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CCCs for differential geometry

There are two main approaches that have appeared for
axiomatizing differential geometry that is meant to be performed
in a CCC.

Synthetic differential geometry

I Led to drastic simplifications
of many parts of differential
geometry

I Also greatly simplified
constructions by using
internal logic

I Led to “previously
undreamed of” opportunities

The differential λ-calculus

I The simply typed version led
to monoidal differential
categories

I Then Cartesian differential
categories

I And ultimately to tangent
categories
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Synthetic differential geometry
Lawvere ‘67:
I Need a ring R and an ideal D ⊆ R such that d2 = 0 for all

d ∈ D;
I The map R × R −→ [D,R] given by (a, b) 7→ λd .d · a + b

must be an isomorphism;
I Need spaces M that believe that D is well behaved. For

example, all spaces must believe that

1 0 //

0
��

D
i1
��

D i0
// D(2)

where D(2) = {(x , y)|x2 = y2 = xy = 0} is a pushout.
I D is so small that [D, ] has a right adjoint.
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Differential semantics of λ-calculi

Wanted: a model of linear logic where
I Proofs are interepreted as smooth (or at least continuous)

functions
I Linear proofs are interpreted as linear proofs in a

mathematical sense
So that linearity (proof theory) is captured mathematically (by
being represented by a line).

One can then obtain a linear (proof theory) approximation to a
proof...
In the models, this turned out to be a differential operator [3, 2]
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The differential λ-calculus
Interestingly, the differential operator is a special cut or
composition:

Γ, x : A ` m : B Γ ` a : A Γ ` v : A
Γ ` dm

dx (a) · v : B

Importantly, this differential composition operator is just
composition with a tangent vector v . This is reminiscent of SDG:

T (f )(v) := D v−−→ M f−−→ N

v : Abstract vector quantity

Determines how v can be used linearly
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The differential λcalculus

Important theorems:

Theorem (Ehrhard-Regnier)
The equational theory of the λ∂ may be oriented into a rewriting
system that is confluent modulo.

Corollary (Ehrhard-Regnier)
λ∂ is a conservative extension of λ.

Slogan: The λ-calculus was smooth all along!
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Today’s talk

I These two formal systems are more intimately related than
the metaphor of linear composition

I A link will be established using abstract tangent structure
studied by [4] and [1]
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Abstract tangent structure

A tangent structure on X is an endofunctor, that sends an object
M, naturally, to a commutative monoid in X/M, together with two
additional natural transformations.
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Tangent structure

Axiom 1 [Additive bundle]: A category has an additive bundle
structure, when there is an endofunctor X T−−→ X.

There must be a natural transformation
TM

M

p

There must be natural +, 0 giving p the structure of a
commutative monoid in X/M.
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Tangent structure

A transverse system is a collection of pullback squares in a
category Q. An endofunctor X T−−→ X is transverse when
T (q) ∈ Q for all q ∈ Q.

Axiom 2 [Transerversality]: The tangent functor must be
transverse for some transverse system containing the pullback
powers of p and another pullback shown below.

The idea is that only pullbacks of transverse maps behave well.
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Tangent structure

As T preserves transverse pullbacks and equations, T 2M is a
commutative monoid in X/TM in two different ways:

T 2M
PTM
��

T 2M
T (pM)
��

TM TM
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Tangent structure

Axiom 3 [Canonical flip]: There is an involution

T 2M c //

p ##

T 2M

Tp{{
TM

that exchanges the addition.
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Tangent structure

Axoim 4 [Vertical lift]: There is a lift:

TM l //

p
��

T 2M
Tp
��

M 0
// TM

that lifts the additive structure of p to the additive structure of
Tp.
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Tangent structure

Axiom 5 [Coherence]:
l and c form an internally commutative cosemigroup in [X,X] Add
string diagrams
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Tangent structure

Axiom 6 [Universality of lift]:

T2M
π0p
��

l×0 // T 2
2 M

T (+) // T 2M

Tp
��

M 0
// TM

is a transverse pullback.
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Tangent structure

A tangent category is a category with an endofunctor X T−−→ X
that satisfies axioms 1-6.
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Examples of tangent categories

I Smooth manifolds. The usual tangent bundle of a manifold.
I Finitely presented affine schemes. Not generally cartesian

closed; however, Z[x ]/x2 is exponentiable.
TA := [Z[x ]/x2,A].

I Any model of synthetic differential geometry.
I Any cartesian differential category.
I The classifying category of the differential λ-calculus.
I The idempotent splitting of any tangent category.
I The manifold construction applied to a tangent category.
I Presheaves
I Functor categories into a tangent category.
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SDG and λ∂ part 1

The differential λ-calculus provides the internal logic of Euclidean
vector spaces in SDG.

11 / 40



Differential objects

I SMan contains the category CartSp
I A category of microlinear spaces contains the category of

euclidean vector spaces
I Both cases: determined as monoids V for which TV p−−→ V

has a left projection in a product diagram

V TV p //p̂oo V

I Objects that behave like vector spaces are called differential
objects.
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Differential Objects

An object V is a differential object when there is a map TV
p̂−−→ V , so product, and it is a commutative monoid (V , σ, ζ), such

that

V TV

1 V
!

0

p̂

ζ

T2V TV

V × V V

+

p̂×p̂ p̂

σ

TV V

T 2V TV

p̂

l
T p̂

p̂

T (V × V ) TV × TV V × V

TV V
Tσ

〈π0,π1〉 p̂×p̂

σ

p̂
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The differential of differential objects

There is a ‘combinator’

A f−−→ B
D[f ] := A× A −−→

'
T (A) −−−−→

T (f )
T (B) −−→̂

p
B

Theorem
The differential objects of a tangent category are always a
Cartesian differential category.

linear
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Strong tangent categories

A tangent category with finite products is cartesian when
pullbacks along A !−→ 1 are transverse.

In particular, we have T (A)× T (B) ' T (A× B).

Then tangent categories are strong by:

θ := A× TB 0× 1−−−−→ TA× TB '−−→ T (A× B)
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Closed tangent categories

When X is a closed tangent category, strength gives:

A× T [A,B] θ−−→ T (A× [A,B]) Tev−−−→ TB
T [A,B] −−−−−−−−−→

ψ = λ(θTev)
[A,TB]

as an exponentiable strength.

16 / 40



Strength
Moreover, all the structural transformations are strong and
exponentially strong.

T [A,B] p //

ψ

��

[A,B]

[A,TB]
[A,p]

// [A,B]

T [A,B] l //

ψ

��

T 2[A,B]

T (ψ)
��

T [A,TB]

ψ

��
[A,TB]

[A,l]
// [A,T 2B]

T 2[A,B] c //

T (ψ)ψ
��

T 2[A,B]

T (ψ)ψ
��

[A,T 2B]
[A,c]
// [A,T 2B]

T2[A,B] + //

ψ2

��

T [A,B]

ψ

��
[A,T2B]

[A,+]
// [A,T2B]

[A,B] 0 // T ([A,B])

ψ

��
[A,B]

[A,0]
// [A,T (B)]
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Coherently differential closed tangent categories

When V is a monoid, so is [M,V ].

Differential objects are additively coherent when the canonical
monoid structure, is the only one.

Proposition
In a cartesian closed category with additively coherent monoids,
the differential objects are a cartesian closed left additive category.

Corollary
In this case, the differential objects model the algebraic λ-calculus.
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Coherently differential closed tangent categories

The differential objects are differentially coherent when the
strength

T [A,B] −→ [A,TB]

is an isomorphism.
Differential coherence implies additive coherence

Proposition
The classifying category C[λ∂ ] may given the structure of a
tangent category with coherent differential objects.

Proposition
The differential objects of a differentially coherent tangent
category are a model of the differential λ-calculus.
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Euclidean vector spaces

Corollary
The only models of the differential λ-calculus arise as the
differential objects of a closed tangent category with coherent
differential objects.
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Euclidean vector spaces

Representable tangent category: TM = [D,M]

T [M,V ] = [D, [M,V ]] ψ−−→ [M, [D,V ]] = [M,TV ]

is the swap isomorphism

Corollary
The Euclidean vector spaces in SDG are a model of the differential
λ-calculus.

Corollary
Convenient vector spaces are a model of the differential λ-calculus.
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The simple slice and global coherent tangent categories

Proposition
The strength A× TB θ−−→ T (A× B) is a comonad lifting law:

T ; (A× ) θ−−→ (A× ); T

Corollary
The tangent functor lifts to each coKleisli category, X[A].
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The simple slice and global coherent tangent categories

Proposition
Each of the structural transformations lifts against θ.

The strength of the structure transformations guarantees they lift.

Corollary
All the structure transformations lift to each X[A]
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The simple slice and global coherent tangent categories

Corollary
When X is a tangent category, each X[A] is a tangent category.

Explicitly,

B f−−→ C X[A]

A× B f−−→ C X
A× TB θ−−→ T (A× B) Tf−−−→ TC X

TB −−−−→
θT (f )

TC X[A]
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The simple slice and global coherent tangent categories

When X is closed, the simple slice may be presented as the Kleisli
category for [A, ].

Proposition
When X is a closed tangent category, for which the exponential
strength:

T [A,B] ψ−−→ [A,TB]

is an isomorphism, then XA is an equivalent tangent category to
X[A].

When ψ is an isomorphism, a tangent category is coherently
closed.
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SDG and λ∂ part 2

The differential λ-calculus provides the internal logic of Euclidean
vector bundles in SDG.
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Locally Coherently Closed Tangent Categories

Euclidean vector spaces in SDG  differential λ-calculus.

1. Euclidean vector bundles are a central focus in differential
geometry

2. Locally, they are Euclidean vector spaces...

3. We would like to get at these!
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Locally Coherently Closed Tangent Categories

Euclidean vector spaces in SDG  differential λ-calculus.

1. Euclidean vector bundles are a central focus in differential
geometry

2. Locally, they are Euclidean vector spaces...

3. We would like to get at these!

Locally means in a slice category
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Locally Cartesian Closed Categories

A map is A f−−→ X is exponentiable when for all B g−−→ A there is a
terminal pullback extension [5]:

C D

f ×
∏

x :f g
∏

x :f g

B

A X

y∃!
∃!

y

g

f
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Locally Cartesian Closed Categories

A category is locally cartesian closed when it has finite limits,
and every map is exponentiable.

This yields a Cartesian closed structure in each slice by taking the
terminal diagram of

f × g π1 // Z1

g

��

f × g
π0
��

Z2 f
// X

yields [f , g ].
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Locally Coherently Closed Tangent Categories

Need:
I The slice of a tangent category by M is a tangent category

with TM
I The coherence isomorphism TM [A,B] ' [A,TMB] in every

slice
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Locally Coherently Closed Tangent Categories

Theorem (CC’14)
When a tangent category has finite limits1, the slice is always a
tangent category.

1can be weakened
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Slice tangent structure

The slice tangent structure in X/B is given by pullback along B
0−−→ TB. For TB(h):

TB(E ) TE

B TB

TB(F ) TF

∃!.TB(h)

y

Th

Tq1

0

q Tq2

30 / 40



Slice tangent structure

The slice tangent structure in X/B is given by pullback along B
0−−→ TB. For pB : TB(E ) −→ E :

TBE TE

E

B TB

B

y p

Tq

q0

p
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Differential bundles

Theorem (CC‘14)
Suppose X has finite limits.
Differential objects in the tangent category X/B are precisely
differential bundles over B in X.

This theorem says that in fact differential bundles really do provide
local linear algebra.

It also formally reduces what is needed to: TM [A,B] ' [A,TMB]
in the slice over M.
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Locally Coherently Closed Tangent Categories

Proposition
When a tangent functor satisfies

T
[∏

x :A
B

]
'

[∏
x :A

TB
]

then in each slice it has

TM [A,B] ' [A,TMB]

Follows from Beck-Chevalley

A locally cartesian closed tangent category is locally coherently
closed when T [

∏
x :A B] '

∏
x :A TB
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Locally Coherently Closed Tangent Categories

TM [qE , qF ]
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Locally Coherently Closed Tangent Categories

TM [qE , qF ]
≡ 0∗(T (

∏
qE eF ))
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Locally Coherently Closed Tangent Categories

TM [qE , qF ]
≡ 0∗(T (

∏
qE eF ))

' 0∗(
∏

qE (TqF ))
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Locally Coherently Closed Tangent Categories

TM [qE , qF ]
≡ 0∗(T (

∏
qE eF ))

' 0∗(
∏

qE (TqF ))

'
∏

qE (0∗T (qF ))
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Locally Coherently Closed Tangent Categories

TM [qE , qF ]
≡ 0∗(T (

∏
qE eF ))

' 0∗(
∏

qE (TqF ))

'
∏

qE (0∗T (qF ))
≡ [qE ,TMqF ]
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Locally coherently closed tangent categories

Thus

Corollary
Suppose X has finite limits and is locally coherently closed, then
each X/B is a coherently closed tangent category. The differential
objects of X/B is a model of the differential λ-calculus.
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Euclidean Vector Bundles

Proposition
In a locally cartesian closed tangent category, the category of
differential bundles over B is a model of the differential λ-calculus.

Hence,

Corollary
In any model of Nishimura’s axiomatic differntial geometry, the
category of Euclidean vector bundles over B are a model of the
differential λ-calculus.
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Conclusion

I In SDG and SMan, Euclidean vector spaces are modelled by
the differential λ-calculus.

I In SDG and SMan, Euclidean vector bundles are modelled by
the differential λ-calculus.

I The more general reasoning in microlinear spaces is still
needed for global reasoning about vector bundles.
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Ongoing projects

I Formalizing more logic and differential geometry in bundle
categories.

I For example, local monoidal structure with duals...
I Formulating a direct syntax for all tangent categories

I Including a syntax for the dependently typed differential
λ-calculus.

I For the latter, this is necessary – adding equalizers or identity
types.

I Physics in tangent categories with substructual aspects of the
logic in this talk...
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