Coherently closed tangent categories The link between SDG and the ∂ - λ -calculus

> Jonathan Gallagher joint work with Robin Cockett

> > July 20, 2017

イロン イヨン イヨン イヨン 三日

1/40

CCCs for differential geometry

There are two main approaches that have appeared for axiomatizing differential geometry that is meant to be performed in a CCC.

Synthetic differential geometry

- Led to drastic simplifications of many parts of differential geometry
- Also greatly simplified constructions by using internal logic
- Led to "previously undreamed of" opportunities

The differential λ -calculus

- The simply typed version led to monoidal differential categories
- Then Cartesian differential categories
- And ultimately to tangent categories

Synthetic differential geometry

Lawvere '67:

- Need a ring R and an ideal D ⊆ R such that d² = 0 for all d ∈ D;
- The map R × R → [D, R] given by (a, b) → λd.d ⋅ a + b must be an isomorphism;
- ▶ Need spaces *M* that believe that *D* is well behaved. For example, all spaces must believe that

where $D(2) = \{(x, y) | x^2 = y^2 = xy = 0\}$ is a pushout.

▶ D is so small that [D,] has a right adjoint.

Differential semantics of λ -calculi

Wanted: a model of linear logic where

- Proofs are interepreted as smooth (or at least continuous) functions
- Linear proofs are interpreted as linear proofs in a mathematical sense

So that linearity (proof theory) is captured mathematically (by being represented by a line).

One can then obtain a linear (proof theory) approximation to a proof...

In the models, this turned out to be a differential operator [3, 2]

The differential λ -calculus

Interestingly, the differential operator is a special cut or composition:

 $\frac{v : \text{Abstract vector quantity}}{\Gamma, x : A \vdash m : B \quad \Gamma \vdash a : A \quad \Gamma \vdash v : A}{\Gamma \vdash \frac{dm}{dx} (a) \cdot v : B}$

Determines how v can be used linearly

Importantly, this differential composition operator is just composition with a tangent vector v. This is reminiscent of SDG:

$$T(f)(v) := D \xrightarrow{v} M \xrightarrow{f} N$$

The differential λ calculus

Important theorems:

Theorem (Ehrhard-Regnier)

The equational theory of the λ_{∂} may be oriented into a rewriting system that is confluent modulo.

Corollary (Ehrhard-Regnier)

 λ_∂ is a conservative extension of λ .

Slogan: The λ -calculus was smooth all along!

Today's talk

- These two formal systems are more intimately related than the metaphor of linear composition
- A link will be established using abstract tangent structure studied by [4] and [1]

A tangent structure on \mathbb{X} is an endofunctor, that sends an object M, naturally, to a commutative monoid in \mathbb{X}/M , together with two additional natural transformations.

Tangent structure

Axiom 1 [Additive bundle]: A category has an additive bundle structure, when there is an endofunctor $\mathbb{X} \xrightarrow{T} \mathbb{X}$.

Τ There must be a natural transformation 11

There must be natural +, 0 giving p the structure of a commutative monoid in \mathbb{X}/M .

Tangent structure

A transverse system is a collection of pullback squares in a category \mathcal{Q} . An endofunctor $\mathbb{X} \xrightarrow{T} \mathbb{X}$ is transverse when $T(q) \in \mathcal{Q}$ for all $q \in \mathcal{Q}$.

Axiom 2 [Transerversality]: The tangent functor must be transverse for some transverse system containing the pullback powers of p and another pullback shown below.

The idea is that only pullbacks of transverse maps behave well.

As T preserves transverse pullbacks and equations, T^2M is a commutative monoid in \mathbb{X}/TM in two different ways:

$$\begin{array}{ccc}
T^2 M & T^2 M \\
P_{TM} & & \downarrow T(p_M) \\
TM & TM
\end{array}$$

Axiom 3 [Canonical flip]: There is an involution

that exchanges the addition.

Tangent structure

Axoim 4 [Vertical lift]: There is a lift:

$$TM \xrightarrow{I} T^{2}M$$

$$\downarrow Tp$$

$$M \xrightarrow{I} TM$$

that lifts the additive structure of p to the additive structure of Tp.

Axiom 5 [Coherence]:

l and c form an internally commutative cosemigroup in $[\mathbb{X},\mathbb{X}]$ Add string diagrams

Axiom 6 [Universality of lift]:

is a transverse pullback.

Tangent structure

A tangent category is a category with an endofunctor $\mathbb{X} \xrightarrow{T} \mathbb{X}$ that satisfies axioms 1-6.

Examples of tangent categories

- Smooth manifolds. The usual tangent bundle of a manifold.
- ▶ Finitely presented affine schemes. Not generally cartesian closed; however, Z[x]/x² is exponentiable.
 TA := [Z[x]/x², A].
- Any model of synthetic differential geometry.
- Any cartesian differential category.
- The classifying category of the differential λ -calculus.
- The idempotent splitting of any tangent category.
- The manifold construction applied to a tangent category.
- Presheaves
- Functor categories into a tangent category.

The differential $\lambda\text{-calculus}$ provides the internal logic of Euclidean vector spaces in SDG.

Differential objects

- SMan contains the category CartSp
- A category of microlinear spaces contains the category of euclidean vector spaces
- ▶ Both cases: determined as monoids V for which $TV \xrightarrow{p} V$ has a left projection in a product diagram

$$V \stackrel{\hat{p}}{\longleftarrow} TV \stackrel{p}{\longrightarrow} V$$

 Objects that behave like vector spaces are called differential objects.

Differential Objects

An object V is a **differential object** when there is a map $TV \xrightarrow{\hat{p}} V$, so product, and it is a commutative monoid (V, σ, ζ) , such that

The differential of differential objects

There is a 'combinator'

$$\frac{A \xrightarrow{f} B}{D[f] := A \times A \xrightarrow{\simeq} T(A) \xrightarrow{T(f)} T(B) \xrightarrow{\hat{p}} B}$$
linear

Theorem

The differential objects of a tangent category are always a Cartesian differential category.

A tangent category with finite products is **cartesian** when pullbacks along $A \stackrel{!}{\longrightarrow} 1$ are transverse.

In particular, we have $T(A) \times T(B) \simeq T(A \times B)$.

Then tangent categories are strong by:

$$\theta := A \times TB \xrightarrow{0 \times 1} TA \times TB \xrightarrow{\simeq} T(A \times B)$$

When $\ensuremath{\mathbb{X}}$ is a closed tangent category, strength gives:

$$\frac{A \times T[A, B] \xrightarrow{\theta} T(A \times [A, B]) \xrightarrow{Tev} TB}{T[A, B] \xrightarrow{\psi = \lambda(\theta Tev)} [A, TB]}$$

as an exponentiable strength.

Strength

Moreover, all the structural transformations are strong and exponentially strong.

17 / 40

Coherently differential closed tangent categories

When V is a monoid, so is [M, V].

Differential objects are **additively coherent** when the canonical monoid structure, is the only one.

Proposition

In a cartesian closed category with additively coherent monoids, the differential objects are a cartesian closed left additive category.

Corollary

In this case, the differential objects model the algebraic λ -calculus.

Coherently differential closed tangent categories

The differential objects are **differentially coherent** when the strength

 $T[A, B] \rightarrow [A, TB]$

is an isomorphism.

Differential coherence implies additive coherence

Proposition

The classifying category $C[\lambda_{\partial}]$ may given the structure of a tangent category with coherent differential objects.

Proposition

The differential objects of a differentially coherent tangent category are a model of the differential λ -calculus.

Euclidean vector spaces

Corollary

The only models of the differential λ -calculus arise as the differential objects of a closed tangent category with coherent differential objects.

Euclidean vector spaces

Representable tangent category: TM = [D, M]

$$T[M, V] = [D, [M, V]] \xrightarrow{\psi} [M, [D, V]] = [M, TV]$$

is the swap isomorphism

Corollary

The Euclidean vector spaces in SDG are a model of the differential λ -calculus.

Corollary

Convenient vector spaces are a model of the differential λ -calculus.

Proposition

The strength $A \times TB \xrightarrow{\theta} T(A \times B)$ is a comonad lifting law:

$$T; (A \times _) \xrightarrow{\theta} (A \times _); T$$

Corollary

The tangent functor lifts to each coKleisli category, $\mathbb{X}[A]$.

Proposition Each of the structural transformations lifts against θ .

The strength of the structure transformations guarantees they lift. Corollary

All the structure transformations lift to each $\mathbb{X}[A]$

Corollary

When X is a tangent category, each X[A] is a tangent category.

Explicitly,

$$\frac{B \xrightarrow{f} C \quad \mathbb{X}[A]}{A \times B \xrightarrow{f} C \quad \mathbb{X}}$$

$$\frac{A \times TB \xrightarrow{\theta} T(A \times B) \xrightarrow{Tf} TC \quad \mathbb{X}}{TB \xrightarrow{\theta T(f)} TC \quad \mathbb{X}[A]}$$

<ロト<回ト<三ト<三ト<三ト<三ト 22/40

When $\mathbb X$ is closed, the simple slice may be presented as the Kleisli category for $[A,_].$

Proposition

When $\mathbb X$ is a closed tangent category, for which the exponential strength:

$$T[A,B] \xrightarrow{\psi} [A,TB]$$

is an isomorphism, then \mathbb{X}^A is an equivalent tangent category to $\mathbb{X}[A].$

When ψ is an isomorphism, a tangent category is **coherently closed**.

The differential $\lambda\text{-calculus}$ provides the internal logic of Euclidean vector bundles in SDG.

Euclidean vector spaces in SDG \rightsquigarrow differential λ -calculus.

1. Euclidean vector bundles are a central focus in differential geometry

25/40

- 2. Locally, they are Euclidean vector spaces...
- 3. We would like to get at these!

Euclidean vector spaces in SDG \rightsquigarrow differential λ -calculus.

- 1. Euclidean vector bundles are a central focus in differential geometry
- 2. Locally, they are Euclidean vector spaces...
- 3. We would like to get at these!

Locally means in a slice category

Locally Cartesian Closed Categories

A map is $A \xrightarrow{f} X$ is exponentiable when for all $B \xrightarrow{g} A$ there is a terminal pullback extension [5]:

Locally Cartesian Closed Categories

A category is **locally cartesian closed** when it has finite limits, and every map is exponentiable.

This yields a Cartesian closed structure in each slice by taking the terminal diagram of

yields [f, g].

Need:

- ► The slice of a tangent category by M is a tangent category with T_M
- ► The coherence isomorphism $T_M[A, B] \simeq [A, T_M B]$ in every slice

Theorem (CC'14)

When a tangent category has finite limits¹, the slice is always a tangent category.

Slice tangent structure

The slice tangent structure in \mathbb{X}/B is given by pullback along $B \xrightarrow{0} TB$. For $T_B(h)$:

Slice tangent structure

The slice tangent structure in \mathbb{X}/B is given by pullback along $B \xrightarrow{0} TB$. For $p_B : T_B(E) \to E$:

Differential bundles

Theorem (CC'14)

Suppose X has finite limits. Differential objects in the tangent category X/B are precisely differential bundles over B in X.

This theorem says that in fact differential bundles really do provide local linear algebra.

It also formally reduces what is needed to: $T_M[A, B] \simeq [A, T_M B]$ in the slice over M.

Proposition

When a tangent functor satisfies

$$T\left[\prod_{x:A}B\right]\simeq\left[\prod_{x:A}TB\right]$$

then in each slice it has

$$T_M[A,B] \simeq [A,T_MB]$$

Follows from Beck-Chevalley

A locally cartesian closed tangent category is **locally coherently** closed when $T[\prod_{x:A} B] \simeq \prod_{x:A} TB$

$T_M[q_E,q_F]$

<ロト < 回 ト < 巨 ト < 巨 ト ミ の Q (C 34 / 40

 $T_M[q_E, q_F] \\ \equiv 0^* (T(\prod q_E e_F))$

 $T_M[q_E, q_F] \\\equiv 0^* (T(\prod q_E e_F)) \\\simeq 0^* (\prod q_E(Tq_F))$

 $T_M[q_E, q_F] \\\equiv 0^* (T(\prod q_E e_F)) \\\simeq 0^* (\prod q_E(Tq_F)) \\\simeq \prod q_E(0^* T(q_F))$

 $T_{M}[q_{E}, q_{F}]$ $\equiv 0^{*}(T(\prod q_{E}e_{F}))$ $\simeq 0^{*}(\prod q_{E}(Tq_{F}))$ $\simeq \prod q_{E}(0^{*}T(q_{F}))$ $\equiv [q_{E}, T_{M}q_{F}]$

イロト 不得 トイヨト イヨト

3

34 / 40

Thus

Corollary

Suppose X has finite limits and is locally coherently closed, then each X/B is a coherently closed tangent category. The differential objects of X/B is a model of the differential λ -calculus.

Euclidean Vector Bundles

Proposition

In a locally cartesian closed tangent category, the category of differential bundles over B is a model of the differential λ -calculus.

Hence,

Corollary

In any model of Nishimura's axiomatic differntial geometry, the category of Euclidean vector bundles over B are a model of the differential λ -calculus.

Conclusion

- In SDG and SMan, Euclidean vector spaces are modelled by the differential λ-calculus.
- In SDG and SMan, Euclidean vector bundles are modelled by the differential λ-calculus.
- The more general reasoning in microlinear spaces is still needed for global reasoning about vector bundles.

Ongoing projects

- Formalizing more logic and differential geometry in bundle categories.
 - ► For example, local monoidal structure with duals...
- Formulating a direct syntax for all tangent categories
 - Including a syntax for the dependently typed differential λ-calculus.
 - For the latter, this is necessary adding equalizers or identity types.
- Physics in tangent categories with substructual aspects of the logic in this talk...

References I

R. Cockett and G. Cruttwell. Differential structure, tangent structure, and sdg. *Applied Categorical Structures*, 22:331–417, 2014.

T. Ehrhard.

On köthe sequence spaces and linear logic. *Mathematical Structures in Computer Science*, 12:579–623, 2002.

T. Ehrhard and L. Regnier.

The differential lambda calculus. *Theoretical Computer Science*, 309:1–41, 2003.

J. Rosický.

Abstract tangent functors. Diagrammes, 12:JR1–JR11, 1984.

References II

M. Weber.

Polynomials in categories with pullbacks.

Theory and Applications of Categories, 30:533–598, 2015.