{REq}u$

By uniqueness of the structure map in $\mathcal{REq}u$, we can prove:

Corollary

The structure map on an object C in ContLatt, if exists, is unique.

A characterization for $ContLatt^{\Sigma^2}$ and $AlgLatt^{\Sigma^2}$

We denote with $Cont\mathcal{F}rm$ and $\mathcal{Alg}\mathcal{F}rm$ the full subcategories of $\mathcal{F}rm$ consisting of continuous frames and algebraic frames, respectively.

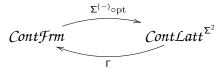
Theorem

The categories $ContLatt^{\Sigma^2}$ and $Cont\mathcal{F}rm$ are equivalent.

Corollary

The categories $\mathcal{A}lg\mathcal{L}att^{\Sigma^2}$ and $\mathcal{A}lg\mathcal{F}rm$ are equivalent.

The equivalence is given by the following functors:



(the same functors give the equivalence also in the algebraic case)

Σ^2 -algebras in $Top_0 \equiv SEqu$

Theorem

If (X, α) is a Σ^2 -algebra in Top_0 , then X is a compact, connected, sober topological space.

Theorem

There are Σ^2 -algebras (X, α) in Top_0 such that X is not locally compact.

Sketch of the proof:

Consider X a non-exponentiable topological space. Then, $\Sigma^{(\Sigma^X)}$ is a Σ^2 -algebra in Top_0 but it cannot be exponentiable. Indeed, if it is, $\Sigma^{(\Sigma^{(\Sigma^X)})}$ is an injective T_0 -space and, since Σ^X is a retract in $\mathcal{Eq}u$ of $\Sigma^{(\Sigma^{(\Sigma^X)})}$, Σ^X is a topological space

Theorem

Each Σ^2 -algebra in $\mathcal{REq}u$ is of the form (A, α) where |A| is an algebraic frame.

Indeed, if (A, α) is a Σ^2 -algebra in \mathcal{REqu} , then

$$A\cong(|\Sigma^{(\Sigma^A)}|, au_{Sc},\equiv_{q_A\circlpha})$$

where $F \equiv_{q_A \circ \alpha} G$ if $\alpha(F) \equiv_A \alpha(G)$.

It is a consequence of a more general fact:

• if (E, α) is in $\mathbb{E}qu^{\Sigma^2}$, then E is isomorphic to an equilogical space $F = (|F|, \tau_E, \equiv_E)$ where $|F| = |\Sigma^{(\Sigma^E)}|$ is a frame.

Let (A, α) be a Σ^2 -algebra in $\mathcal{REq}u$.

 $\Sigma^2(A,\Sigma)$: set of Σ^2 -homomorphisms from A to Σ .

Let τ_e be the subspace topology on $\Sigma^2(A,\Sigma)$ induced by the inclusion

$$\Sigma^2(A,\Sigma) \stackrel{e}{\longrightarrow} \left(|\Sigma^A|,\tau_{Sc}\right)$$

Let (A, α) be a Σ^2 -algebra in $\mathcal{REq}u$.

 $\Sigma^2(A,\Sigma)$: set of Σ^2 -homomorphisms from A to Σ .

Let τ_e be the subspace topology on $\Sigma^2(A, \Sigma)$ induced by the inclusion

$$\Sigma^2(A,\Sigma) \xrightarrow{e} (|\Sigma^A|, \tau_{Sc})$$

 $\mathcal{F}rm(|A|/\equiv_A, \Sigma)$: set of frame homomorphisms from $|A|/\equiv_A$ to Σ .

Let τ_i be the subspace topology on $\mathcal{F}rm(|A|/\equiv_A,\Sigma)$ with respect to the inclusion

$$\mathcal{F}rm(|A|/\equiv_A, \Sigma)^{\subset} \xrightarrow{i} (|\Sigma^A|, \tau_{Sc})$$

$$p \longmapsto p' : a \mapsto p([a])$$

Let (A, α) be a Σ^2 -algebra in $\mathcal{REq}u$.

 $\Sigma^2(A,\Sigma)$: set of Σ^2 -homomorphisms from A to Σ .

Let au_e be the subspace topology on $\Sigma^2(A,\Sigma)$ induced by the inclusion

$$\Sigma^2(A,\Sigma) \stackrel{e}{\longleftarrow} (|\Sigma^A|,\tau_{Sc})$$

 $\mathcal{F}rm(|A|/\equiv_A, \Sigma)$: set of frame homomorphisms from $|A|/\equiv_A$ to Σ .

$$\operatorname{pt}(|A|/\equiv_{A}) \cong (\mathcal{F}rm(|A|/\equiv_{A},\Sigma),\tau_{i})^{c} \xrightarrow{i} (|\Sigma^{A}|,\tau_{Sc})$$

Let (A, α) be a Σ^2 -algebra in $\mathcal{REq}u$.

 $\Sigma^2(A,\Sigma)$: set of Σ^2 -homomorphisms from A to Σ .

Let τ_e be the subspace topology on $\Sigma^2(A,\Sigma)$ induced by the inclusion

$$\Sigma^2(A,\Sigma) \stackrel{e}{\longleftarrow} (|\Sigma^A|,\tau_{Sc})$$

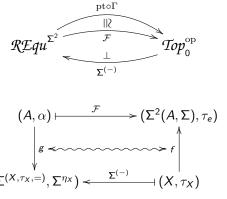
 $\mathcal{F}rm(|A|/\equiv_A, \Sigma)$: set of frame homomorphisms from $|A|/\equiv_A$ to Σ .

$$\operatorname{pt}(|A|/\equiv_{A}) \cong (\mathcal{F}rm(|A|/\equiv_{A},\Sigma),\tau_{i})^{C} \xrightarrow{i} (|\Sigma^{A}|,\tau_{Sc})$$

$$(\Sigma^{2}(A,\Sigma),\tau_{e})$$

Theorem

There is an adjunction between the categories $\mathcal{REq}u^{\Sigma^2}$ and $\mathcal{T}op_0^{\mathrm{op}}$.



Theorem

Objects in $\mathcal{REqu}^{\Sigma^2}$ of the form Σ^S , where S is in \mathcal{SEqu} , are exactly those Σ^2 -algebras (A, α) such that $|A|/\equiv_A$ is a **spatial** frame.

Indeed:

- If (X, τ_X) is a T_0 -space, then $|\Sigma^X|/\equiv_{\Sigma^X} \cong \tau_X$.
- If $|A|/\equiv_A$ is spatial, then

$$(A, \alpha) \cong \left(\Sigma^{(\Sigma^2(A, \Sigma), \tau_e, =)}, \Sigma^{\eta_{\Sigma^2(A, \Sigma)}}\right)$$

Theorem

Objects in $\mathcal{REq}u^{\Sigma^2}$ of the form Σ^S , where S is in $\mathcal{SEq}u$, are exactly those Σ^2 -algebras (A,α) such that $|A|/\equiv_A$ is a **spatial** frame.

Indeed:

- If (X, τ_X) is a T_0 -space, then $|\Sigma^X|/\equiv_{\Sigma^X} \cong \tau_X$.
- If $|A|/\equiv_A$ is spatial, then

$$(A, \alpha) \cong \left(\Sigma^{(\Sigma^2(A, \Sigma), \tau_e, =)}, \Sigma^{\eta_{\Sigma^2(A, \Sigma)}}\right)$$

Corollary

The adjunction restricts to an equivalence between the subcategory $\mathcal{S}ob^{\mathrm{op}}$ of $\mathcal{T}op_0^{\mathrm{op}}$ consisting of sober spaces and the subcategory of $\mathcal{REq}u^{\Sigma^2}$ consisting of those Σ^2 -algebras (A,α) such that $|A|/\equiv_A$ is spatial.